
Resolving the resolvent
How to ‘diagonalise’ infinite matrices
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W. Arveson in 90s (leading operator theorist): “Unfortunately, there is a
dearth of literature on this basic problem, and there are no proven
techniques.”
Aim of talk: Solve this problem!



Introduction Motivation

Set-up

Work in canonical Hilbert space l2(N) with

〈x , y〉 =
∑
j∈N

xjy j , ‖x‖2 =
∑
j∈N
|xj |2 .

Operator acting on l2(N):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , (Ax)j =
∑
k∈N

ajkxk .

Finite Case Infinite Case
Eigenvalues ⇒ Spectrum

Sp(A) = {z ∈ C : A− zI not bounded invertible}
Eigenvectors ⇒ Spectral Measure

Pseudospectrum (non-normal matrices)
Spε(A) = {z ∈ C : ‖(A− zI )−1‖−1 ≤ ε}



Introduction Motivation

Why?

Appears in a huge number of applications.

Hard numerical problem! Näıve discretisations/truncations can fail
spectacularly even for “nice” self-adjoint, tridiagonal case (hence
Arveson’s quote).

Talk will present first algorithm that computes spectra of a very
general class of operators and how to compute spectra with (rigorous
provable) error control.

Everything in this talk in discrete setting, but can be extended to
continuous setting (e.g. PDE/integral operators).

Common theme: use the resolvent (A− zI )−1



Introduction Motivation

Magneto-graphene
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Figure: Finite section.



Introduction Motivation

Can be turned into this!
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Figure: Guaranteed error bound of 10−5.



Introduction Motivation

The algorithms presented are optimal from a computational foundations
point of view (SCI hierarchy)1:

General Spectral Problem

Spectral Measures
(in this talk)Spectra

(in this talk)

Deep connections with logic and descriptive set theory.2

All algorithms are local and parallelisable, suitable for high performance
computation.

1Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel. Preprint 2019
2Colbrook. Preprint 2019



From eigenvalues to spectra: Using the resolvent norm

Recall for bounded operator T :

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}



From eigenvalues to spectra

Definition 1 (Dispersion: off-diagonal decay)

Dispersion of A ∈ B(l2(N)) is bounded by the function f : N→ N if

cn = max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} → 0 as n→∞.



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x .
Controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z , Sp(A))) ∀z ∈ C.

g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have
well-conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .

Know f , g ⇒ can compute Sp with error control!



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x .
Controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z , Sp(A))) ∀z ∈ C.

g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have
well-conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .

Know f , g ⇒ can compute Sp with error control!3

3Colbrook, Roman, Hansen. PRL 2019



From eigenvalues to spectra

Idea: approximate locally via smallest singular value:

γn(z) = min{σ1(Pf (n)(A−zI )Pn), σ1(Pf (n)(A∗−zI )Pn)}+cn ↓ ‖(A−zI )−1‖−1

‖(A− zI )−1‖−1 ≤dist(z , Sp(A)) ≤ g−1(‖(A− zI )−1‖−1) ≤ g−1(γn(z)).

Local search routine computes Γn(A) and E (n, ·) with

Γn(A)→ Sp(A), dist(z ,Sp(A)) ≤ E (n, z), sup
z∈Γn(A)

E (n, z)→ 0



From eigenvalues to spectra

Laplacian on Penrose Tile

Aperiodic, no known method for analytic study.



From eigenvalues to spectra



From eigenvalues to spectra
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Computing spectral measures: Using the resolvent operator



Computing spectral measures

If A normal, associated projection-valued measure EA s.t.

Ax =

∫
Sp(A)

λdEA(λ)x , ∀x ∈ D(A),

View this as diagonalisation - allows computation of functional
calculus, has interesting physics etc.

Only previous work deals with A tridiagonal Toeplitz + compact.
Analogous in finite dimensions to being able to compute the location
of eigenvalues but not eigenvectors!

Suppose, for simplicity, A self-adjoint...



Computing spectral measures

Idea: Use the formula

(A− zI )−1 − (A− zI )−1

2πi
=

∫
Sp(A)

P(Re(z)− λ, Im(z))dEA(λ),

P(x , ε) = επ−1/(x2 + ε2): convolution with Poisson kernel. Smoothed
version of measure.



Computing spectral measures

Idea: Use the formula

(A− zI )−1 − (A− zI )−1

2πi
=

∫
Sp(A)

P(Re(z)− λ, Im(z))dEA(λ),

P(x , ε) = επ−1/(x2 + ε2): convolution with Poisson kernel. Smoothed
version of measure.



Computing spectral measures

Know f ⇒ can compute measure in one limit4!

This is through a rectangular least squares type problem.

4Colbrook. Preprint 2019



Computing spectral measures

Back to graphene

Beautiful fractal structure!
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Conclusion

Can now compute spectra of a large class of operators with error
control (first algorithm that does this).

New algorithm is fast, local and parallelisable, competitive with the
current methods in the literature.

Produced an algorithm that computes spectral measures.

Algorithms part of a larger class of resolvent based techniques and
hierarchical classification.

Other problems can also be tackled such as fractal dimensions,
discrete spectra,...

Coming soon: high performance numerical package with resolvent
based algorithms for discrete and continuous problems.
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