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More than just a really big eigenvalue problem!

In discrete setting, operator acting on `2(N):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , (Ax)j =
∑
k∈N

ajkxk .

In cts setting, deal with differential operators, integral operators etc.

Finite Case Infinite Case
Eigenvalues ⇒ Spectrum

Sp(A) = {z ∈ C : A− z not bounded invertible}
Eigenvectors ⇒ Spectral Measure (normal case)

Goal: compute spectral properties of the operator from matrix elements,
PDE coefficients, or other suitable information.

MUCH harder and more subtle than finite dimensions!



Many applications: quantum mechanics, chemistry, matter physics,
statistical mechanics, optics, number theory, PDEs, mathematics of
information etc.

Mathematicians and physicists contributing to computational spectral
theory form a vast set including many “heavyweights”:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz),
W. Dahmen (South Carolina), E. B. Davies (King’s College London), P.
Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. Golub
(Stanford), A. Iserles (Cambridge), W. Schlag (Yale), E. Schrödinger
(DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski
(Berkeley),...

But the problem is notoriously hard...



Example: Bounded Diagonal Operators (Very Easy)

A =


a1

a2

a3

. . .


If Γn(A) = {a1, ..., an} then Γn(A)→ Sp(A) in Hausdorff metric.

Also have Γn(A) ⊂ Sp(A).

This is optimal from a computational foundations point of view.



Example: Compact Operators (Still Easy)

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , compact

If Γn(A) = Sp(PnAPn), then Γn(A)→ Sp(A) in Hausdorff metric.

Known for decades.

Q: Can we gain error control as before?

No! No algorithm can gain error control on the whole class, even for
self-adjoint compact operators.
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What about Jacobi operators?

A =


a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . .


This problem has been open for decades.

What about sparse normal operators? Surely this is much harder?!

New result: Large class Ω (covering arguably most applications and
including sparse normal) such that we can compute Γn(A)→ Sp(A) and
En(A) ↓ 0 for A ∈ Ω with

dist(z ,Sp(A)) ≤ En(A), ∀z ∈ Γn(A).

Paradox: Easier problem than compact operators!
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Foundations of Infinite-Dimensional Spectral Computations

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy (the SCI
hierarchy) measuring their difficulty and the optimality of algorithms.1

⇒ Algorithms that realise the boundaries of what computers can achieve.

Common theme in examples of this talk: use the resolvent (A− z)−1

1Also has deep connections with logic and descriptive set theory: C. Preprint (2019)



Example 1

Compute the resolvent norm γ(z) := ‖(A− z)−1‖−1

⇓

Compute spectra of “most” operators with error control.

M.J. Colbrook, B. Roman, and A.C. Hansen. “How to compute spectra
with error control.” Physical Review Letters 122(25), 250201 (2019).



Definition (Dispersion: off-diagonal decay)

Dispersion of A bounded by function f : N→ N and null sequence {cn} if

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} ≤ cn.

 



Definition (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x .
Controlled growth of the resolvent by g if

g(dist(z ,Sp(A))) ≤ ‖(A− z)−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− z)−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .
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Theorem (C., Roman, Hansen. PRL (2019))

Know f , g ⇒ can compute Sp(A) with error control.



Step 1: Approximate locally via smallest singular value:

γn(z) := min{σ1(Pf (n)(A− z)Pn), σ1(Pf (n)(A∗ − z)Pn)}+ cn.

This converges locally uniformly down to γ(z) = ‖(A− z)−1‖−1.

Step 2: Bound the distance to the spectrum:

γ(z) ≤dist(z , Sp(A)) ≤ g−1(γ(z)) ≤ g−1(γn(z)).

Step 3: Find (almost) local minimisers and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ g−1(γn(z)), sup
z∈Γn(A)

g−1(γn(z))→ 0

NB: Without either f or g , constructing an algorithm convergent to the
spectrum is impossible (even dropping error control).



New exemplar of spectral computation?

Method is:

Local and parallelisable.

Convergent for first time.

Explicitly bounds the error:

Error ≤ an ↓ 0.

Optimal from foundations point of view.
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Extends to unbounded operators and PDEs with coefficients of locally
bounded total variation (e.g. algorithms point sample coefficients).

NB: Was an open problem since Schwinger’s work in the 1960s to do this
for general Schrödinger operators (even without error control).

Paradox: Easier problem than compact operators!



Example: Operators in condensed matter physics

Left: Dan Shechtman, Nobel Prize in Chemistry 2011 for discovery of
quasicrystal. Right: Diffraction pattern of a quasicrystal.

Magnetic properties of quasicrystal.

Hard problem - no previous method even converges to spectrum.



Example: Operators in condensed matter physics

Finite truncations
False ‘solutions’.

Unreliable
Does not converge

No error control

Infinite-dimensional techniques
First convergent computation.

Reliable
Converges

Error control



Example 2 (Assume A self-adjoint)

Compute resolvent (A− z)−1x for Im(z) > 0

⇓

Compute spectral measures of general self-adjoint operators -
‘diagonalisation.’

M.J. Colbrook. “Computing spectral measures and spectral types.” arXiv
preprint arXiv:1908.06721.

M.J. Colbrook, A. Horning, and A. Townsend. “Computing spectral mea-
sures of self-adjoint operators.” arXiv preprint arXiv:2006.01766.



If A normal, associated projection-valued measure EA s.t.

Ax =

∫
Sp(A)

λdEA(λ)x, ∀x ∈ D(A),

Allows computation of functional calculus, has interesting physics etc.

Crucial in: quantum mechanics, scattering in particle physics, correlation
in stochastic processes/signal-processing, fluid stability, resonances,
density-of-states in materials science, orthogonal polynomials, random
matrix theory, evolution PDEs,...

Problem: current methods restricted to operators with lots of structure
(typically small perturbations of trivial cases)



Idea: Use the formula

(A− zI )−1 − (A− zI )−1

2πi
=

∫
Sp(A)

P(Re(z)− λ, Im(z))dEA(λ),

P(x , ε) = επ−1/(x2 + ε2): convolution with Poisson kernel.

Smoothed version of measure.

Suppose we compute with a truncation parameter n...

WARNING 1: If we fix ε, then too smooth even as n→∞.

WARNING 2: If we truncate to compute LHS, becomes unstable as ε ↓ 0.

Q: Do we need two limits? I.e. n→∞ then ε ↓ 0?

Theorem (C. (2019))

Know f ⇒ can compute measure in one limit.

This is through a rectangular least squares type problem that computes
(A− zI )−1x with (asymptotic) error control. Balance n and ε adaptively.
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Accelerating convergence with rational kernels

Idea: Replace Poisson kernel with rational kernel

K ε(x) =
1

2πi

n1∑
j=1

αj

x − εaj
− 1

2πi

n2∑
j=1

βj
x − εbj

.

Can compute convolution with error control through

〈dE ∗ K εx, y〉(x)

=
1

2πi

− n1∑
j=1

αj〈(A− (x − εaj))−1x, y〉+

n2∑
j=1

βj〈(A− (x − εbj))−1x, y〉

 .
Theorem (C., Horning, Townsend (2020))

Assuming enough local regularity,
if j = 1, ...,m moments of K vanish ⇒ error is O(εm) (pointwise & Lploc)



Eigenvalue hunting without spectral pollution

Example: Dirac operator.

Describes the motion of a relativistic spin-1/2 particle.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential...



Eigenvalue hunting without spectral pollution
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NB: Previous state-of-the-art achieves a few digits for a few excited states.



Results in this talk:

Can compute spectra of a large class of operators with error control.
New algorithm is fast, local and parallelisable.

Can compute spectral measures and spectral decompositions through
resolvent. Can be combined with state-of-the-art PDE methods.

Also have foundations for: spectral type (pure point, absolutely
continuous, singularly continuous), Lebesgue measure and fractal
dimensions of spectra, discrete spectra, essential spectra, eigenvectors +
multiplicity, spectral radii, essential numerical ranges, geometric features
of spectrum (e.g. capacity), spectral gap problem, ...

For papers, classifications in the SCI hierarchy and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html

Ongoing and future work: foundations of computational PDEs,
foundations of (stable) neural networks, and computer-assisted proofs.

Code: high-performance numerical package with resolvent based
algorithms for spectral measures (with Andrew Horning):
https://github.com/SpecSolve/SpecSolve
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