<u>measure-preserving</u> <u>Extended</u> <u>Dynamic</u> <u>Mode</u> <u>Decomposition</u> (<u>mpEDMD</u>): <u>Structure-preserving</u> and rigorous Koopmanism

Matthew Colbrook (m.colbrook@damtp.cam.ac.uk)

University of Cambridge

C., "The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems," preprint.

Data-driven dynamical systems

• State $x \in \Omega \subseteq \mathbb{R}^d$, **unknown** function $F: \Omega \to \Omega$ governs dynamics

$$x_{n+1} = F(x_n)$$

- Goal: Learn about system from data $\{x^{(m)}, y^{(m)} = F(x^{(m)})\}_{m=1}^{M}$
 - Data: experimental measurements or numerical simulations
 - E.g., used for forecasting, control, design, understanding
- Applications: chemistry, climatology, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, plasmas, robotics, video processing, etc.

Operator viewpoint

- Koopman operator \mathcal{K} acts on <u>functions</u> $g: \Omega \to \mathbb{C}$ $[\mathcal{K}g](x) = g(F(x))$
- $\mathcal K$ is *linear* but acts on an *infinite-dimensional* space.

 $x_2 F$

 x_1

 $g(x_1)$

State

Functions

of state

 $q(x_3)$

 x_3

F

• Work in $L^2(\Omega, \omega)$ for positive measure ω , with inner product $\langle \cdot, \cdot \rangle$.

- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

 $g(x_2)$

Koopman

 x_n

 $g(x_n)$

F

von Neumann

Non-linear

Linear

Why is linear (much) easier?

Long-time dynamics become trivial!

• Baby case: F(x) = Ax, $A \in \mathbb{R}^{d \times d}$, $A = V\Lambda V^{-1}$.

xn+1 = F(xn)

• Set $\xi = V^{-1}x$, $\xi_n = V^{-1}x_n = V^{-1}A^n x_0 = \Lambda^n V^{-1}x_0 = \Lambda^n \xi_0$ • Let $w^T A = \lambda w$, set $\varphi(x) = w^T x$, $[\mathcal{K}\varphi](x) = w^T A x = \lambda \varphi(x)$ Eigenfunction

Much more general (non-linear F and even chaotic systems).

Encodes: geometric features, invariant measures, transient behavior, long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of $\mathcal K$ and its spectral properties.

[•] Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynam., 2005.

Koopmania*: A revolution in the big data era?

 \approx 35,000 papers over last decade!

BUT: Very little on convergence guarantees or verification! ⁴

Why is this lacking?

- Koopmanism has been (largely) distinct from NA.
- Computing spectra in infinite dimensions is notoriously hard ...

*Wikipedia: "its wild surge in popularity is sometimes jokingly called 'Koopmania'"

Challenges

Truncate: $\mathcal{K} \longrightarrow \mathbb{K} \in \mathbb{C}^{N \times N}$

- **1)** "Too much": Approximate spurious modes $\lambda \notin \text{Spec}(\mathcal{K})$
- **2) "Too little":** Miss parts of $Spec(\mathcal{K})$

3) Continuous spectra.

"In practice, most operators are not presented in a representation in which they are diagonalized. Thus, one often has to settle for numerical approximations. Unfortunately, there is a dearth of literature on this basic problem and, so far as we have been able to tell, **there are no proven [general] techniques**." W. Arveson, Berkeley (1994)

Assumption

System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

Assumption

System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

Motivating example

- Reynolds number $\approx 6.4 \times 10^4$
- Ambient dimension $(d) \approx 100,000$ (velocity at measurement points)

*Raw measurements provided by Máté Szőke (Virginia Tech)

• Baddoo, Herrmann, McKeon, Kutz, Brunton, "Physics-informed dynamic mode decomposition (piDMD)," preprint.

• Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending aynamic mode decomposition," J. Nonlinear Sci., 2015.

The mpEDMD algorithm

Extended Dynamic Mode Decomposition (EDMD)

10/34

Given dictionary
$$\{\psi_1, \dots, \psi_N\}$$
 of functions $\psi_j \colon \Omega \to \mathbb{C}$,
 $\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) = \begin{bmatrix} (\psi_1(x^{(1)}) \cdots \psi_N(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_1(x^{(M)}) \cdots & \psi_N(x^{(M)}) \end{bmatrix}^* \begin{pmatrix} w_1 & & \\ & \ddots & \\ & &$

- Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.
- Rowley, Mezić, Bagheri, Schlatter, Henningson, "Spectral analysis of nonlinear flows," J. Fluid Mech., 2009.
- Kutz, Brunton, Brunton, Proctor, "Dynamic mode decomposition: data-driven modeling of complex systems," SIAM, 2016.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

Quadrature with trajectory data

E.g.,
$$\langle \mathcal{K}\psi_k, \psi_j \rangle = \lim_{M \to \infty} \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \underbrace{\psi_k(y^{(m)})}_{[\mathcal{K}\psi_k](x^{(m)})}$$

Three examples:

- **High-order quadrature:** $\{x^{(m)}, w_m\}_{m=1}^{M} M$ -point quadrature rule. Rapid convergence. Requires free choice of $\{x^{(m)}\}_{m=1}^{M}$ and small d.
- Random sampling: $\{x^{(m)}\}_{m=1}^{M}$ selected at random. Most common Large *d*. Slow Monte Carlo $O(M^{-1/2})$ rate of convergence.
- Ergodic sampling: $x^{(m+1)} = F(x^{(m)})$. Single trajectory, large d. Requires ergodicity, convergence can be slow.

Another interpretation

$$\Psi(x) = [\psi_1(x) \dots \psi_N(x)], \qquad g = \sum_{j=1}^N \mathbf{g}_j \psi_j = \Psi \mathbf{g}, \qquad \mathcal{K}g = \Psi \mathbb{K}\mathbf{g} + R(g, \cdot)$$

$$\min_{\mathbb{K}\in\mathbb{C}^{N\times N}} \left\{ \int_{\Omega} \max_{\|\mathbf{g}\|_{2}=1} |R(g,x)|^{2} d\omega(x) = \int_{\Omega} \|\Psi(F(x)) - \Psi(x)\mathbb{K}\|_{2}^{2} d\omega(x) \right\}$$

quadrature
$$\min_{\mathbb{K}\in\mathbb{C}^{N\times N}} \sum_{m=1}^{M} w_{m} \|\Psi(y^{(m)}) - \Psi(x^{(m)})\mathbb{K}\|_{2}^{2}$$

A simple idea

$$G = \Psi_X^* W \Psi_X, \qquad G_{jk} \approx \langle \psi_k, \psi_j \rangle$$

Measure-preserving: $\|\Psi \mathbf{g}\| = \|\Psi \mathbb{K} \mathbf{g}\|, \|\Psi \mathbf{g}\|^2 \approx g^* G g, \|\Psi \mathbb{K} \mathbf{g}\|^2 \approx g^* \mathbb{K}^* G \mathbb{K} g$

A simple idea

$$G = \Psi_X^* W \Psi_X, \qquad G_{jk} \approx \langle \psi_k, \psi_j \rangle$$

Measure-preserving: $\|\Psi \mathbf{g}\| = \|\Psi \mathbb{K} \mathbf{g}\|, \|\Psi \mathbf{g}\|^2 \approx g^* G g, \|\Psi \mathbb{K} \mathbf{g}\|^2 \approx g^* \mathbb{K}^* G \mathbb{K} g$

Enforce: $G = \mathbb{K}^* G \mathbb{K}$

A simple idea

$$G = \Psi_X^* W \Psi_X, \qquad G_{jk} \approx \langle \psi_k, \psi_j \rangle$$

Measure-preserving: $\|\Psi \mathbf{g}\| = \|\Psi \mathbb{K} \mathbf{g}\|, \|\Psi \mathbf{g}\|^2 \approx g^* G g, \|\Psi \mathbb{K} \mathbf{g}\|^2 \approx g^* \mathbb{K}^* G \mathbb{K} g$

A simple algorithm

Algorithm: mpEDMD for approximating spectral properties of \mathcal{K} .

Input: Snapshot data $\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)} = F(\boldsymbol{x}^{(m)})\}_{m=1}^{M}$, quadrature weights $\{w_m\}_{m=1}^{M}$, and a dictionary of functions $\{\psi_j\}_{j=1}^{N}$.

- 1: Compute $G = \Psi_X^* W \Psi_X$ and $A = \Psi_X^* W \Psi_Y$
- 2: Compute an SVD of $G^{-1/2}A^*G^{-1/2} = U_1\Sigma U_2^*$
- 3: Compute the eigendecomposition $U_2 U_1^* = \hat{V} \Lambda \hat{V}^*$
- 4: Compute $\mathbb{K} = G^{-1/2}U_2U_1^*G^{1/2}$ and $V = G^{-1/2}\hat{V}$

Output: Koopman matrix \mathbb{K} , with eigenvectors V and eigenvalues Λ .

In a nutshell: *Galerkin meets polar decomposition*. (This also allows us to prove <u>numerical stability</u>.)

Convergence theory

Spectral measures

White light contains a continuous spectra

Often interesting to look at the intensity of each wavelength

Spectrum of Solar Radiation (Earth)

Spectral measures \rightarrow diagonalisation

• Fin.-dim.: $B \in \mathbb{C}^{n \times n}$, $B^*B = BB^*$, o.n. basis of e-vectors $\{v_j\}_{j=1}^n$

$$v = \left[\sum_{j=1}^{n} v_{j} v_{j}^{*}\right] v, \qquad Bv = \left[\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{*}\right] v, \qquad \forall v \in \mathbb{C}^{n}$$

• Inf.-dim.: Operator $\mathcal{L}: \mathcal{D}(\mathcal{L}) \to \mathcal{H}$. Typically, no basis of e-vectors! Spectral theorem: (projection-valued) spectral measure \mathcal{E}

$$g = \left[\int_{\operatorname{Spec}(\mathcal{L})} 1 \, \mathrm{d}\mathcal{E}(\lambda) \right] g, \qquad \mathcal{L}g = \left[\int_{\operatorname{Spec}(\mathcal{L})} \lambda \, \mathrm{d}\mathcal{E}(\lambda) \right] g, \qquad \forall g \in \mathcal{H}$$

• Spectral measures: $\mu_g(U) = \langle \mathcal{E}(U)g, g \rangle (||g|| = 1)$ prob. measure.

Koopman mode decomposition (again!) μ_g probability measures on \mathbb{T} **Leb. decomp:** $d\mu_g(y) = \sum_{\substack{eigenvalues \ \lambda_j = exp(i\theta_j) \\ discrete}} \langle P_{\lambda_j}g,g \rangle \delta(y-\theta_j) + \underbrace{\rho_g(y)dy + d\mu_g^{sc}(y)}_{continuous}$

18/34

Computing μ_{g} diagonalises non-linear dynamical system!

Convergence of projection-valued measure

$$d\mathcal{E}_{N,M}(\lambda) = \sum_{j=1}^{N} v_j v_j^* G\delta(\lambda - \lambda_j) d\lambda$$
This assumption
cannot be dropped
in general!

Theorem: Suppose that the quadrature rule converges, \mathcal{K} is unitary, $\lim_{N \to \infty} \operatorname{dist}(h, V_N) = 0 \text{ for any } h \in L^2(\Omega, \omega). \text{ Then for any Lipschitz test}$ function $\xi, g \in L^2(\Omega, \omega)$ and $\boldsymbol{g}_N \in \mathbb{C}^N$ with $\lim_{N \to \infty} \|g - \Psi \boldsymbol{g}_N\| = 0$, $\lim_{N \to \infty} \limsup_{M \to \infty} \left\| \int_{\mathbb{T}} \xi(\lambda) d\xi(\lambda) g - \Psi \int_{\mathbb{T}} \xi(\lambda) d\xi_{N,M}(\lambda) \boldsymbol{g}_N \right\| = 0$

Key ingredients:

- Strong convergence of Galerkin approximation.
- Discretization by normal operators.

K: mpEDMD matrix λ_j : eigenvalues of K v_j : eigenvectors of K $V_N = \text{span} \{\psi_1, \dots, \psi_N\}$

Convergence of scalar-valued measure

$$\mu_{\boldsymbol{g}}^{(N,M)}(U) = \boldsymbol{g}^* G \mathcal{E}_{N,M}(U) \boldsymbol{g} = \sum_{\lambda_j \in U} \left| v_j^* G \boldsymbol{g} \right|^2$$
$$W_1(\mu,\nu) = \sup \left\{ \int_{\mathbb{T}} \xi(\lambda) d(\mu-\nu)(\lambda) : \xi \text{ Lipschitz 1} \right\}$$

Theorem: Suppose quad. rule converges, $\lim_{N \to \infty} \operatorname{dist}(h, V_N) = 0$ for any $h \in L^2(\Omega, \omega)$. Then for $g \in L^2(\Omega, \omega)$ and $\boldsymbol{g}_N \in \mathbb{C}^N$ with $\lim_{N \to \infty} ||g - \Psi \boldsymbol{g}_N|| = 0$, $\lim_{N \to \infty} \limsup_{M \to \infty} W_1\left(\mu_g, \mu_g^{(N,M)}\right) = 0.$ If $\{g, \mathcal{K}g, \dots, \mathcal{K}^Lg\} \subseteq V_N$ and $g = \Psi g$, then tching pcorrelations! $\lim_{M \to \infty} W_1\left(\mu_g, \mu_g^{(N,M)}\right) \leq \frac{\log(L)}{L}.$ \mathbb{K} : mpEDMD matrix λ_i : eigenvalues of K Matching v_i : eigenvectors of \mathbb{K} autocorrelations! $V_N = \operatorname{span} \{\psi_1, \dots, \psi_N\}$

Spectra: avoid too little!

$$\operatorname{Spec}_{\operatorname{ap}}(\mathcal{K}) = \left\{ \lambda : \exists u_n, \|u_n\| = 1, \lim_{n \to \infty} \|(\mathcal{K} - \lambda)u_n\| = 0 \right\} = \operatorname{Spec}(\mathcal{K}) \cap \mathbb{T}$$

Theorem: Suppose quad. rule converges, $\lim_{N \to \infty} \operatorname{dist}(h, V_N) = 0$ for any $h \in L^2(\Omega, \omega)$. Then $\lim_{N \to \infty} \limsup_{M \to \infty} \sup_{\lambda \in \operatorname{Spec}_{\operatorname{ap}}(\mathcal{K})} \operatorname{dist}(\lambda, \operatorname{Spec}(\mathbb{K})) = 0.$

> K: mpEDMD matrix λ_j : eigenvalues of K v_j : eigenvectors of K $V_N = \text{span} \{\psi_1, \dots, \psi_N\}$

21/34

Spectra: avoid too little!

$$\operatorname{Spec}_{\operatorname{ap}}(\mathcal{K}) = \left\{ \lambda : \exists u_n, \|u_n\| = 1, \lim_{n \to \infty} \|(\mathcal{K} - \lambda)u_n\| = 0 \right\} = \operatorname{Spec}(\mathcal{K}) \cap \mathbb{T}$$

Theorem: Suppose quad. rule converges, $\lim_{N \to \infty} \operatorname{dist}(h, V_N) = 0$ for any $h \in L^2(\Omega, \omega)$. Then $\lim_{N \to \infty} \limsup_{M \to \infty} \sup_{\lambda \in \operatorname{Spec}_{\operatorname{ap}}(\mathcal{K})} \operatorname{dist}(\lambda, \operatorname{Spec}(\mathbb{K})) = 0.$

What about spectral pollution?

K: mpEDMD matrix λ_j : eigenvalues of K v_j : eigenvectors of K $V_N = \text{span} \{\psi_1, \dots, \psi_N\}$

Residuals \Rightarrow avoid too much!

$$G = \Psi_X^* W \Psi_X, A = \Psi_X^* W \Psi_Y$$

$$\|(\mathcal{K} - \lambda)\Psi \boldsymbol{g}\|^{2} = \langle (\mathcal{K} - \lambda)\Psi \boldsymbol{g}, (\mathcal{K} - \lambda)\Psi \boldsymbol{g} \rangle$$
$$= \lim_{M \to \infty} \boldsymbol{g}^{*} [(1 + |\lambda|^{2})G - \bar{\lambda}A - \lambda A^{*}] \boldsymbol{g}$$

Suitable conditions $\Rightarrow \lim_{N \to \infty} \min_{g \in V_N} ||(\mathcal{K} - \lambda) \Psi g|| / ||g|| = \operatorname{dist}(\lambda, \operatorname{Spec}_{\operatorname{ap}}(\mathcal{K}))$

Two methods:

- Clean up procedure for tolerance ε .
- Local minimization algorithm converges to $\operatorname{Spec}_{\operatorname{ap}}(\mathcal{K})$.

• C., T., "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

• C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

Challenges Truncate: $\mathcal{K} \longrightarrow \mathbb{K} \in \mathbb{C}^{N \times N}$

1) "Too much": Approximate spurious modes $\lambda \notin \text{Spec}(\mathcal{K})$

2) "Too little": Miss parts of $Spec(\mathcal{K})$

3) Continuous spectra.

"In practice, most descent are not presented in a representent in which they are diagonalized. Thus, one of the of

Executive summary

	DMD	EDMD	piDMD	mpEDMD
Aux. SVD matrices	n/a	n/a	$YX^* = V_1SV_2^*$	$G^{-\frac{1}{2}}A^*G^{-\frac{1}{2}} = U_1\Sigma U_2^*$
Koopman matrix	$(YX^{\dagger})^{\top}$	$G^{\dagger}A$	$V_{2}V_{1}^{*}$	$G^{-\frac{1}{2}}U_2U_1^*G^{\frac{1}{2}}$
Nonlinear dictionary	×	1	×	✓
Conv. spec. meas.	×	×	×	✓
Conv. spectra	×	×	×	✓
Conv. KMD	×	1	×	✓
Measure-preserving	×	×	×/√‡	✓

 $X = [x^{(1)} \dots x^{(M)}], Y = [y^{(1)} \dots y^{(M)}] \in \mathbb{C}^{d \times M}$ are matrices of the snapshots (linear dictionary), common to combine DMD with truncated SVD. $G = \Psi_X^* W \Psi_X, A = \Psi_X^* W \Psi_Y$. NB: piDMD is measure-preserving only if XX^* and W are multiples of the identity.

mpEDMD: First convergent Galerkin method!

Numerical examples

25/34

Lorenz system: scalar-valued spec meas

$$\dot{x}_1 = 10(x_2 - x_1), \qquad \dot{x}_2 = x_1(28 - x_3) - x_2, \qquad \dot{x}_3 = x_1x_2 - \frac{8}{3}x_3, \qquad \Delta_t = 0.1$$

$$g_j = c_j[x]_j, \qquad V_N = \operatorname{span}\{g_j, \mathcal{K}g_j, \dots, \mathcal{K}^{N-1}g_j\}$$

26/34

Lorenz system: projection-valued spec meas

Lorenz system: projection-valued spec meas

$$V_N = \operatorname{span}\{g_1, g_2, g_3, \mathcal{K}g_1, \mathcal{K}g_2, \mathcal{K}g_3, \dots, \mathcal{K}^{q-1}g_1, \mathcal{K}^{q-1}g_2, \mathcal{K}^{q-1}g_3\}$$

$$\phi(\theta) = \exp(\sin(\theta))$$

Nonlinear pendulum

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -\sin(x_1), \quad \Omega = [-\pi, \pi]_{\text{per}} \times \mathbb{R}, \quad \Delta_t = 0.5$$

 $g(x) = \exp(ix_1) x_2 \exp(-x_2^2/2), \quad V_N = \operatorname{span}\{g, \mathcal{K}g, \dots, \mathcal{K}^{99}g\}$

Nonlinear pendulum

Nonlinear pendulum

31/34

32/34

Wider programme

- <u>Inf.-dim. computational analysis</u> ⇒ **Compute spectral properties rigorously.**
- <u>Continuous linear algebra</u> \implies **Avoid the woes of discretization**
- <u>Solvability Complexity Index hierarchy</u> \Rightarrow Classify diff. of comp. problems, prove algs are optimal.
- Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.
- C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., to appear.
- C., "Computing spectral measures and spectral types," Comm. Math. Phys., 2021.
- C., Horning, Townsend "Computing spectral measures of self-adjoint operators," SIAM Rev., 2021.
- C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett., 2019.
- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. Natl. Acad. Sci. USA, 2022.
- C., "Computing semigroups with error control," SIAM J. Numer. Anal., 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.
- Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981, 36 pp.
- McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987, 27 pp.

Summary

Structure-preserving Koopmanism for arbitrary measure-preserving systems.

Some advantages:

- Converges for spectral measures, spectra, Koopman mode decomposition.
- Long-time stability and improved qualitative behavior.
- Increased stability to noise (e.g., measurements).
- Easy to combine with any DMD-type method!

What other areas of NA can successfully be combined with Koopmanism?

Code: https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition

Additional slides...

Solvability Complexity Index Hierarchy

metric space

Class $\Omega \ni A$, want to compute $\Xi: \Omega \to (\mathcal{M}, d)$

- Δ_0 : Problems solved in finite time (v. rare for cts problems).
- Δ_1 : Problems solved in "one limit" with full error control: $d(\Gamma_n(A), \Xi(A)) \le 2^{-n}$
- Δ_2 : Problems solved in "one limit":

$$\lim_{n\to\infty}\Gamma_n(A)=\Xi(A)$$

• Δ_3 : Problems solved in "two successive limits":

$$\lim_{n\to\infty}\lim_{m\to\infty}\Gamma_{n,m}(A)=\Xi(A)$$

- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- Hansen, "On the solvability complexity index, the *n*-pseudospectrum and approximations of spectra of operators," J. Amer. Math. Soc., 2011.
- McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.
- Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.
- Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.

Error control for spectral problems

 Σ_1 convergence

• Σ_1 : \exists alg. { Γ_n } s.t. $\lim_{n \to \infty} \Gamma_n(A) = \Xi(A), \max_{z \in \Gamma_n(A)} \operatorname{dist}(z, \Xi(A)) \le 2^{-n}$

Error control for spectral problems

- Σ_1 : \exists alg. { Γ_n } s.t. $\lim_{n \to \infty} \Gamma_n(A) = \Xi(A), \max_{z \in \Gamma_n(A)} \operatorname{dist}(z, \Xi(A)) \le 2^{-n}$
- Π_1 : \exists alg. { Γ_n } s.t. $\lim_{n \to \infty} \Gamma_n(A) = \Xi(A), \max_{z \in \Xi(A)} \operatorname{dist}(z, \Gamma_n(A)) \le 2^{-n}$

Such problems can be used in a proof!

Increasing difficulty

Increasing difficulty

Increasing difficulty

Increasing difficulty

*Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

Increasing difficulty

*Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

Increasing difficulty

*Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.