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Spectral measure of magnetic graphene, computed to high precision (see log scale) using a method of this talk.
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The infinite-dimensional problem

In discrete setting, operator acting on `2(N):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , (Ax)j =
∑
k∈N

ajkxk .

In cts setting, deal with differential operators, integral operators etc.

Finite Case Infinite Case
Eigenvalues ⇒ Spectrum

Sp(A) = {z ∈ C : A− z not bounded invertible}
Eigenvectors ⇒ Spectral Measure (normal case)

Goal: compute spectral properties of the operator from matrix elements,
PDE coefficients, or other suitable information.



Many applications: quantum mechanics, chemistry, matter physics,
statistical mechanics, optics, number theory, PDEs, mathematics of
information etc.

Mathematicians and physicists contributing to computational spectral
theory form a vast set including:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz),
W. Dahmen (South Carolina), E. B. Davies (King’s College London), P.
Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. Golub
(Stanford), A. Iserles (Cambridge), W. Schlag (Yale), E. Schrödinger
(DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski
(Berkeley),...



Can we do this for general classes of operators?



Can we do this for general classes of operators?
“Most operators that arise in practice are not presented in a representation
in which they are diagonalized, and it is often very hard to locate even a
single point in the spectrum... Thus, one often has to settle for numerical
approximations [to the spectrum], and this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley (1994)
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Turns out this is sharp! Hence impossible from numerical point of view.
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lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1(A) = Sp(A).

Turns out this is sharp! Hence impossible from numerical point of view.
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Example: Bounded Diagonal Operators (Very Easy)

A =


a1

a2

a3

. . .


If Γn(A) = {a1, ..., an} then Γn(A)→ Sp(A) in Hausdorff metric.

Also have Γn(A) ⊂ Sp(A).

This is optimal from a foundations point of view.



Example: Compact Operators (Still Easy)

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , compact

If Γn(A) = Sp(PnAPn), then Γn(A)→ Sp(A) in Hausdorff metric.

Known for decades.

Q: Can we gain error control as before?

No! No algorithm can gain error control on the whole class, even for
self-adjoint compact operators.
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What about Jacobi operators?

A =


a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . .


This problem has been open for decades.

What about sparse normal operators? Surely this is much harder?!

New result: Large class Ω (covering arguably most applications and
including sparse normal) such that we can compute Γn(A)→ Sp(A) and
En(A) ↓ 0 for A ∈ Ω with

dist(z ,Sp(A)) ≤ En(A), ∀z ∈ Γn(A).

Paradox: Easier problem than compact operators!
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What about Schrödinger operators?

Consider self-adjoint Schrödinger operators −∇2 + V on L2(Rd).

Can we compute spectra from sampling V ?

NB: Open problem since Schwinger’s work in the 1960s to do this for
general Schrödinger operators (even without error control).

New result: If V has locally bounded total variation and grows at most
polynomially at infinity then yes! And with error control as before.

Paradox: Easier problem than compact operators!

Can also be extended to many non-self-adjoint Schrödinger operators and
singular potentials etc.
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Foundations of Infinite-Dimensional Spectral Computations

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy (the SCI
hierarchy) measuring their difficulty and the optimality of algorithms.2

⇒ Algorithms that realise the boundaries of what computers can achieve.

NB: This holds regardless of model of computation - measure the intrinsic
difficulty of these problems.

Common theme in examples of this talk: use the resolvent (A− z)−1

2Also has deep connections with logic and descriptive set theory: C. Preprint (2019)



Structure of the Hierarchy



Example 1: Computing spectra with error control

Computing the resolvent norm γ(z) := ‖(A− z)−1‖−1

⇓

First algorithm that computes spectra of a very general class of operators.
Also does so with (rigorous provable) error control.

For simplicity, assume A acts on l2(N).



Definition (Dispersion: off-diagonal decay)

Dispersion of A bounded by function f : N→ N and null sequence {cn} if

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} ≤ cn.

 



Definition (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x.
Controlled growth of the resolvent by g if

g(dist(z , Sp(A))) ≤ ‖(A− z)−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− z)−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .



Definition (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x.
Controlled growth of the resolvent by g if

g(dist(z , Sp(A))) ≤ ‖(A− z)−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− z)−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .

Theorem (C., Roman, Hansen. PRL (2019))

Know f , g ⇒ can compute Sp(A) with error control.



Step 1: Approximate locally via smallest singular value:

γn(z) := min{σ1(Pf (n)(A− z)Pn), σ1(Pf (n)(A∗ − z)Pn)}+ cn.

This converges locally uniformly down to γ(z) = ‖(A− z)−1‖−1.

Step 2: Bound the distance to the spectrum:

γ(z) ≤dist(z , Sp(A)) ≤ g−1(γ(z)) ≤ g−1(γn(z)).

Step 3: Find (almost) local minimisers and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ g−1(γn(z)), sup
z∈Γn(A)

g−1(γn(z))→ 0

NB: Without either f or g , constructing an algorithm convergent to the
spectrum is impossible (even dropping error control).



Example: quartic potential on L2(R) using a Hermite basis



New exemplar of spectral computation

Method is:

Local and parallelisable.

Convergent for first time.
(e.g. no spectral pollution)

Explicitly bounds the error:

Error ≤ an ↓ 0.

Optimal from foundations point of view.
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Volume 122, Number 25
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Articles published week ending

Extends to unbounded operators and PDEs with coefficients of locally
bounded total variation (e.g. algorithms point sample coefficients).
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Example: Operators in condensed matter physics

Left: Dan Shechtman, Nobel Prize in Chemistry 2011 for discovery of
quasicrystal. Right: Diffraction pattern of a quasicrystal.

Magnetic properties of quasicrystal.

Hard problem - no previous method even converges to spectrum.



Example: Operators in condensed matter physics

Finite truncations
Edge states.

Unreliable
Does not converge

No error control

Infinite-dimensional techniques
First convergent computation.

Reliable
Converges

Error control



Example: Laplacian on Penrose tile



Example: Laplacian on Penrose tile
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Example 2: Computing spectral measures

Compute the resolvent (A− z)−1x (Im(z) > 0) with asymptotic error
control as z approaches R.

⇓

First algorithm that computes spectral measures of general self-adjoint
operators - ‘diagonalisation.’

Assume A is self-adjoint.



Spectral Measures

If A normal, associated projection-valued measure E s.t.

Ax =

∫
Sp(A)

λdE(λ)x, ∀x ∈ D(A),

Allows computation of functional calculus, has interesting physics etc.

Idea: For z = x + iε, use

(A− z)−1 − (A− z)−1

2πi
=

1

π

∫
Sp(A)

ε

(x − λ)2 + ε2
dE(λ).

Convolution with Poisson kernel: smoothed measure.

Converges weakly to measure as ε ↓ 0 (cf. Stone’s formula).



Example: Magnetic Graphene
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Theorem (C. Preprint (2019))

Know f ⇒ can compute measure in one limit.

This is through a rectangular least squares type problem that computes
(A− z)−1x with (asymptotic) error control. N(ε) chosen adaptively.



Example: Integral Operator

Au(x) = xu(x) +

∫ 1

−1
e−(x2+y2)u(y) dy , x ∈ [−1, 1].

Discretise using adaptive Chebyshev collocation method.

Look at µf : B → 〈E(B)f , f 〉. E.g. f (x) =
√

3/2 x .

-2 -1 0 1 2
10-4

10-2

100

102
µεf (x)

x

ε =
0.0

01ε = 0.0
1ε = 0.1



Example: Integral Operator

0 1000 2000 3000 4000

10-15

10-10

10-5

100
|µεf ,N(x0)− µεf (x0)|/|µεf (x0)|

N

ε
=

0.05
ε

=
0.01

ε =
0.005

10-2 10-1 100

10-2

10-1

100
|ρf (x0)− µεf (x0)|/|ρf (x0)|

O(ε
log(ε
−1 ))

ε

Converges like O(ε log(ε−1)) and need N ≈ 20/ε.

⇒ Infeasible to get more than five or six digits!

Q: Can we do better?



Accelerating convergence

Let m ∈ N, K ∈ L1(R). We say K is an mth order kernel if:

(i) Normalized:
∫
R K (x)dx = 1,

(ii) Zero moments: K (x)x j is integrable and
∫
R K (x)x jdx = 0 for

0 < j < m, and

(iii) Decay at ±∞: There is a constant CK , independent of x , such that

|K (x)| ≤ CK (1 + |x |)−(m+1), x ∈ R.

Theorem (C., Horning, Townsend. Preprint (2020))

If K is mth order, Kε(x) = ε−1K (xε−1) and µf locally absolutely
continuous near x0 with density ρf then

Pointwise: If ρf locally Cn,α near x0 then

|[Kε ∗ µf ](x0)− ρf (x0)| = O(εn+α) +O(εm log(ε−1))

Lp: If ρf locally Wn,p near x0 (1 ≤ p <∞) then

‖[Kε ∗ µf ]− ρf ‖Lploc = O(εn) +O(εm log(ε−1))



Accelerating convergence with rational kernels

Idea: Replace Poisson kernel with rational kernel

K (x) =
1

2πi

n1∑
j=1

αj

x − aj
− 1

2πi

n2∑
j=1

βj
x − bj

.

Can compute convolution with error control using resolvent

[Kε ∗ µf ](x)

=
1

2πi

 n1∑
j=1

αj〈(A− (x + εaj))−1f , f 〉 −
n2∑
j=1

βj〈(A− (x + εbj))−1f , f 〉

 .
Proposition (C., Horning, Townsend. Preprint (2020))

Let n1 = n2 = m ∈ N and fix aj in UHP, bj in LHP. Then there exists
unique {αj , βj} such that K is an mth order kernel.



Integral operator revisited
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See paper for general differential (even PDEs), integral and lattice
operator examples - use sparse spectral methods for discretisation.



Eigenvalue hunting without spectral pollution

Can extend to compute decompositions (of measures and spectral sets).

Example: Dirac operator.

Describes the motion of a relativistic spin-1/2 particle.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential, coupled system on half-line:

DV =

(
1 + V (r) − d

dr + κ
r

d
dr + κ

r −1 + V (r)

)
.

Map to [−1, 1] using

x =
r − L

r + L

and compute (A− z)−1x using the ultraspherical method.



Eigenvalue hunting without spectral pollution

νεf (x) := ε · Im
(
〈(DV − (x + iε))−1f , f 〉

)
=

∑
λ∈Λp(DV )∩{x}

〈Pλf , f 〉+O(ε)

10-6 10-4 10-2 100
10-20

10-15

10-10

10-5

100

3.1  10-7 3.2  10-7 3.3  10-7

1− x

νεf (x)

10-10 10-5 100

10-15

10-10
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100

ε

Absolute Error

NB: Previous state-of-the-art achieves a few digits for a few excited states.



Results in this talk:

Can compute spectra of a large class of operators with error control.
New algorithm is fast, local and parallelisable.

Can compute spectral measures and spectral decompositions through
resolvent. Can be combined with state-of-the-art PDE methods.

Also have foundations for: spectral type (pure point, absolutely
continuous, singularly continuous), Lebesgue measure and fractal
dimensions of spectra, discrete spectra, essential spectra, eigenvectors +
multiplicity, spectral radii, essential numerical ranges, geometric features
of spectrum (e.g. capacity), spectral gap problem, ...

Ongoing and future work: foundations of computational PDEs,
foundations of (stable) neural networks, and computer-assisted proofs.

New: high-performance numerical package with resolvent based
algorithms for computing spectral measures (with Andrew Horning).
https://github.com/ajhPHROS/SpecSolve



References for algorithms in this talk

M.J. Colbrook, B. Roman, and A.C. Hansen. “How to compute
spectra with error control.” Physical Review Letters 122.25 (2019):
250201.

J. Ben-Artzi, M.J. Colbrook, A.C. Hansen, O. Nevanlinna, and M.
Seidel. “Computing Spectra - on the solvability complexity index
hierarchy and towers of algorithms.” Submitted.

M.J. Colbrook, A.C. Hansen. “On the infinite-dimensional QR
algorithm.” Numerische Mathematik 143.1 (2019): 17-83.

M.J. Colbrook. “Computing spectral measures and spectral types.”
Submitted.

M.J. Colbrook, A. Horning, and A. Townsend. “Computing spectral
measures of self-adjoint operators.” Submitted.

For further papers in this program, classifications in the SCI hierarchy and
numerical code: http://www.damtp.cam.ac.uk/user/mjc249/home.html
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