0/19

measure-preserving Extended Dynamic Mode Decomposition:
Structure-preserving Koopmanism

Matthew Colbrook (m.colbrook@damtp.cam.ac.uk)
University of Cambridge

15/05/23




1/19

Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xny1 = F(xp)
* Given: Trajectory data {x(m),y(m) = F(x(’m))}nM1=1
* Koopman operator K acts on functions g: (1 = C
[Kgl(x) = g(F(x))

* K is linear but acts on an infinite-dimensional space.

« Work in L% (£, w) for positive measure w, with inner product {-,-).

GOAL: Data-driven approximation of K and its spectral properties.

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.
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Setting
Typical approach: X K € CNXN

Challenges:
1) Spectral pollution: Approximate spurious modes A & Spec(X).
2) Spectral invisibility: Miss parts of Spec(X).
3) Continuous spectra.

Assume: System is measure-preserving
& KK =1 (isometry)  (we consider unitary extensions )
= Spec(K) S {z:|z| < 1}
WANT: Method preserves measure (e.g., stability, long-time behavior etc.)...
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Motivating example
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TKE, y =~ 35mm

* Reynolds number = 6.4 x 10*
 Ambient dimension (d) = 100,000
(velocity at measurement points)
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*Raw measurements provided by Maté Sz6ke (Virginia Tech)
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 Baddoo, Herrmann, McKeﬂjtz, Brunton, “Physics-informed dynamic mode

%nposition (piDMD),” preprint.

* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.
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Extended Dynamic Mode Decomposition (EDMD)

Given dictionary {11, ..., ¥y} of functions lp]. QO - C, L{X ),y(m) _ F(x(m))}M
m=1
o [ (x D) e Py (D) " (w, P (x®) e Py (x|
<¢k»1/)j> ~ Z%=1 Wmlpj (x(m))wk(x(m)) = : : : :
l/J1(x(M)) l/JN(X(M)) Wu l/J1(x(M)) l/JN(x(M))
i, W . L
o (D) Py )\ Wy P 0D ey )]
(FCi, ) = Ty Wit () () = : 5 : :
o) [\ ™)y (x) wy) \ Y1) Yy ()
_ Ty W mm Ly

K = K=V, WY)W, WY, € CV*N

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.
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Another interpretation

N
qj(x) = [ll)l(X) l/)N(X)], g = zgjl/)j — Lpg, :K‘g — ‘P]Kg + R(g!)
j=1

Ké{éziv%{ ) ”rgﬂggllR(g,x)lzdw(x) = ]Q W (F(x)) — POKI|5 dw(x)

qguadrature

M
min, > wnl[¥(/) = (K]

1
]KE(CNXN
m=1
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A simple idea
G =YW, G~ (Y1)

Measure-preserving: || Wg|| = [[YKgll, I¥gll*~ g*Gg, IYKgll* = g"K"GKg
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A simple idea
G =YW, Gy~ (Yr;)
Measure-preserving: |[|¥gll = [|WKgll, |¥Ygll* = g*Gg, ||I¥Kgll* = g"K*GKg

Enforce: G = K*'GIK
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A simple idea
G =YW, Gy~ (Yr;)
Measure-preserving: |[|¥gll = [|WKgll, |¥Ygll* = g*Gg, ||I¥Kgll* = g"K*GKg

Enforce: ¢ = K'GK

quadrature orthogonal
/ Procrustes
M problem
. _ _1/2112
in z Wi [[¥ (7 )6 ~1/2 — @(x(M)KG 1/2”2

G=K*GK m=1
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The mpEDMD algorithm

Algorithm: mpEDMD for approximating spectral properties of K.
Input: Snapshot data {z(™) y(™ = F(x(™)}M_ = quadrature weights {w,, }

m=1>? m=1?

and a dictionary of functions {¢;}7_,.
1: Compute G = V5 WWx and A =V WUy
2: Compute an SVD of G=2A*G~1/2 = U, XU
3. Compute the eigendecomposition UsUF = VAV*
4: Compute K = G=V2U,UFGY? and V = G~V/2V

Output: Koopman matrix K, with eigenvectors V' and eigenvalues A.

In a nutshell: Galerkin meets polar decomposition.
(This also allows us to prove numerical stability.)
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Relation to previous approaches

* Physics-informed DMD: Similar approach but doesn’t use nonlinear
observables or matrix . Hence in general, not measure-preserving.

Baddoo, Herrmann, McKeon, Kutz, Brunton, “Physics-informed dynamic mode
decomposition (piDMD),” preprint.

* Periodic approximations via partitioning of state-space (e.g., on tori): Can
be considered a particular case of mpEDMD, related to Ulam’s method.

Govindarajan, Mohr, Chandrasekaran, Mezic, “On the approximation of Koopman
spectra for measure preserving transformations,” SIAM J. Appl. Dyn. Syst., 2019.

* Compact regularizations of the skew-adjoint generator: Measure-
preserving method in continuous time through RKHS.

Das, Giannakis, Slawinska, “Reproducing kernel Hilbert space compactification of
unitary evolution groups,” Appl. Comput. Harm. Anal., 2021.
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Spectral measures — diagonalisation

e Fin.-dim.: B € C"", B*B = BB*, o.n. basis of e-vectors {vj}?ﬂ

n
— . .*
=1 _

U,

Bv =

- _
S

z;{]U]U] D,

J=1 _

Vv e Ch

* Inf.-dim.: Operator £L: D(L) — H. Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure £

g:

jﬂ 1dEN)
Spec(L) |

= f A1dER)
Spec(L) |

g, VgeH

* Spectral measures: 11,(U) = (E(U)g, g) (llgll = 1) prob. measure.
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Convergence of projection-valued measure
N

This assumption
cannot be dropped

dgN,M (/1) — z Vj U]*G(?(A R A])d/‘{ in general!

j=1

Theorem: Suppose that the quadrature rule converges, K is* unitary,
lim dist(h,Vy) = 0 for any h € L*(Q, w). Then for any Lipschitz test

N —>o00

function &, g € L*(Q, w) and gy € CY with lim lg — Pgunll =0,

lim limsup fqr E(M)dEN)g —LIJJT EM)dEY D) gn|| =0

N—-oo M0

Key ingredients: K: mpEDMD matrix

A;j: eigenvalues of K

 Strong convergence of Galerkin approximation.

v;: eigenvectors of K

* Discretization by normal operators. Vy = span {iy, ..., Yy}
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Convergence of scalar-valued measure

ug™ W) = g'GeEnmWIg = ).

)\.jEU

Wi(u,v) = sup<f E(A)d(u —v)(A): €& Lipschitz 1
T

v]f"Gg‘2

\

"

J

Theorem: Suppose quad. rule converges, Al,im dist(h,Vy) = 0 forany h €
L%(Q, w). Then for g € L?(Q, ) and gy € CN with lim lg — Wgnll =0,

lim limsup W; (ug,,ugv'M)) = 0.

N—-o© pme0

— N-—1 —
fVy =19, Xg, .., K g}and g = Wg, then K: mpEDMD matrix
10g(N) A;: eigenvalues of K
Matching S : (N,M) < j
autocorrelations! llII\}l_S)(tlop Wl (I/lg’ I’lg ~ N - vj: eigenvectors of K
I Vn = span {4, ..., Yy}
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Avoid spectral invisibility!

Spec,p(K) = {/1: Fu,,, [|lu,ll = 1,T1Li_r)£10||(76 — Du,|| = O} = Spec(K)NT

Theorem: Suppose quad. rule converges, Al’im dist(h,Vy) = 0 forany h €

L%(Q, w). Then

lim limsup  sup  dist(4, Spec(K)) = 0.
N=c  M-eo 2A€Specyp(X)

K: mpEDMD matrix
A;j: eigenvalues of K

v;: eigenvectors of K
Vn = span {4, ..., Yy}
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Avoid spectral invisibility!

Spec,p(K) = {/1: Fu,,, [|lu,ll = 1,T1Li_r)£10||(76 — Du,|| = O} = Spec(K)NT

Theorem: Suppose quad. rule converges, Al’im dist(h,Vy) = 0 forany h €

L%(Q, w). Then

lim limsup  sup  dist(4, Spec(K)) = 0.
N=c  M-eo 2A€Specyp(X)

. K: mpEDMD matrix
What about spectral pollution? A eigenvalues of KK

v;: eigenvectors of K
Vn = span {4, ..., Yy}
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Residuals = avoid spectral pollution!
G = l'IJX>I<VV‘“IJX, A= "IJX*WLIJY

17— D)Pgll*

(K —D¥g, (K —)¥g)
lim g |1+ 226G — 14— 1A% g

Suitable conditions = Al’im rrel‘l/n 1K — D¥gll/ llgll = dist(4, Spec,p (X))
— 00 g N

Two methods:

* Clean up procedure for tolerance ¢.

* Local minimization algorithm converges to Spec,, (¥X).

 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
e C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
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Residuals = avoid spectral pollution!

sk sk

Executive summary of ResDMD: (considers inf-dim residuals)

e Rigorous convergence for spectra and pseudospectra of
general Koopman operators from snapshot data.

* Error bounds = aposteri verification of spectral quantities,
Koopman mode decompositions, and learned dictionaries.

* Deals with spectral measures of general measure-preserving

Suitable systems with explicit high-order convergence.

Two methods:
* Clean up procedure for tolerance ¢.

* Local minimization algorithm converges to Spec,, (¥X).

 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
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Lorenz system: scalar-valued spec meas
x1 = 10(xy — xq), Xy = x1(28 — x3) — x4, X3 = X1X; — 8/3 x3, A, = 0.1

gj = ¢lxl;,  Vw =span{g;, Kgj, .., K" " g;}

(50,2%x10°)  (50,M) (N,10°) (10%,10°)
Wi (ug; shgy ) Wilng g ) ~ Cdf of g, B
) )
— 92 —p
101t \[ 1071 g3 | 08/ g3
06|
102 1072
. 0.4}
107 107 @) \‘\ :
N 0.2}
(A i
10 ‘ 10 ‘ ! - on ‘ ‘ ‘ ‘
102 10° 10’ 102 10° 3 2 A 0 1 2 3
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Lorenz system: projection-valued spec meas

VN — span{gl, Y2, gSI:]Cgl'ngZ"(}CgBJ '"i%q_lglJ%q_ngJ%q_lg3}
¢(1) = (1 — )*log(1 - 1)

I Jp (M) dlE5, 55 106 (A) = E50,M (M]gj I 2(M)(dE(N)gj — ¥dE 56 (Mg )l

W f'ﬂ" ¢(A)d850?2><106 (A)gj | | I’JI‘ qb(.)\)dg(k)gj I

100 ; 109

: —01

_gz |

107 ¢ 93] 3

[ 1 10-1
102k

f 1072
10° ¢

: 3

10
107}
10°° 10
102 10° 10° 10"
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Lorenz system: projection-valued spec meas

VN — Span{gli 92, gSlegl'jCQZJ:]CQBJ "'J%q_lgl'%q_lgz'%q_lgB}
¢(1) = (1 — )*log(1 - 1)

40 -

30

0.5 Z 20 -

15 10
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Nonlinear pendulum

.7.6'1 = Xy, XZ - — Sin(xl), () = [—77:, ﬂ]per X R, At = 0.5
g(x) = exp(ix;) x; exp(—x5/2),  Vy =span{g,Kg,..,K°g}

mpEDMD, \ ~ e?™/4

0
0.2
= -0.4

1-0.6

EDMD, \ ~ ei37f/04

— 0.2
—
-0.4
v( \ ‘ ‘
)

1-08
1 E

112
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Robustness to noise: Gauss. noise for Wy, Wy

Mean residual (EDMD)

s

e V[ = 200

—— M) = 250
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unstable

EDMD

Turbulence statistics
mpEDMD
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Summa I'Y. Structure-preserving Koopmanism for arbitrary measure-preserving systems.

* Convergence of spectral measures, spectra,
Koopman mode decomposition.

* Long-time stability, improved qualitative behavior.
* Increased stability to noise.

* Simple, flexible: easy to combine
with any DMD-type method!

https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition




https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition

Summary

onvergence of spectral measures, spectra,

Koopman mode decomposition.
Long-time stability, improved qualitativ
Increased stability to noise.

Simple, flexible: easy to combine
with any DMD-type method!
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Optimization and Learning with
Zeroth-order Stochastic Oracles

By Stefan M. Wild
thematical optimization is a foun-

M stional technology for machine

learning and the solution of design, deci-
sion. and control problems. In most optimi-
zation applications, the principal assump-
tion is the_availability of at least the

sequence is that material properties are
only available via in situ and in operando
characterization. In the context of optimiza
tion, this scenario is called 4 “zeroth-order
oracle” — our knowledge about 4 particular
system or property is data driven and limited
by the black-box nature of measurement
procurement. An_additional challenge is

An optimization solver specifies a particu
composition of solvents and bases, an oper-
ating temperature, and reaction times; this
«combination is then run through a continy-
ous flow reactor. The material that exits the
reactor s then automatically characterized

L === &  a

Read more abou
reakthroughs in SIAM News!

arch for novel materials for energy stor-
age, In order o create viable new m
alls, we must move beyond pure theory and
account for the actual processes that occur
during materials synthesis. A neces:

Nonprofit Org
USS. Postage
PAID

ers—such as the laboratory in
Figure 1—doing s0 is impossible.

Figure | displays an instantiation of 4
data-driven optimization setting in a chem-

t these

through an inline nuclear magnetic reso
nance detector that illuminates properties
of the synthesized materials. These sto
chastic, zeoth-order oracle outputs return

10 the solver in & closed-loop setting that

See Optimization

Resilient Data-driven ynamical Systems
with Koopman: An Infinite-dimensional
Numerical Analysis Perspective

By Steven L. Brunton
and Matthew J. Colbrook

namical systems, which describe the
evolution of systems in time. are ubiq
uitous in modern science and engincering
They find use in a wide variety of applica
tions. from mechanics and

lits 10 cli-

matology. neuroscience, and epidemiology
Consider a discrete-time dynamical system
with state 2 in a state space C R that
overned by an unknown and typically
nonlinear function F:§2— )

The classical. geometric way 1o analyze
such systems—which dates back 10 the
eminal work of Henri Poincaré—is hased

on the local analysis of fixed points, peri
odic orbits. stable or unstable manifolds.
and so forth. Although Poincaré’s frame-
work hias revolutionized our understanding
of dynamical systems, this approach has at
least two challenges in many modern appli-
cations: (i) Obtaining 4 global understand-
ing of the nonlincar dynamics and (ii) han
g systems that are either too complex
analyze or offer incomplete information
about the evolution (i¢.. unknown, high
dimensional, and highly nonlinear F)

Koopman operator theory, which o
nated with Bernard Koopman and John
von Neumann 6, 7], provides a powesful
alternative to the classical geometric view
of dynamical systems because it addresses
nonlinearity: the fundamental issue that
underlies the aforementioned challenges

(a) | RelEror=? el
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Error=? Rel. Error=?
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\

Rel. Error

f &

Rel. Error

3

of K: 1

vore
¢ bounds. 1b. Koaprr
OMD), The

olds number 3.0 x 10 past a cascade of
300,06
hey provide the
growth, or decay rate accord

an modes ar projectio

ve motion of the f
g to an ap

omputed v existing state-of-the-art tech-

1an modes that were computed u

but

n toxt), This

gre

Mysical picture in Tb s different from

ourtesy of Matthew Colbrook

We lift the nonlinear system (1) into n infi
nite-dimensional space of observable func

tions 42— C via a Koopman operator K
Ky(z,)=glz,,,)

The evolution dynamics thus become fin-
car, allowing us to utilize generic solu-
tion techniques that are based on spec-
tral decompositions. In recent decades
Koopman operators have ~captivated
researchers because of emerging data-driv
en and numerical implementations that
coincide with the rise of machine learning

and high-performance computing [2].

One major goal of modern Koopman
operator theory is to find a coordinate
transformation with which a linear system
may approximate even strongly nonlinear
dynamics; this coordinate system relates to
the spectrum of the Koopman operator. In
2005. Igor Mezié introduced the Koopman
mode decomposition (8], which provided a
theoretical basis for connecting the dynam-
ic mode decompasition (DMD) with the
Koopman operator [9, 10]. DMD quickly
became the workhorse algorithm for com-
putational approximations of the Koopman
operator due to its simple and highly exten
sible formulation i terms of linear algebra.
and the fact that it applies equally well
10 data-driven modeling when no gov-

erning equations are available. However,
researchers soon realized that simply build-
ing linear models in terms of the primitive
measured variables cannot sufficiently cap-
ture nonlinear dynamics beyond periodic
and quasi-periodic phenomena. A major
breakthrough occurred with the introduc
tion of extended DMD (EDMD). which
generalizes DMD 10 1 broader class of
basis functions in which t expand eigen-
functions of the Koopman operator [11).

See Dynamical Systems on page 4
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Short video summaries

available on YouTube:

(Thank you Steve Brunton e Measure-preserving -y
for letting me use your channel!) Extended Dynamic ¢ , o ,,..:.‘;’35_3,‘:Ei?"?",;_i'_‘f'{i?
Mode Decomposition
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https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
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