Resolving the resolvent
 How to 'diagonalise' infinite matrices

Matthew Colbrook
University of Cambridge

W. Arveson in 90s (leading operator theorist): "Unfortunately, there is a dearth of literature on this basic problem, and there are no proven techniques."
Aim of talk: Solve this problem!

Set-up

Work in canonical Hilbert space $I^{2}(\mathbb{N})$ with

$$
\langle x, y\rangle=\sum_{j \in \mathbb{N}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{N}}\left|x_{j}\right|^{2} .
$$

Operator acting on $I^{2}(\mathbb{N})$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad(A x)_{j}=\sum_{k \in \mathbb{N}} a_{j k} x_{k}
$$

Finite Case Infinite Case

Eigenvalues \Rightarrow Spectrum

$$
\operatorname{Sp}(A)=\{z \in \mathbb{C}: A-z \text { l not bounded invertible }\}
$$

Eigenvectors \Rightarrow Spectral Measure

> Pseudospectrum (non-normal matrices)

$$
\operatorname{Sp}_{\epsilon}(A)=\left\{z \in \mathbb{C}:\left\|(A-z I)^{-1}\right\|^{-1} \leq \epsilon\right\}
$$

Why?

- Appears in a huge number of applications.
- Hard numerical problem! Naïve discretisations/truncations can fail spectacularly even for "nice" self-adjoint, tridiagonal case (hence Arveson's quote).
- Talk will present first algorithm that computes spectra of a very general class of operators and how to compute spectra with (rigorous provable) error control.
- Everything in this talk in discrete setting, but can be extended to continuous setting (e.g. PDE/integral operators).

Common theme: use the resolvent $(A-z I)^{-1}$

Magneto-graphene

Figure: Finite section.

Can be turned into this!

Figure: Guaranteed error bound of 10^{-5}.

The algorithms presented are optimal from a computational foundations point of view (SCI hierarchy) ${ }^{1}$:

Deep connections with logic and descriptive set theory. ${ }^{2}$ All algorithms are local and parallelisable, suitable for high performance computation.

[^0]From eigenvalues to spectra: Using the resolvent norm

Recall for bounded operator T :

$$
\|T\|=\sup \{\|T x\|:\|x\|=1\}
$$

Definition 1 (Dispersion: off-diagonal decay)

Dispersion of $A \in \mathcal{B}\left(I^{2}(\mathbb{N})\right)$ is bounded by the function $f: \mathbb{N} \rightarrow \mathbb{N}$ if

$$
c_{n}=\max \left\{\left\|\left(I-P_{f(n)}\right) A P_{n}\right\|,\left\|P_{n} A\left(I-P_{f(n)}\right)\right\|\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(x) \leq x$. Controlled growth of the resolvent by g if

$$
\left\|(A-z I)^{-1}\right\|^{-1} \geq g(\operatorname{dist}(z, \operatorname{Sp}(A))) \quad \forall z \in \mathbb{C} .
$$

- g is a measure of the conditioning of the problem of computing $\operatorname{Sp}(A)$ through the formula

$$
\operatorname{Sp}_{\epsilon}(A)=\bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B)
$$

- Self-adjoint and normal operators (A commutes with A^{*}) have well-conditioned spectral problems since

$$
\left\|(A-z l)^{-1}\right\|^{-1}=\operatorname{dist}(z, \operatorname{Sp}(A)), \quad g(x)=x
$$

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(x) \leq x$. Controlled growth of the resolvent by g if

$$
\left\|(A-z l)^{-1}\right\|^{-1} \geq g(\operatorname{dist}(z, \operatorname{Sp}(A))) \quad \forall z \in \mathbb{C} .
$$

- g is a measure of the conditioning of the problem of computing $\operatorname{Sp}(A)$ through the formula

$$
\operatorname{Sp}_{\epsilon}(A)=\bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B)
$$

- Self-adjoint and normal operators (A commutes with A^{*}) have well-conditioned spectral problems since

$$
\left\|(A-z I)^{-1}\right\|^{-1}=\operatorname{dist}(z, \operatorname{Sp}(A)), \quad g(x)=x
$$

Know $f, g \Rightarrow$ can compute Sp with error control! ${ }^{3}$

[^1]Idea: approximate locally via smallest singular value:
$\gamma_{n}(z)=\min \left\{\sigma_{1}\left(P_{f(n)}(A-z I) P_{n}\right), \sigma_{1}\left(P_{f(n)}\left(A^{*}-\bar{z} l\right) P_{n}\right)\right\}+c_{n} \downarrow\left\|(A-z l)^{-1}\right\|^{-1}$

$$
\left\|(A-z l)^{-1}\right\|^{-1} \leq \operatorname{dist}(z, \operatorname{Sp}(A)) \leq g^{-1}\left(\left\|(A-z l)^{-1}\right\|^{-1}\right) \leq g^{-1}\left(\gamma_{n}(z)\right)
$$

Local search routine computes $\Gamma_{n}(A)$ and $E(n, \cdot)$ with

$$
\Gamma_{n}(A) \rightarrow \operatorname{Sp}(A), \quad \operatorname{dist}(z, \operatorname{Sp}(A)) \leq E(n, z), \sup _{z \in \Gamma_{n}(A)} E(n, z) \rightarrow 0
$$

Laplacian on Penrose Tile

Aperiodic, no known method for analytic study.

Computing spectral measures: Using the resolvent operator

- If A normal, associated projection-valued measure E^{A} s.t.

$$
A x=\int_{\operatorname{Sp}(A)} \lambda d E^{A}(\lambda) x, \quad \forall x \in \mathcal{D}(A)
$$

- View this as diagonalisation - allows computation of functional calculus, has interesting physics etc.
- Only previous work deals with A tridiagonal Toeplitz + compact. Analogous in finite dimensions to being able to compute the location of eigenvalues but not eigenvectors!

Suppose, for simplicity, A self-adjoint...

Idea: Use the formula

$$
\frac{(A-z I)^{-1}-(A-\bar{z} I)^{-1}}{2 \pi i}=\int_{\operatorname{Sp}(A)} P(\operatorname{Re}(z)-\lambda, \operatorname{Im}(z)) d E^{A}(\lambda)
$$

$P(x, \epsilon)=\epsilon \pi^{-1} /\left(x^{2}+\epsilon^{2}\right)$: convolution with Poisson kernel. Smoothed version of measure.

Idea: Use the formula

$$
\frac{(A-z I)^{-1}-(A-\bar{z} I)^{-1}}{2 \pi i}=\int_{\operatorname{Sp}(A)} P(\operatorname{Re}(z)-\lambda, \operatorname{Im}(z)) d E^{A}(\lambda)
$$

$P(x, \epsilon)=\epsilon \pi^{-1} /\left(x^{2}+\epsilon^{2}\right)$: convolution with Poisson kernel. Smoothed version of measure.

Know $f \Rightarrow$ can compute measure in one limit ${ }^{4}$!
This is through a rectangular least squares type problem.

[^2]
Back to graphene

Beautiful fractal structure!

Can do things like study transport properties etc.

Conclusion

- Can now compute spectra of a large class of operators with error control (first algorithm that does this).
- New algorithm is fast, local and parallelisable, competitive with the current methods in the literature.
- Produced an algorithm that computes spectral measures.
- Algorithms part of a larger class of resolvent based techniques and hierarchical classification.
- Other problems can also be tackled such as fractal dimensions, discrete spectra,...

Coming soon: high performance numerical package with resolvent based algorithms for discrete and continuous problems.

[^0]: ${ }^{1}$ Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel. Preprint 2019
 ${ }^{2}$ Colbrook. Preprint 2019

[^1]: ${ }^{3}$ Colbrook, Roman, Hansen. PRL 2019

[^2]: ${ }^{4}$ Colbrook. Preprint 2019

