measure-preserving Extended Dynamic Mode Decomposition (mpEDMD): Structure-preserving and rigorous Koopmanism

Matthew Colbrook (m.colbrook@damtp.cam.ac.uk) University of Cambridge

C., "The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems," preprint.

Data-driven dynamical systems

- State $x \in \Omega \subseteq \mathbb{R}^{d}$, unknown function $F: \Omega \rightarrow \Omega$ governs dynamics

$$
x_{n+1}=F\left(x_{n}\right)
$$

- Goal: Learn about system from data $\left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M}$
- Data: experimental measurements or numerical simulations
- E.g., used for forecasting, control, design, understanding
- Applications: chemistry, climatology, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, plasmas, robotics, video processing, etc.

Operator viewpoint

- Koopman operator \mathcal{K} acts on functions $g: \Omega \rightarrow \mathbb{C}$

$$
[\mathcal{K} g](x)=g(F(x))
$$

- \mathcal{K} is linear but acts on an infinite-dimensional space.

- Work in $L^{2}(\Omega, \omega)$ for positive measure ω, with inner product $\langle\cdot, \cdot\rangle$.
- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

Why is linear (much) easier?

- Baby case: $F(x)=A x, A \in \mathbb{R}^{d \times d}, A=V \Lambda V^{-1}$.
- Set $\xi=V^{-1} x$,

$$
\xi_{n}=V^{-1} x_{n}=V^{-1} A^{n} x_{0}=\Lambda^{n} V^{-1} x_{0}=\Lambda^{n} \xi_{0}
$$

- Let $w^{\mathrm{T}} A=\lambda w$, set $\varphi(x)=w^{\mathrm{T}} x$,

$$
[\mathcal{K} \varphi](x)=w^{\mathrm{T}} A x=\lambda \varphi(x)
$$

Much more general (non-linear F and even chaotic systems).

Koopman mode decomposition

$$
\begin{aligned}
& g(\mathcal{H}(x)) \\
& g(x)=\sum_{\text {eigs } \lambda_{j}} c_{\lambda_{j}} \varphi_{\lambda_{j}}(x)+\int_{[-\pi, \pi]_{\mathrm{per}}} \phi_{\theta, g}(x) \mathrm{d} \theta \\
& g\left(x_{n}\right)=\left[\mathcal{K}^{n} g\right]\left(x_{0}\right)=\sum_{\operatorname{eigs} \lambda_{j}} c_{\lambda_{j}} \lambda_{j}^{n} \varphi_{\lambda_{j}}\left(x_{0}\right)+\int_{[-\pi, \pi]_{\mathrm{per}}} e^{i n \theta} \phi_{\theta, g}\left(x_{0}\right) \mathrm{d} \theta
\end{aligned}
$$

Encodes: geometric features, invariant measures, transient behavior, long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of \mathcal{K} and its spectral properties.

[^0]
Koopmania*: A revolution in the big data era?

New Papers on
"Koopman Operators"
$\approx 35,000$ papers over last decade!
BUT: Very little on convergence guarantees or verification!

Why is this lacking?

- Koopmanism has been (largely) distinct from NA.
- Computing spectra in infinite dimensions is notoriously hard ...

[^1]
Challenges

Truncate: $\mathcal{K} \longrightarrow \mathbb{K} \in \mathbb{C}^{N \times N}$

1) "Too much": Approximate spurious modes $\lambda \notin \operatorname{Spec}(\mathcal{K})$
2) "Too little": Miss parts of $\operatorname{Spec}(\mathcal{K})$

3) Continuous spectra.

"In practice, most operators are not presented in a representation in which they are diagonalized. Thus, one often has to settle for numerical approximations. Unfortunately, there is a dearth of literature on this basic problem and, so far as we have been able to tell, there are no proven [general] techniques."
W. Arveson, Berkeley (1994)

Assumption

System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)
$\Leftrightarrow \mathcal{K}^{*} \mathcal{K}=I$ (isometry)
$\Rightarrow \operatorname{Spec}(\mathcal{K}) \subseteq\{z:|z| \leq 1\}$
(NB: we consider unitary extensions via Wold decomposition.)
spectral
measure (see later) supp. on boundary

Assumption

System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

$$
\Leftrightarrow \mathcal{K}^{*} \mathcal{K}=I \text { (isometry) }
$$

$\Rightarrow \operatorname{Spec}(\mathcal{K}) \subseteq\{z:|z| \leq 1\}$

spectral measure (see later)
(NB: we consider unitary extensions via Wold decomposition.) supp. on boundary

Motivating example

- Reynolds number $\approx 6.4 \times 10^{4}$
- Ambient dimension (d) $\approx 100,000$ (velocity at measurement points)
*Raw measurements provided by Máté Szőke (Virginia Tech)

TKE, $y \approx 5 \mathrm{~mm}$

TKE, $y \approx 35 \mathrm{~mm}$

Time-avg. TKE

- Baddoo, Herrmann, McKeon, Kutz, Brunton, "Physics-informed dynamic mode der omposition (piDMD)," preprint.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending aynamic mode decomposition," J. Nonlinear Sci., 2015.

The mpEDMD algorithm

Extended Dynamic Mode Decomposition (EDMD)

$$
\begin{aligned}
& \text { Given dictionary }\left\{\psi_{1}, \ldots, \psi_{N}\right\} \text { of functions } \psi_{j}: \Omega \rightarrow \mathbb{C} \text {, } \\
& \left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M} \\
& \left\langle\psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \psi_{k}\left(x^{(m)}\right)=\left[\begin{array}{ccc}
\left(\begin{array}{ccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N}\left(x^{(1)}\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \psi_{N}\left(x^{(M)}\right)
\end{array}\right) & \Psi_{X}^{*} \\
\underbrace{}_{W} \begin{array}{ccc}
w_{1} & & \\
& \ddots & \\
& & w_{M}
\end{array}) & \left.\Psi_{X}^{\left(\begin{array}{ccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N}\left(x^{(1)}\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \psi_{N}\left(x^{(M)}\right)
\end{array}\right)}\right]_{j k} . &
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{K} \longrightarrow \mathbb{K}=\left(\Psi_{X}{ }^{*} W \Psi_{X}\right)^{-1} \Psi_{X}{ }^{*} W \Psi_{Y} \in \mathbb{C}^{N \times N}
\end{aligned}
$$

- Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.
- Rowley, Mezić, Bagheri, Schlatter, Henningson, "Spectral analysis of nonlinear flows," J. Fluid Mech., 2009.
- Kutz, Brunton, Brunton, Proctor, "Dynamic mode decomposition: data-driven modeling of complex systems," SIAM, 2016.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

Quadrature with trajectory data

$$
\text { E.g., }\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle=\lim _{M \rightarrow \infty} \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \underbrace{\psi_{k}\left(y^{(m)}\right)}_{\left[\mathcal{K} \psi_{k}\right]\left(x^{(m)}\right)}
$$

Three examples:

- High-order quadrature: $\left\{x^{(m)}, w_{m}\right\}_{m=1}^{M} M$-point quadrature rule.

Rapid convergence. Requires free choice of $\left\{x^{(m)}\right\}_{m=1}^{M}$ and small d.

- Random sampling: $\left\{x^{(m)}\right\}_{m=1}^{M}$ selected at random. \longleftarrow Most common Large d. Slow Monte Carlo $O\left(M^{-1 / 2}\right)$ rate of convergence.
- Ergodic sampling: $x^{(m+1)}=F\left(x^{(m)}\right)$.

Single trajectory, large d. Requires ergodicity, convergence can be slow.

Another interpretation

$$
\begin{gathered}
\Psi(x)=\left[\psi_{1}(x) \ldots \psi_{N}(x)\right], \quad g=\sum_{j=1}^{N} \mathbf{g}_{j} \psi_{j}=\Psi \mathbf{g}, \quad \mathcal{K} g=\Psi \mathbb{K} \mathbf{g}+R(g, \cdot) \\
\min _{\mathbb{K} \in \mathbb{C}^{N \times N}}\left\{\int_{\Omega} \max _{\|\mathbf{g}\|_{2}=1}|R(g, x)|^{2} d \omega(x)=\int_{\Omega}\|\Psi(F(x))-\Psi(x) \mathbb{K}\|_{2}^{2} d \omega(x)\right\} \\
\min _{\mathbb{K} \in \mathbb{C}^{N \times N}} \sum_{m=1}^{M} w_{m}\left\|\Psi\left(y^{(m)}\right)-\Psi\left(x^{(m)}\right) \mathbb{K}\right\|_{2}^{2}
\end{gathered}
$$

A simple idea

$$
G=\Psi_{X}{ }^{*} W \Psi_{X}, \quad G_{j k} \approx\left\langle\psi_{k}, \psi_{j}\right\rangle
$$

Measure-preserving: $\|\Psi \mathbf{g}\|=\|\Psi \mathbb{K} \mathbf{g}\|, \quad\|\Psi \mathbf{g}\|^{2} \approx g^{*} G g,\|\Psi \mathbb{K}\|^{2} \approx g^{*} \mathbb{K}^{*} G \mathbb{K} g$

A simple idea

$$
G=\Psi_{X}{ }^{*} W \Psi_{X}, \quad G_{j k} \approx\left\langle\psi_{k}, \psi_{j}\right\rangle
$$

Measure-preserving: $\|\Psi \mathbf{g}\|=\|\Psi \mathbb{K} \mathbf{g}\|, \quad\|\Psi \mathbf{g}\|^{2} \approx g^{*} G g,\|\Psi \mathbb{K}\|^{2} \approx g^{*} \mathbb{K}^{*} G \mathbb{K} g$

Enforce: $G=\mathbb{K}^{*} G \mathbb{K}$

A simple idea

$$
G=\Psi_{X}^{*} W \Psi_{X}, \quad G_{j k} \approx\left\langle\psi_{k}, \psi_{j}\right\rangle
$$

Measure-preserving: $\|\Psi \mathbf{g}\|=\|\Psi \mathbb{K} \mathbf{g}\|, \quad\|\Psi \mathbf{g}\|^{2} \approx g^{*} G g,\|\Psi \mathbb{K}\|^{2} \approx g^{*} \mathbb{K}^{*} G \mathbb{K} g$

A simple algorithm

Algorithm: mpEDMD for approximating spectral properties of \mathcal{K}.
Input: Snapshot data $\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)\right\}_{m=1}^{M}$, quadrature weights $\left\{w_{m}\right\}_{m=1}^{M}$,
and a dictionary of functions $\left\{\psi_{j}\right\}_{j=1}^{N}$.
1: Compute $G=\Psi_{X}^{*} W \Psi_{X}$ and $A=\Psi_{X}^{*} W \Psi_{Y}$
2: Compute an SVD of $G^{-1 / 2} A^{*} G^{-1 / 2}=U_{1} \Sigma U_{2}^{*}$
3: Compute the eigendecomposition $U_{2} U_{1}^{*}=\hat{V} \Lambda \hat{V}^{*}$
4: Compute $\mathbb{K}=G^{-1 / 2} U_{2} U_{1}^{*} G^{1 / 2}$ and $V=G^{-1 / 2} \hat{V}^{-}$
Output: Koopman matrix \mathbb{K}, with eigenvectors V and eigenvalues Λ.

In a nutshell: Galerkin meets polar decomposition.
(This also allows us to prove numerical stability.)

Convergence theory

Spectral measures

White light contains a continuous spectra

Often interesting to look at the intensity of each wavelength

Spectral measures \rightarrow diagonalisation

- Fin.-dim.: $B \in \mathbb{C}^{n \times n}, B^{*} B=B B^{*}$, o.n. basis of e-vectors $\left\{v_{j}\right\}_{j=1}^{n}$

$$
v=\left[\sum_{j=1}^{n} v_{j} v_{j}^{*}\right] v, \quad B v=\left[\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{*}\right] v, \quad \forall v \in \mathbb{C}^{n}
$$

- Inf.-dim.: Operator $\mathcal{L}: \mathcal{D}(\mathcal{L}) \rightarrow \mathcal{H}$. Typically, no basis of e-vectors! Spectral theorem: (projection-valued) spectral measure \mathcal{E}

$$
g=\left[\int_{\operatorname{Spec}(\mathcal{L})} 1 \mathrm{~d} \mathcal{E}(\lambda)\right] g, \quad \mathcal{L} g=\left[\int_{\operatorname{Spec}(\mathcal{L})} \lambda \mathrm{d} \mathcal{E}(\lambda)\right] g, \quad \forall g \in \mathcal{H}
$$

- Spectral measures: $\mu_{g}(U)=\langle\mathcal{E}(U) g, g\rangle(\|g\|=1)$ prob. measure.

Koopman mode decomposition (again!)

μ_{g} probability measures on \mathbb{T}

$$
\text { Leb. decomp: } \mathrm{d} \mu_{g}(y)=\underbrace{\sum_{\text {eigenvalues } \lambda_{j}=\exp \left(i \theta_{j}\right)}\left\langle P_{\lambda_{j}} g, g\right\rangle \delta\left(y-\theta_{j}\right)}_{\text {discrete }}+\underbrace{\rho_{g}(y) \mathrm{d} y+\mathrm{d} \mu_{g}^{\mathrm{sc}}(y)}_{\text {continuous }}
$$

Koopman mode decomposition (again!)

μ_{g} probability measures on \mathbb{T}
Leb. decomp: $\mathrm{d} \mu_{g}(y)=\underbrace{\sum_{\text {eigenvalues } \lambda_{j}=\exp \left(i \theta_{j}\right)}\left\langle P_{\lambda_{j}} g, g\right\rangle \delta\left(y-\theta_{j}\right)}_{\text {discrete }}+\underbrace{\rho_{g}(y) \mathrm{d} y+\mathrm{d} \mu_{g}^{\text {sc }}(y)}_{\text {continuous }}$

$$
g(x)=\sum_{\text {eigenvalues } \lambda_{j}} c_{\lambda_{j}} \varphi_{\lambda_{j}}(x)+\int_{[-\pi, \pi]_{\text {per }}} \phi_{\theta, g} \begin{aligned}
& \text { eigenfunction of } \mathcal{K} \\
& \text { generalized } \\
& \text { eigenfunction of } \mathcal{K}
\end{aligned}
$$

Koopman mode decomposition (again!)

μ_{g} probability measures on \mathbb{T}

Leb. decomp: $\mathrm{d} \mu_{g}(y)=\underbrace{\sum_{\text {eigenvalues } \lambda_{j}=\exp \left(i \theta_{j}\right)}\left\langle P_{\lambda_{j}} g, g\right\rangle \delta\left(y-\theta_{j}\right)}_{\text {discrete }}+\underbrace{\rho_{g}(y) \mathrm{d} y+\mathrm{d} \mu_{g}^{\mathrm{sc}}(y)}_{\text {continuous }}$ $\underset{\lambda_{\lambda_{j}}}{\substack{\lambda_{j} \\ \varphi_{\lambda_{j}} \\ \text { eigenfunction of } \mathcal{K} \\[-\pi, \pi]_{\text {per }}}} \int_{\theta, g} \begin{gathered}\text { generalized } \\ \text { eigenfunction of } \mathcal{K}\end{gathered}$

$$
g\left(x_{n}\right)=\left[\mathcal{K}^{n} g\right]\left(x_{0}\right)=\sum_{\text {eigenvalues } \lambda_{j}} c_{\lambda_{j}} \lambda_{j}^{n} \varphi_{\lambda_{j}}\left(x_{0}\right)+\int_{[-\pi, \pi]_{\mathrm{per}}} e^{i n \theta} \phi_{\theta, g}(x) \mathrm{d} \theta
$$

Koopman mode decomposition (again!)

μ_{g} probability measures on \mathbb{T}
Leb. decomp: $\mathrm{d} \mu_{g}(y)=\underbrace{\sum_{\text {eigenvalues } \lambda_{j}=\exp \left(i \theta_{j}\right)}\left\langle P_{\lambda_{j}} g, g\right\rangle \delta\left(y-\theta_{j}\right)}_{\text {discrete }}+\underbrace{\rho_{g}(y) \mathrm{d} y+\mathrm{d} \mu_{g}^{\mathrm{sc}}(y)}_{\text {continuous }}$

$$
g\left(x_{n}\right)=\left[\mathcal{K}^{n} g\right]\left(x_{0}\right)=\sum_{\text {eigenvalues } \lambda_{j}} c_{\lambda_{j}} \lambda_{j}^{n} \varphi_{\lambda_{j}}\left(x_{0}\right)+\int_{[-\pi, \pi]_{\mathrm{per}}} e^{i n \theta} \phi_{\theta, g}(x) \mathrm{d} \theta
$$

Computing μ_{g} diagonalises non-linear dynamical system!

Convergence of projection-valued measure

$$
\mathrm{d} \varepsilon_{N, M}(\lambda)=\sum_{j=1}^{N} v_{j} v_{j}^{*} G \delta\left(\lambda-\lambda_{j}\right) \mathrm{d} \lambda
$$

This assumption cannot be dropped in general!

Theorem: Suppose that the quadrature rule converges, \mathcal{K} is unitary, $\lim _{N \rightarrow \infty} \operatorname{dist}\left(h, V_{N}\right)=0$ for any $h \in L^{2}(\Omega, \omega)$. Then for any Lipschitz test $N \rightarrow \infty$ function $\xi, g \in L^{2}(\Omega, \omega)$ and $\boldsymbol{g}_{N} \in \mathbb{C}^{N}$ with $\lim _{N \rightarrow \infty}\left\|g-\Psi \boldsymbol{g}_{N}\right\|=0$,

$$
\lim _{N \rightarrow \infty} \limsup _{M \rightarrow \infty}\left\|\int_{\mathbb{T}} \xi(\lambda) \mathrm{d} \varepsilon(\lambda) g-\Psi \int_{\mathbb{T}} \xi(\lambda) \mathrm{d} \varepsilon_{N, M}(\lambda) \boldsymbol{g}_{N}\right\|=0
$$

Key ingredients:

- Strong convergence of Galerkin approximation.
- Discretization by normal operators.
$\mathbb{K}:$ mpEDMD matrix
$\lambda_{j}:$ eigenvalues of \mathbb{K}
$v_{j}:$ eigenvectors of \mathbb{K}
$V_{N}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$

Convergence of scalar-valued measure

$$
\begin{gathered}
\mu_{\boldsymbol{g}}^{(N, M)}(U)=\boldsymbol{g}^{*} G \varepsilon_{N, M}(U) \boldsymbol{g}=\sum_{\lambda_{j} \in U}\left|v_{j}^{*} G \boldsymbol{g}\right|^{2} \\
W_{1}(\mu, v)=\sup \left\{\int_{\mathbb{T}} \xi(\lambda) \mathrm{d}(\mu-v)(\lambda): \xi \text { Lipschitz } 1\right\}
\end{gathered}
$$

Theorem: Suppose quad. rule converges, $\lim _{N \rightarrow \infty} \operatorname{dist}\left(h, V_{N}\right)=0$ for any $h \in$ $L^{2}(\Omega, \omega)$. Then for $g \in L^{2}(\Omega, \omega)$ and $\boldsymbol{g}_{N} \in \mathbb{C}^{N}$ with $\lim _{N \rightarrow \infty}\left\|g-\Psi \boldsymbol{g}_{N}\right\|=0$, $\lim _{N \rightarrow \infty} \limsup _{M \rightarrow \infty} W_{1}\left(\mu_{g}, \mu_{g}^{(N, M)}\right)=0$.
If $\left\{g, \mathcal{K} g, \ldots, \mathcal{K}^{L} g\right\} \subseteq V_{N}$ and $g=\Psi \boldsymbol{g}$, then

\mathbb{K} : mpEDMD matrix λ_{j} : eigenvalues of \mathbb{K} v_{j} : eigenvectors of \mathbb{K} $V_{N}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$

Spectra: avoid too little!

$\operatorname{Spec}_{\text {ap }}(\mathcal{K})=\left\{\lambda: \exists u_{n},\left\|u_{n}\right\|=1, \lim _{n \rightarrow \infty}\left\|(\mathcal{K}-\lambda) u_{n}\right\|=0\right\}=\operatorname{Spec}(\mathcal{K}) \cap \mathbb{T}$

Theorem: Suppose quad. rule converges, $\lim _{N \rightarrow \infty} \operatorname{dist}\left(h, V_{N}\right)=0$ for any $h \in$ $L^{2}(\Omega, \omega)$. Then

$$
\lim _{N \rightarrow \infty} \limsup _{M \rightarrow \infty} \sup _{\lambda \in \operatorname{Spec}_{\text {ap }}(\mathcal{K})} \operatorname{dist}(\lambda, \operatorname{Spec}(\mathbb{K}))=0 .
$$

$\mathbb{K}:$ mpEDMD matrix
$\lambda_{j}:$ eigenvalues of \mathbb{K}
$v_{j}:$ eigenvectors of \mathbb{K}
$V_{N}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$

Spectra: avoid too little!

$\operatorname{Spec}_{\text {ap }}(\mathcal{K})=\left\{\lambda: \exists u_{n},\left\|u_{n}\right\|=1, \lim _{n \rightarrow \infty}\left\|(\mathcal{K}-\lambda) u_{n}\right\|=0\right\}=\operatorname{Spec}(\mathcal{K}) \cap \mathbb{T}$

Theorem: Suppose quad. rule converges, $\lim _{N \rightarrow \infty} \operatorname{dist}\left(h, V_{N}\right)=0$ for any $h \in$ $L^{2}(\Omega, \omega)$. Then

$$
\lim _{N \rightarrow \infty} \limsup _{M \rightarrow \infty} \sup _{\lambda \in \operatorname{Spec}_{\mathrm{ap}}(\mathcal{K})} \operatorname{dist}(\lambda, \operatorname{Spec}(\mathbb{K}))=0 .
$$

What about spectral pollution?

$\mathbb{K}:$ mpEDMD matrix
$\lambda_{j}:$ eigenvalues of \mathbb{K}
$v_{j}:$ eigenvectors of \mathbb{K}
$V_{N}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$

Residuals \Rightarrow avoid too much!

$$
G=\Psi_{X}^{*} W \Psi_{X}, A=\Psi_{X}^{*} W \Psi_{Y}
$$

$$
\begin{aligned}
\|(\mathcal{K}-\lambda) \Psi \boldsymbol{g}\|^{2} & =\langle(\mathcal{K}-\lambda) \Psi \boldsymbol{g},(\mathcal{K}-\lambda) \Psi \boldsymbol{g}\rangle \\
& =\lim _{M \rightarrow \infty} \boldsymbol{g}^{*}\left[\left(1+|\lambda|^{2}\right) G-\bar{\lambda} A-\lambda A^{*}\right] \boldsymbol{g}
\end{aligned}
$$

Suitable conditions $\Rightarrow \lim _{N \rightarrow \infty} \min _{g \in V_{N}}\|(\mathcal{K}-\lambda) \Psi \boldsymbol{g}\| /\|g\|=\operatorname{dist}\left(\lambda, \operatorname{Spec}_{\text {ap }}(\mathcal{K})\right)$
Two methods:

- Clean up procedure for tolerance ε.
- Local minimization algorithm converges to $\operatorname{Spec}_{\mathrm{ap}}(\mathcal{K})$.
- C., T., "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

Challenges

Truncate: $\mathcal{K} \longrightarrow \mathbb{K} \in \mathbb{C}^{N \times N}$

1) "Too much": Approximate spurious modes $\lambda \notin \operatorname{Spec}(\mathcal{K})$
2) "Toolittle": Niss parts of $\operatorname{Spec}(\mathcal{K})$

3) Continuous spectra.

"In practice, most 0 in which they are diagonalized. Thus, ohe orm _imarmations. Unfortunately, there is a dearth of litorn tell, there are no pr _serreral] techniques." son, Berkeley (1994)

Executive summary

	DMD	EDMD	piDMD	mpEDMD
Aux. SVD matrices	n / a	n / a	$Y X^{*}=V_{1} S V_{2}^{*}$	$G^{-\frac{1}{2}} A^{*} G^{-\frac{1}{2}}=U_{1} \Sigma U_{2}^{*}$
Koopman matrix	$\left(Y X^{\dagger}\right)^{\top}$	$G^{\dagger} A$	$V_{2} V_{1}^{*}$	$G^{-\frac{1}{2}} U_{2} U_{1}^{*} G^{\frac{1}{2}}$
Nonlinear dictionary	X	\checkmark	X	\checkmark
Conv. spec. meas.	X	X	x	\checkmark
Conv. spectra	X	X	X	\checkmark
Conv. KMD	X	\checkmark	X	\checkmark
Measure-preserving	X	X	X / Ω^{\ddagger}	\checkmark

$X=\left[x^{(1)} \ldots x^{(M)}\right], Y=\left[y^{(1)} \ldots y^{(M)}\right] \in \mathbb{C}^{d \times M}$ are matrices of the snapshots (linear dictionary), common to combine DMD with truncated SVD. $G=\Psi_{X}{ }^{*} W \Psi_{X}, A=\Psi_{X}{ }^{*} W \Psi_{Y}$. NB: piDMD is measure-preserving only if $X X^{*}$ and W are multiples of the identity.

Numerical examples

Lorenz system: scalar-valued spec meas

$$
\begin{gathered}
\dot{x}_{1}=10\left(x_{2}-x_{1}\right), \quad \dot{x}_{2}=x_{1}\left(28-x_{3}\right)-x_{2}, \quad \dot{x}_{3}=x_{1} x_{2}-\frac{8}{3} x_{3}, \quad \Delta_{t}=0.1 \\
g_{j}=c_{j}[x]_{j}, \quad V_{N}=\operatorname{span}\left\{g_{j}, \mathcal{K} g_{j}, \ldots, \mathcal{K}^{N-1} g_{j}\right\}
\end{gathered}
$$

Lorenz system: projection-valued spec meas

$$
\begin{gathered}
V_{N}=\operatorname{span}\left\{g_{1}, g_{2}, g_{3}, \mathcal{K} g_{1}, \mathcal{K} g_{2}, \mathcal{K} g_{3}, \ldots, \mathcal{K}^{q-1} g_{1}, \mathcal{K}^{q-1} g_{2}, \mathcal{K}^{q-1} g_{3}\right\} \\
\phi(\theta)=\exp (\sin (\theta))
\end{gathered}
$$

Lorenz system: projection-valued spec meas

$$
\begin{gathered}
V_{N}=\operatorname{span}\left\{g_{1}, g_{2}, g_{3}, \mathcal{K} g_{1}, \mathcal{K} g_{2}, \mathcal{K} g_{3}, \ldots, \mathcal{K}^{q-1} g_{1}, \mathcal{K}^{q-1} g_{2}, \mathcal{K}^{q-1} g_{3}\right\} \\
\phi(\theta)=\exp (\sin (\theta))
\end{gathered}
$$

Nonlinear pendulum

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-\sin \left(x_{1}\right), \quad \Omega=[-\pi, \pi]_{\text {per }} \times \mathbb{R}, \quad \Delta_{t}=0.5 \\
& g(x)=\exp \left(i x_{1}\right) x_{2} \exp \left(-x_{2}^{2} / 2\right), \quad V_{N}=\operatorname{span}\left\{g, \mathcal{K} g, \ldots, \mathcal{K}^{99} g\right\}
\end{aligned}
$$

${ }_{4} \operatorname{mpEDMD}, \lambda \approx e^{i \pi / 4}$

$\operatorname{mpEDMD}, \lambda \approx e^{i 3 \pi / 4}$

$\operatorname{EDMD}, \lambda \approx e^{i 3 \pi / 4}$

Nonlinear pendulum

Noise free

10% Gauss. noise for Ψ_{X}, Ψ_{Y}

Nonlinear pendulum

Mean residual (EDMD)

Noise level

Mean residual (mpEDMD)

Noise level

Wider programme

- Inf.-dim. computational analysis \Rightarrow Compute spectral properties rigorously.
- Continuous linear algebra \Rightarrow Avoid the woes of discretization
- Solvability Complexity Index hierarchy \Rightarrow Classify diff. of comp. problems, prove algs are optimal.
- Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.

```
C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., to appear.
C., "Computing spectral measures and spectral types," Comm. Math. Phys., }2021
C., Horning, Townsend "Computing spectral measures of self-adjoint operators," SIAM Rev., }2021
C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett., }2019
C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., }2022
C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th
problem," Proc. Natl. Acad. Sci. USA, }2022
- C., "Computing semigroups with error control," SIAM J. Numer. Anal., 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.
- Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981, 36 pp.
McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987, 27 pp.
```


Summary

Structure-preserving Koopmanism for arbitrary measure-preserving systems.

Some advantages:

- Converges for spectral measures, spectra, Koopman mode decomposition.
- Long-time stability and improved qualitative behavior.
- Increased stability to noise (e.g., measurements).
- Easy to combine with any DMD-type method!

What other areas of NA can successfully be combined with Koopmanism?
Code: https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition

Additional slides...

Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d)$
 metric space

- Δ_{0} : Problems solved in finite time (v . rare for cts problems).
- Δ_{1} : Problems solved in "one limit" with full error control:

$$
d\left(\Gamma_{n}(A), \Xi(A)\right) \leq 2^{-n}
$$

- Δ_{2} : Problems solved in "one limit":

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A)
$$

- Δ_{3} : Problems solved in "two successive limits":

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Amer. Math. Soc., 2011.

McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.

- Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.

Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.

Error control for spectral problems

Σ_{1} convergence

$$
\Xi(A)=\operatorname{Spec}(A)
$$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$

Error control for spectral problems

Σ_{1} convergence

Π_{1} convergence
$\Xi(A)=\operatorname{Spec}(A)$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$
$\cdot \Pi_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Xi(A)} \operatorname{dist}\left(z, \Gamma_{n}(A)\right) \leq 2^{-n}$ Such problems can be used in a proof!

Small sample of classification theorems

Increasing difficulty

Small sample of classification theorems

Increasing difficulty

Error control

Small sample of classification theorems

Increasing difficulty

Small sample of classification theorems

Increasing difficulty

[^2]
Small sample of classification theorems

Increasing difficulty

[^3]
Small sample of classification theorems

Increasing difficulty

[^4]
[^0]: - Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynam., 2005.

[^1]: *Wikipedia: "its wild surge in popularity is sometimes jokingly called 'Koopmania""

[^2]: *Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

[^3]: *Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

[^4]: *Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

