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• State 𝑥 ∈ Ω ⊆ ℝ𝑑, unknown function 𝐹:Ω → Ω governs dynamics

𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Goal: Learn about system from data 𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Data: experimental measurements or numerical simulations

• E.g., used for forecasting, control, design, understanding

• Applications: chemistry, climatology, 
electronics, epidemiology, finance, 
fluids, molecular dynamics, 
neuroscience, plasmas, robotics, 
video processing, etc.

Data-driven dynamical systems
1/34
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Operator viewpoint

• Koopman operator 𝒦 acts on functions 𝑔:Ω → ℂ

𝒦𝑔 𝑥 = 𝑔 𝐹 𝑥

• 𝒦 is linear but acts on an infinite-dimensional space.

• Work in 𝐿2(Ω, 𝜔) for positive measure 𝜔, with inner product ∙,∙ .

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.

𝑥1 𝑥2 𝑥3 … 𝑥𝑛

𝑔(𝑥1) 𝑔(𝑥2) 𝑔(𝑥3) … 𝑔(𝑥𝑛)

𝐹 𝐹 𝐹 𝐹

𝒦𝑔 𝒦𝑔 𝒦𝑔 𝒦𝑔

State

Functions
of state

Non-linear

Linear

Koopman von Neumann
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• Baby case: 𝐹 𝑥 = 𝐴𝑥, 𝐴 ∈ ℝ𝑑×𝑑, 𝐴 = 𝑉Λ𝑉−1.

• Set 𝜉 = 𝑉−1𝑥,

𝜉𝑛 = 𝑉−1𝑥𝑛 = 𝑉−1𝐴𝑛𝑥0 = Λ𝑛𝑉−1𝑥0 = Λ𝑛𝜉0

• Let 𝑤T𝐴 = 𝜆𝑤, set 𝜑 𝑥 = 𝑤T𝑥,

𝒦𝜑 𝑥 = 𝑤T𝐴𝑥 = 𝜆𝜑 𝑥

Much more general (non-linear 𝐹 and even chaotic systems).

Why is linear (much) easier?
Long-time dynamics 
become trivial!

Eigenfunction
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Koopman mode decomposition

𝑔(𝑥) = 

eigs 𝜆𝑗

𝑐𝜆𝑗𝜑𝜆𝑗(𝑥) + න

[−𝜋,𝜋]per

𝜙𝜃,𝑔 𝑥 d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0 = 

eigs 𝜆𝑗

𝑐𝜆𝑗𝜆𝑗
𝑛𝜑𝜆𝑗 𝑥0 + න

[−𝜋,𝜋]per

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0 d𝜃

Encodes: geometric features, invariant measures, transient behavior, 
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of 𝒦 and its spectral properties. 

generalized
eigenfunction of 𝒦eigenfunction of 𝒦

• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.

4/34



Koopmania*: A revolution in the big data era?

≈35,000 papers over last decade!

BUT: Very little on convergence guarantees or verification!

Why is this lacking?

• Koopmanism has been (largely) distinct from NA.

• Computing spectra in infinite dimensions is notoriously 
hard … 

Source: https://www.dimensions.ai/

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania’”
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New Papers on
“Koopman Operators”

number of papers

doubles every 5 yrs
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Challenges

1) “Too much”: Approximate spurious modes 𝜆 ∉ Spec(𝒦)

2) “Too little”: Miss parts of Spec(𝒦)

3) Continuous spectra.

Truncate: 𝒦 𝕂 ∈ ℂ𝑁×𝑁

“In practice, most operators are not presented in a representation in which they are
diagonalized. Thus, one often has to settle for numerical approximations. Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)

6/34



System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

⟺𝒦∗𝒦 = 𝐼 (isometry)

⟹ Spec(𝒦) ⊆ 𝑧: 𝑧 ≤ 1

(NB: we consider unitary extensions via Wold decomposition.)

Assumption

1

spectral
measure
(see later)
supp. on
boundary
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System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

⟺𝒦∗𝒦 = 𝐼 (isometry)

⟹ Spec(𝒦) ⊆ 𝑧: 𝑧 ≤ 1

(NB: we consider unitary extensions via Wold decomposition.)

WANT: Method preserves measure (e.g., stability, long-time behavior etc.)...

Assumption

1

spectral
measure
(see later)
supp. on
boundary
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• Reynolds number ≈ 6.4 × 104

• Ambient dimension (𝑑) ≈ 100,000
(velocity at measurement points)

*Raw measurements provided by Máté Szőke (Virginia Tech)

• Baddoo, Herrmann, McKeon, Kutz, Brunton, “Physics-informed dynamic mode decomposition (piDMD),” preprint.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

Motivating example

piDMD EDMD

stable but wrong

𝑦
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The mpEDMD algorithm
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Given dictionary 𝜓1, … , 𝜓𝑁 of functions 𝜓𝑗: Ω → ℂ, 

𝒦 𝕂 = Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
∗𝑊Ψ𝑌 ∈ ℂ

𝑁×𝑁

𝜓𝑘 , 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑥 𝑚 =
𝜓1(𝑥

(1)) ⋯ 𝜓𝑁(𝑥
(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁(𝑥
(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁(𝑥

(1))
⋮ ⋱ ⋮

𝜓1(𝑥
(𝑀)) ⋯ 𝜓𝑁(𝑥

(𝑀))

Ψ𝑋 𝑗𝑘

Extended Dynamic Mode Decomposition (EDMD)

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

𝒦𝜓𝑘 , 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=
𝜓1(𝑥

(1)) ⋯ 𝜓𝑁(𝑥
(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁(𝑥
(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦
(1)) ⋯ 𝜓𝑁(𝑦

(1))
⋮ ⋱ ⋮

𝜓1(𝑦
(𝑀)) ⋯ 𝜓𝑁(𝑦

(𝑀))

Ψ𝑌 𝑗𝑘
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Quadrature with trajectory data

E.g.,    𝒦𝜓𝑘 , 𝜓𝑗 = lim
𝑀→∞

σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥
𝑚

Three examples:

• High-order quadrature: 𝑥(𝑚), 𝑤𝑚 𝑚=1

𝑀
𝑀-point quadrature rule.  

Rapid convergence. Requires free choice of 𝑥(𝑚)
𝑚=1

𝑀
and small 𝑑.

• Random sampling: 𝑥(𝑚)
𝑚=1

𝑀
selected at random.

Large 𝑑. Slow Monte Carlo 𝑂(𝑀−1/2) rate of convergence.

• Ergodic sampling: 𝑥(𝑚+1) = 𝐹(𝑥(𝑚)). 
Single trajectory, large 𝑑. Requires ergodicity, convergence can be slow.

Most common
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Ψ 𝑥 = 𝜓1 𝑥 … 𝜓𝑁 𝑥 , 𝑔 =

𝑗=1

𝑁

𝐠𝑗𝜓𝑗 = Ψ𝐠, 𝒦𝑔 = Ψ𝕂𝐠 + 𝑅(𝑔,∙)

min
𝕂∈ℂ𝑁×𝑁

න
Ω

max
𝐠 2=1

𝑅 𝑔, 𝑥 2 𝑑𝜔 𝑥 = න
Ω

Ψ 𝐹(𝑥) − Ψ 𝑥 𝕂 2
2 𝑑𝜔 𝑥

min
𝕂∈ℂ𝑁×𝑁



𝑚=1

𝑀

𝑤𝑚 Ψ 𝑦(𝑚) −Ψ 𝑥(𝑚) 𝕂
2

2

Another interpretation

quadrature
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𝐺 = Ψ𝑋
∗𝑊Ψ𝑋, 𝐺𝑗𝑘 ≈ 𝜓𝑘 , 𝜓𝑗

Measure-preserving: Ψ𝐠 = Ψ𝕂𝐠 , Ψ𝐠 2 ≈ 𝑔∗𝐺𝑔, Ψ𝕂𝐠 2 ≈ 𝑔∗𝕂∗𝐺𝕂𝑔

A simple idea
13/34
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𝐺 = Ψ𝑋
∗𝑊Ψ𝑋, 𝐺𝑗𝑘 ≈ 𝜓𝑘 , 𝜓𝑗

Measure-preserving: Ψ𝐠 = Ψ𝕂𝐠 , Ψ𝐠 2 ≈ 𝑔∗𝐺𝑔, Ψ𝕂𝐠 2 ≈ 𝑔∗𝕂∗𝐺𝕂𝑔

Enforce: 𝐺 = 𝕂∗𝐺𝕂

min
𝕂∈ℂ𝑁×𝑁

𝐺=𝕂∗𝐺𝕂



𝑚=1

𝑀

𝑤𝑚 Ψ 𝑦(𝑚) 𝐺−1/2 −Ψ 𝑥(𝑚) 𝕂𝐺−1/2
2

2

A simple idea

quadrature
orthogonal
Procrustes 
problem

13/34



:

A simple algorithm

In a nutshell: Galerkin meets polar decomposition.

(This also allows us to prove numerical stability.)
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Convergence theory
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Spectral measures

White light contains a continuous spectra

Often interesting to look at 
the intensity of each wavelength
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• Fin.-dim.: 𝐵 ∈ ℂ𝑛×𝑛, 𝐵∗𝐵 = 𝐵𝐵∗, o.n. basis of e-vectors 𝑣𝑗 𝑗=1

𝑛

𝑣 = 

𝑗=1

𝑛

𝑣𝑗𝑣𝑗
∗ 𝑣, 𝐵𝑣 = 

𝑗=1

𝑛

𝜆𝑗𝑣𝑗𝑣𝑗
∗ 𝑣, ∀𝑣 ∈ ℂ𝑛

• Inf.-dim.: Operator ℒ:𝒟(ℒ) → ℋ. Typically, no basis of e-vectors! 
Spectral theorem: (projection-valued) spectral measure ℰ

𝑔 = න
Spec ℒ

1dℰ(𝜆) 𝑔, ℒ𝑔 = න
Spec ℒ

𝜆 dℰ(𝜆) 𝑔, ∀𝑔 ∈ ℋ

• Spectral measures: 𝜇𝑔 𝑈 = ℰ 𝑈 𝑔, 𝑔 ( 𝑔 = 1) prob. measure.

Spectral measures → diagonalisation
17/34



Koopman mode decomposition (again!)
𝜇𝑔 probability measures on 𝕋

d𝜇𝑔 𝑦 = 

eigenvalues 𝜆𝑗=exp(𝑖𝜃𝑗)

𝑃 𝜆𝑗𝑔, 𝑔 𝛿(𝑦 − 𝜃𝑗)

discrete

+ 𝜌𝑔 𝑦 d𝑦 + d𝜇𝑔
sc 𝑦

continuous

Leb. decomp:
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𝑔(𝑥) = 

eigenvalues 𝜆𝑗

𝑐𝜆𝑗𝜑𝜆𝑗(𝑥) + න

[−𝜋,𝜋]per

𝜙𝜃,𝑔 𝑥 d𝜃

𝜇𝑔 probability measures on 𝕋

d𝜇𝑔 𝑦 = 

eigenvalues 𝜆𝑗=exp(𝑖𝜃𝑗)

𝑃 𝜆𝑗𝑔, 𝑔 𝛿(𝑦 − 𝜃𝑗)

discrete

+ 𝜌𝑔 𝑦 d𝑦 + d𝜇𝑔
sc 𝑦

continuous

Koopman mode decomposition (again!)

generalized
eigenfunction of 𝒦

eigenfunction of 𝒦

Leb. decomp:
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𝑐𝜆𝑗𝜆𝑗
𝑛𝜑𝜆𝑗 𝑥0 + න

[−𝜋,𝜋]per

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥 d𝜃
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Koopman mode decomposition (again!)

generalized
eigenfunction of 𝒦

eigenfunction of 𝒦

Leb. decomp:
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𝑐𝜆𝑗𝜆𝑗
𝑛𝜑𝜆𝑗 𝑥0 + න

[−𝜋,𝜋]per

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥 d𝜃

Computing 𝜇𝑔 diagonalises non-linear dynamical system!

Koopman mode decomposition (again!)

generalized
eigenfunction of 𝒦

eigenfunction of 𝒦

Leb. decomp:

𝑔(𝑥) = 

eigenvalues 𝜆𝑗

𝑐𝜆𝑗𝜑𝜆𝑗(𝑥) + න

[−𝜋,𝜋]per

𝜙𝜃,𝑔 𝑥 d𝜃
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Convergence of projection-valued measure

dℰ𝑁,𝑀 𝜆 =

𝑗=1

𝑁

𝑣𝑗 𝑣𝑗
∗𝐺𝛿 𝜆 − 𝜆𝑗 d𝜆

Key ingredients:

• Strong convergence of Galerkin approximation.

• Discretization by normal operators.

Theorem: Suppose that the quadrature rule converges, 𝒦 is unitary,
lim
𝑁→∞

dist(ℎ, 𝑉𝑁) = 0 for any ℎ ∈ 𝐿2(Ω, 𝜔). Then for any Lipschitz test

function 𝜉, 𝑔 ∈ 𝐿2(Ω, 𝜔) and 𝒈𝑁 ∈ ℂ𝑁 with lim
𝑁→∞

𝑔 −Ψ𝒈𝑁 = 0,

lim
𝑁→∞

limsup
𝑀→∞

න
𝕋

𝜉 𝜆 dℰ 𝜆 𝑔 − Ψන
𝕋

𝜉 𝜆 dℰ𝑁,𝑀 𝜆 𝒈𝑁 = 0

This assumption 
cannot be dropped 
in general!

𝕂: mpEDMD matrix

𝜆𝑗: eigenvalues of 𝕂

𝑣𝑗: eigenvectors of 𝕂

𝑉𝑁 = span 𝜓1, … , 𝜓𝑁
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Convergence of scalar-valued measure

𝜇𝒈
𝑁,𝑀

𝑈 = 𝒈∗𝐺ℰ𝑁,𝑀 𝑈 𝒈 = 

𝜆𝑗∈𝑈

𝑣𝑗
∗𝐺𝒈

2

𝑊1 𝜇, 𝜈 = sup න
𝕋

𝜉 𝜆 d(𝜇 − 𝜈) 𝜆 : 𝜉 Lipschitz 1

Theorem: Suppose quad. rule converges, lim
𝑁→∞

dist(ℎ, 𝑉𝑁) = 0 for any ℎ ∈

𝐿2(Ω, 𝜔). Then for 𝑔 ∈ 𝐿2(Ω, 𝜔) and 𝒈𝑁 ∈ ℂ𝑁 with lim
𝑁→∞

𝑔 −Ψ𝒈𝑁 = 0,

lim
𝑁→∞

limsup
𝑀→∞

𝑊1 𝜇𝑔, 𝜇𝒈
𝑁,𝑀

= 0.

If 𝑔,𝒦𝑔,… ,𝒦𝐿𝑔 ⊆ 𝑉𝑁 and 𝑔 = Ψ𝒈, then

limsup
𝑀→∞

𝑊1 𝜇𝑔, 𝜇𝒈
𝑁,𝑀

≲
log 𝐿

𝐿
.

𝕂: mpEDMD matrix

𝜆𝑗: eigenvalues of 𝕂

𝑣𝑗: eigenvectors of 𝕂

𝑉𝑁 = span 𝜓1, … , 𝜓𝑁

Matching 
autocorrelations!
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Spectra: avoid too little!

Theorem: Suppose quad. rule converges, lim
𝑁→∞

dist(ℎ, 𝑉𝑁) = 0 for any ℎ ∈

𝐿2(Ω, 𝜔). Then
lim
𝑁→∞

limsup
𝑀→∞

sup
𝜆∈Specap(𝒦)

dist(𝜆, Spec(𝕂)) = 0.

Specap 𝒦 = 𝜆: ∃𝑢𝑛, 𝑢𝑛 = 1, lim
𝑛→∞

(𝒦 − 𝜆)𝑢𝑛 = 0 = Spec(𝒦) ∩ 𝕋

𝕂: mpEDMD matrix

𝜆𝑗: eigenvalues of 𝕂

𝑣𝑗: eigenvectors of 𝕂

𝑉𝑁 = span 𝜓1, … , 𝜓𝑁
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Theorem: Suppose quad. rule converges, lim
𝑁→∞

dist(ℎ, 𝑉𝑁) = 0 for any ℎ ∈

𝐿2(Ω, 𝜔). Then
lim
𝑁→∞

limsup
𝑀→∞

sup
𝜆∈Specap(𝒦)

dist(𝜆, Spec(𝕂)) = 0.

Specap 𝒦 = 𝜆: ∃𝑢𝑛, 𝑢𝑛 = 1, lim
𝑛→∞

(𝒦 − 𝜆)𝑢𝑛 = 0 = Spec(𝒦) ∩ 𝕋

What about spectral pollution?

Spectra: avoid too little!

𝕂: mpEDMD matrix

𝜆𝑗: eigenvalues of 𝕂

𝑣𝑗: eigenvectors of 𝕂

𝑉𝑁 = span 𝜓1, … , 𝜓𝑁
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Residuals ⇒ avoid too much!

• C., T., “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.

𝐺 = Ψ𝑋
∗𝑊Ψ𝑋, 𝐴 = Ψ𝑋

∗𝑊Ψ𝑌

𝒦 − 𝜆 Ψ𝒈 2 = 𝒦 − 𝜆 Ψ𝒈, 𝒦 − 𝜆 Ψ𝒈

= lim
𝑀→∞

𝒈∗ 1 + 𝜆 2 𝐺 − ҧ𝜆𝐴 − 𝜆𝐴∗ 𝒈

Suitable conditions ⟹ lim
𝑁→∞

min
𝑔∈𝑉𝑁

𝒦 − 𝜆 Ψ𝒈 / 𝑔 = dist(𝜆, Specap(𝒦))

Two methods:

• Clean up procedure for tolerance 𝜀.

• Local minimization algorithm converges to Specap 𝒦 .
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Challenges

1) “Too much”: Approximate spurious modes 𝜆 ∉ Spec(𝒦)

2) “Too little”: Miss parts of Spec(𝒦)

3) Continuous spectra.

Truncate: 𝒦 𝕂 ∈ ℂ𝑁×𝑁

“In practice, most operators are not presented in a representation in which they are
diagonalized. Thus, one often has to settle for numerical approximations. Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)
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:

Executive summary

𝑋 = 𝑥 1 …𝑥 𝑀 , 𝑌 = [𝑦 1 …𝑦(𝑀)] ∈ ℂ𝑑×𝑀 are matrices of the snapshots (linear

dictionary), common to combine DMD with truncated SVD. 𝐺 = Ψ𝑋
∗𝑊Ψ𝑋, 𝐴 = Ψ𝑋

∗𝑊Ψ𝑌.
NB: piDMD is measure-preserving only if 𝑋𝑋∗ and 𝑊 are multiples of the identity.

mpEDMD: First convergent Galerkin method!
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Numerical examples
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Lorenz system: scalar-valued spec meas
ሶ𝑥1 = 10 𝑥2 − 𝑥1 , ሶ𝑥2 = 𝑥1 28 − 𝑥3 − 𝑥2, ሶ𝑥3 = 𝑥1𝑥2 −

8

3
𝑥3, Δ𝑡 = 0.1

𝑔𝑗 = 𝑐𝑗 𝑥 𝑗 , 𝑉𝑁 = span 𝑔𝑗 , 𝒦𝑔𝑗 , … ,𝒦
𝑁−1𝑔𝑗
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Lorenz system: projection-valued spec meas

𝑉𝑁 = span 𝑔1, 𝑔2, 𝑔3, 𝒦𝑔1, 𝒦𝑔2, 𝒦𝑔3, … ,𝒦
𝑞−1𝑔1, 𝒦

𝑞−1𝑔2, 𝒦
𝑞−1𝑔3

𝜙 𝜃 = exp(sin(𝜃))
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Lorenz system: projection-valued spec meas

𝑉𝑁 = span 𝑔1, 𝑔2, 𝑔3, 𝒦𝑔1, 𝒦𝑔2, 𝒦𝑔3, … ,𝒦
𝑞−1𝑔1, 𝒦

𝑞−1𝑔2, 𝒦
𝑞−1𝑔3

𝜙 𝜃 = exp(sin(𝜃))
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Nonlinear pendulum

ሶ𝑥1 = 𝑥2, ሶ𝑥2 = −sin 𝑥1 , Ω = −𝜋, 𝜋 per × ℝ, Δ𝑡 = 0.5

𝑔 𝑥 = exp 𝑖𝑥1 𝑥2 exp −𝑥2
2/2 , 𝑉𝑁 = span 𝑔,𝒦𝑔,… ,𝒦99𝑔

log10 𝑣𝑗
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Nonlinear pendulum
Noise free 10% Gauss. noise for Ψ𝑋, Ψ𝑌
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Nonlinear pendulum

Mean residual (EDMD)

Noise levelNoise level

Mean residual (mpEDMD)

strongly consistent
estimation
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Turbulence statistics
Flow mpEDMD piDMD EDMD

unstable
stable but 
wrong
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• Inf.-dim. computational analysis ⟹ Compute spectral properties rigorously.

• Continuous linear algebra ⟹ Avoid the woes of discretization

• Solvability Complexity Index hierarchy⟹Classify diff. of comp. problems, prove algs are optimal.

• Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.

Wider programme

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
• C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.
• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th 

problem," Proc. Natl. Acad. Sci. USA, 2022.
• C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022. 
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.
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Summary

Structure-preserving Koopmanism for arbitrary measure-preserving systems.

Some advantages:

• Converges for spectral measures, spectra, Koopman mode decomposition.

• Long-time stability and improved qualitative behavior.

• Increased stability to noise (e.g., measurements).

• Easy to combine with any DMD-type method!

What other areas of NA can successfully be combined with Koopmanism?

Code:  https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
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Additional slides…



Class Ω ∋ 𝐴, want to compute Ξ: Ω → (ℳ, 𝑑)

• ∆0: Problems solved in finite time (v. rare for cts problems).

• ∆1: Problems solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Problems solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Problems solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮



Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Spec(𝐴)



Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Spec(𝐴)
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compact operators

Error control
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Spectral gap problem

Spectral stability

Σ1

Spectra of Schrödinger*
(different potential classes)

Spectra of 𝒦 Continuous spectra of 𝒦 (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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