Resolving the resolvent
How to ‘diagonalise’ infinite matrices

Matthew Colbrook
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W. Arveson in 90s (leading operator theorist): “Unfortunately, there is a
dearth of literature on this basic problem, and there are no proven
techniques.”

Aim of talk: Solve this problem!
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Set-up

Work in canonical Hilbert space /?(N) with
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Operator acting on /2(N):
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Finite Case Infinite Case

Eigenvalues = Spectrum
Sp(A) = {z € C: A— zl not bounded invertible}

Eigenvectors =- Spectral Measure

Pseudospectrum (non-normal matrices)
Sp(A) ={zeC:|(A-z)'| ' <¢




Why?

@ Appears in a huge number of applications.

@ Hard numerical problem! Naive discretisations/truncations can fail
spectacularly even for “nice” self-adjoint, tridiagonal case (hence
Arveson's quote).

@ Talk will present first algorithm that computes spectra of a very
general class of operators and how to compute spectra with (rigorous
provable) error control.

@ Everything in this talk in discrete setting, but can be extended to
continuous setting (e.g. PDE/integral operators).

Common theme: use the resolvent (A — z/)~} I
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Figure: Finite section.



Motivation
Can be turned into this!

sp(Qa(®)) (Algorithm)
T

Spectrum

Figure: Guaranteed error bound of 1075.



Introduction Motivation

The algorithms presented are optimal from a computational foundations
point of view (SCI hierarchy)!:

General Spectral Problem

1§ Iy I3
I G < G < G
AF ¢ AY ¢ TpUTe ¢ (Ag) ¢ ZgUNy ¢ A ¢
I = Cf/’ sg\ 3 Q@
¢
g \ g
T Spectral Measures
Spectra (in this talk)
(in this talk)

Deep connections with logic and descriptive set theory.?
All algorithms are local and parallelisable, suitable for high performance

computation.
1Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel. Preprint 2019

2Colbrook. Preprint 2019




From eigenvalues to spectra: Using the resolvent norm

Recall for bounded operator T:

ITH = sup{[I T} - [lx]| = 1}



From eigenvalues to spectra

Definition 1 (Dispersion: off-diagonal decay)
Dispersion of A € B(/?(N)) is bounded by the function f : N — N if

cn = max{|[(/ = Pr(m))APall, [|PaA(l = Priny)ll} = 0 as n— oc.

Extra Info

Neglected Info



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0, 00) — [0, 00) with g(x) < x.
Controlled growth of the resolvent by g if

(A —z)71| 7t > g(dist(z,Sp(A))) Vze C.

@ g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Sp.(A)= |J Sp(A+B).
1Bll<e

o Self-adjoint and normal operators (A commutes with A*) have
well-conditioned spectral problems since

[(A—21)7Y| " = dist(z,Sp(A)), &(x) = x.



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0, 00) — [0, 00) with g(x) < x.
Controlled growth of the resolvent by g if

(A —z)71| 7t > g(dist(z,Sp(A))) Vze C.

@ g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Sp.(A)= |J Sp(A+B).
1Bll<e

o Self-adjoint and normal operators (A commutes with A*) have
well-conditioned spectral problems since

[(A—21)7Y| " = dist(z,Sp(A)), &(x) = x.

Know f, g = can compute Sp with error control!3|

3Colbrook, Roman, Hansen. PRL 2019



From eigenvalues to spectra

Idea: approximate locally via smallest singular value:
Vn(2) = min{o1(Pr(n)(A—2l)Pn), 01(Pr(n)(A*=21)Pp)}+cn | [[(A—2l) |7

(A= zl) 1 <dist(z,Sp(A)) < g H(I(A = 21) 7)< g7 (7a(2)).
Local search routine computes I',(A) and E(n,-) with

,(A) — Sp(A), dist(z,Sp(A)) < E(n, z), sup E(n,z) — 0
zely(A)

n=1

o
o

Norm Estimate
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From eigenvalues to spectra

Laplacian on Penrose Tile

Aperiodic, no known method for analytic study.




From eigenvalues to spectra
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From eigenvalues to spectra
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Computing spectral measures: Using the resolvent operator



Computing spectral measures

@ If A normal, associated projection-valued measure EA s.t.
Ax = / AEA(N)x, V¥x € D(A),
Sp(A)

@ View this as diagonalisation - allows computation of functional
calculus, has interesting physics etc.

@ Only previous work deals with A tridiagonal Toeplitz + compact.
Analogous in finite dimensions to being able to compute the location
of eigenvalues but not eigenvectors!

Suppose, for simplicity, A self-adjoint...



Computing spectral measures

Idea: Use the formula
(A— zl)_1 —(A- ?l)_1 B
27i B

/ P(Re(z) — A\, Im(z))dEA(N),
Sp(A)

P(x,€) = en™1/(x? + €?): convolution with Poisson kernel. Smoothed
version of measure.

epsilon = 0.1, N = 10
0.3 T T T
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Computing spectral measures

Idea: Use the formula
(A— zl)_1 —(A- ?l)_1 B
27i B

/ P(Re(z) — A\, Im(z))dEA(N),
Sp(A)

P(x,€) = en™1/(x? + €?): convolution with Poisson kernel. Smoothed
version of measure.

epsilon = 0.051000, N = 1000

3.5¢ 1

25+ 1

Mecasure Estimate
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Computing spectral measures

I Know f = can compute measure in one limit?! I

This is through a rectangular least squares type problem.

0.5 =

0.35 - q

0.3 q

0.25 - q

0.2 q

Measure Estimate

0.05 - q

5§ o

*Colbrook. Preprint 2019



Back to graphene

Beautiful fractal structure!

Can do things like study transport properties etc.



Conclusion

@ Can now compute spectra of a large class of operators with error
control (first algorithm that does this).

@ New algorithm is fast, local and parallelisable, competitive with the
current methods in the literature.

@ Produced an algorithm that computes spectral measures.

@ Algorithms part of a larger class of resolvent based techniques and
hierarchical classification.

@ Other problems can also be tackled such as fractal dimensions,
discrete spectra,...

Coming soon: high performance numerical package with resolvent
based algorithms for discrete and continuous problems.
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