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Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xn+1 = F(xn)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}j:i=1

* Data: experimental measurements or numerical simulations
* E.g., used for forecasting, control, design, understanding

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.

Poincaré
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Ope rator VieWpOint KOpmn von Neuann
* Koopman operator X acts on functions g: 2 — C '

[Kgl(x) = g(F(x))

* K is linear but acts on an infinite-dimensional space.

State x1 x x xn Non linear
I

Functlons \ \ \ \ Lmear

of state g(xl) (xz) (X3) (Xn)

« Work in L?(Q, w) for positive measure w, with inner product {,-).

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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Why is linear (much) easier?

Long-time dynamics
become trivial!

e Baby case: F(x) = Ax,A € R**% A =VAV 1. /
e Set & =V 1y,
571 —_ V_lxn —_ V_lAnxO —_ AnV_le — A’I’Lé’o

e LetwlA = Aw, set o(x) = wlx,

[Ko](x) = wlAx = 1p(x) ‘Eigenfunction‘

Much more general (non-linear F and even chaotic systems).
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Koopman mode decomposition eenerize

eigenfunction of K / eigenfunction of X

9= ) e+ | deg(x)do
eigs 4; =TT per
g(x,) = [K"gl(xo) = CA-Ajnfpa-(xo) + ein9¢9,g(xo) dé
j j
eigs 4; [—TT,]per

Encodes: geometric features, invariant measures, transient behavior,
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.
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Koopmania*: A revolution in the big data era?

New Papers on
“Koopman Operators”
6000

~35,000 papers over last decade! 5000 /
BUT: Very little on convergence guarantees or verification! % /\ \/
3000 .55////
Why is this lacking? 2000 /_/\
* Koopmanism has been (largely) distinct from NA. 1000

0
e Computing spectra in infinite dimensions is notoriously

hard ...

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

—number of papers

doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania™



6/34

Challenges

Truncate: K K € CV*N

1) “Too much”: Approximate spurious modes 4 & Spec(K)
2) “Too little”: Miss parts of Spec(K)
3) Continuous spectra.

“In practice, most operators are not presented in a representation in which they are
diagonalized. Thus, one often has to settle for numerical approximations. Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)



Assumption

System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& K*K =1 (isometry)

= Spec(K) S {z:|z| < 1}

(NB: we consider unitary extensions via Wold decomposition.)

~~

7/34

spectral
measure
(see later)
supp. on
boundary
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Assumption

System is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& K*K =1 (isometry)

= Spec(K) S {z:|z| < 1} |
spectra

\
measure

(NB: we consider unitary extensions via Wold decomposition.) (see later)
supp. on

WANT: Method preserves measure (e.g., stability, long-time behavior etc.)... ound
oundary



10714

10721

1073

Motivating example
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TKE, y =~ 35mm

* Reynolds number = 6.4 x 10*
 Ambient dimension (d) = 100,000
(velocity at measurement points)
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*Raw measurements provided by Maté Sz6ke (Virginia Tech)

10° | [ mpEDMD
——piDMD
N ——EDMD ‘O\Q
Mean TKE of flow é" A Mean TKE of flow &0
S/ 107} &
s N\
rs
/’ ,"
a2 1072 ¢ !
: : ' 1073 : :
1 2 3 4 5 0 1 2 3 4
Time (s) Time (s)

piDMD

o X107 Time-avg. TKE

e MPEDMD
4r s piDMD
= = =Mean TKE of flow
3.5
5l stable but wrong
2.5
2L
1.5}
1 L 1 L
0 10 20 30 40
Height y (mm
EDMD

 Baddoo, Herrmann, McKeﬂjtz, Brunton, “Physics-informed dynamic mode

%nposition (piDMD),” preprint.

* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



The mpEDMD algorithm
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Extended Dynamic Mode Decomposition (EDMD)

Given dictionary {11, ..., ¥y} of functions lp]. QO - C, L{X ),y(m) _ F(x(m))}M
m=1
o [ (x D) e Py (D) " (w, P (x®) e Py (x|
<¢k»1/)j> ~ Z%=1 Wmlpj (x(m))wk(x(m)) = : : : :
l/J1(X(M)) l/JN(X(M)) Wu l/J1(x(M)) l/JN(x(M))
i, W . L
o (D) Py )\ Wy P 0D ey )]
(FCi, ) = Ty Wit () () = : 5 : :
o) [\ ™)y (x) wy) \ Y1) Yy ()
_ Ty W mm Ly

K = K=V, WY)W, WY, € CV*N

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.
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Quadrature with trajectory data

E.g., <~7€1/Jk'l/)1> o hm ZM 1Wml/)](x(m)) l/} (y(m))
(K] (x(m))

Three examples:

» High-order quadrature: {x("™), Wm} . M-point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2Y rate of convergence. /

* Ergodic sampling: x "+ = F(x (™),
Single trajectory, large d. Requires ergodicity, convergence can be slow.
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Another interpretation

N
qj(x) = [ll)l(X) l/)N(X)], g = zgjl/)j — Lpg, :K‘g — ‘P]Kg + R(g!)
j=1

Ké{éziv%{ ) ”rgﬂggllR(g,x)lzdw(x) = ]Q W (F(x)) — POKI|5 dw(x)

qguadrature

M
min, > wnl[¥(/) = (K]

1
]KE(CNXN
m=1
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A simple idea
G =YW, G~ (Y1)

Measure-preserving: || Wg|| = [[YKgll, I¥gll*~ g*Gg, IYKgll* = g"K"GKg
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A simple idea
G =YW, Gy~ (Yr;)
Measure-preserving: |[|¥gll = [|WKgll, |¥Ygll* = g*Gg, ||I¥Kgll* = g"K*GKg

Enforce: G = K*'GIK
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A simple idea
G =YW, Gy~ (Yr;)
Measure-preserving: |[|¥gll = [|WKgll, |¥Ygll* = g*Gg, ||I¥Kgll* = g"K*GKg

Enforce: G = K*'GIK

quadrature orthogonal

Procrustes
M problem

. _ _ 2
Lmin > w [W( )62 — w(xM)KG
G=K*GK m=1
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A simple algorithm

Algorithm: mpEDMD for approximating spectral properties of K.
Input: Snapshot data {x(™) y™) = F(z(™N)HIM_ = quadrature weights {w,, }M_,,

and a dictionary of functions {¢;}7_,.
1: Compute G = V5 WWx and A =V WUy
2: Compute an SVD of G=12A*G~1/2 = U, 3XU:
3. Compute the eigendecomposition UsUF = VAV*
4: Compute K = G=V2U,UFGY? and V = G~V/2V

Output: Koopman matrix K, with eigenvectors V' and eigenvalues A.

In a nutshell: Galerkin meets polar decomposition.
(This also allows us to prove numerical stability.)
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Convergence theory



Spectral measures

White light contains a continuous spectra

Often interesting to look at
the intensity of each wavelength

Irradiance (W/m2/nm)

1.5

0.5

Spectrum of Solar Radiation (Earth)

UV | Visible| Infrared »

i Sunlight without atmospheric absorption

5778K blackbody

H,0 Sunlight at sea level

Atmospheric
absorption bands

250 500 750
Wavelength (nm)

1000 1250 1500 1750 2000 2250 2500

16/34
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Spectral measures — diagonalisation

e Fin.-dim.: B € C"", B*B = BB*, o.n. basis of e-vectors {vj}?ﬂ

n
— . .*
=1 _

U,

Bv =

- _
S

z;{]U]U] D,

J=1 _

Vv e Ch

* Inf.-dim.: Operator £L: D(L) — H. Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure £

g:

jﬂ 1dEN)
Spec(L) |

= f A1dER)
Spec(L) |

g, VgeH

* Spectral measures: 11,(U) = (E(U)g, g) (llgll = 1) prob. measure.
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Koopman mode decomposition (again!)

Uy probability measures on T

Leb. decomp: du,(y) = z <P Ajg,g> o(y—6;) + Py (y)dy + dMZC(yz

eigenvalues 4;=exp(i6) continuous

N —

discrete
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Koopman mode decomposition (again!)

Uy probability measures on T

Leb. decomp: du,(y) = z <P Ajg,g> o(y—6;) + Py (y)dy + dMZC(yz
Sigenvalues Aj=exp(if;) continuous
discrete
eigenfunction of K generalized

I /eigenfunctionof?(
9= Y e+ [ e

eigenvalues 4; [—TT,T]per
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Koopman mode decomposition (again!)

Uy probability measures on T

Leb. decomp: du,(y) = z <P Ajg,g> o(y—6;) + Py (y)dy + dMZC(yz
Sigenvalues Aj=exp(if;) continuous
discrete
eigenfunction of K generalized

I /eigenfunctionof?(
9= Y e+ [ e

eigenvalues 4; [—TT,T]per

9o = (K" = Y aden G+ [ emy00 do

eigenvalues 4; [T, T]per
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Koopman mode decomposition (again!)

Uy probability measures on T

Leb. decomp: du,(y) = z <P Ajg,g> o(y—6;) + Py (y)dy + dMZC(yz
eigenvalues 4;=exp(i6) continuous
discrete
eigenfunction of K generalized
I / eigenfunction of K

9= Y e+ [ e

eigenvalues 4; [—TT,T]per

9o = (K" = Y aden G+ [ emy00 do

eigenvalues 4; [T, T]per

Computing u, diagonalises non-linear dynamical system!



19/34

Convergence of projection-valued measure
N

This assumption
cannot be dropped

dgN,M (/1) — z Vj U]*G(?(A R A])d/‘{ in general!

j=1

Theorem: Suppose that the quadrature rule converges, K is* unitary,
lim dist(h,Vy) = 0 for any h € L*(Q, w). Then for any Lipschitz test

N —>o00

function &, g € L*(Q, w) and gy € CY with lim lg — Pgunll =0,

lim limsup fqr E(M)dEN)g —LIJJT EM)dEY D) gn|| =0

N—-oo M0

Key ingredients: K: mpEDMD matrix

A;j: eigenvalues of K

 Strong convergence of Galerkin approximation.

v;: eigenvectors of K

* Discretization by normal operators. Vy = span {iy, ..., Yy}




20/34

Convergence of scalar-valued measure

ug™ W) = g'GeEnmWIg = ).

)\.jEU

Wi(u,v) = sup<f E(A)d(u —v)(A): €& Lipschitz 1
T

v]f"Gg‘2

\

"

J

Theorem: Suppose quad. rule converges, Al,im dist(h,Vy) = 0 forany h €
L%(Q, w). Then for g € L?(Q, ) and gy € CN with lim lg — Wgnll =0,

lim limsup W; (ug,,ugv'M)) = 0.

N—-o© pme0

L —
If{g,Kg,.., K“g} €Vyand g =¥g, then K mPEDMD matrin
10g(L) A;: eigenvalues of K
Matching S : (N,M) j
autocorrelations! llmsup Wy (‘ng, Hg S L vj: eigenvectors of K
M —oo
I Vn = span {4, ..., Yy}
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Spectra: avoid too little!

Spec,p(K) = {/1: Fu,,, [|lu,ll = 1,T1Li_r)£10||(76 — Du,|| = O} = Spec(K)NT

Theorem: Suppose quad. rule converges, Al’im dist(h,Vy) = 0 forany h €

L%(Q, w). Then

lim limsup  sup  dist(4, Spec(K)) = 0.
N=c  M-eo 2A€Specyp(X)

K: mpEDMD matrix
A;j: eigenvalues of K

v;: eigenvectors of K
Vn = span {4, ..., Yy}
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Spectra: avoid too little!

Spec,p(K) = {/1: Fu,,, [|lu,ll = 1,T1Li_r)£10||(76 — Du,|| = O} = Spec(K)NT

Theorem: Suppose quad. rule converges, Al’im dist(h,Vy) = 0 forany h €

L%(Q, w). Then

lim limsup  sup  dist(4, Spec(K)) = 0.
N=c  M-eo 2A€Specyp(X)

. K: mpEDMD matrix
What about spectral pollution? A eigenvalues of KK

v;: eigenvectors of K
Vn = span {4, ..., Yy}
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Residuals = avoid too much!

G = l'IJX>I<VV‘“IJ)(, A= "IJX*WLIJY

1(F — D¥gll? = (K — D¥g, (¥ - D¥g)

lim g*[(1+ 121G — 14 - 24" | g

Suitable conditions = Al’im rrel‘l/n 1K — D¥gll/ llgll = dist(4, Spec,p (X))
— 00 g N

Two methods:

* Clean up procedure for tolerance ¢.

* Local minimization algorithm converges to Spec,, (¥X).

 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
e C., Ayton, Szb6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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“In practice, most
diagonalized. Thus, o0

there is a dearth of li

tell, there are no pr
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Challenges

Truncate: X —> K € CN*XN

in which they are
ations. Unfortunately,

have been able to
on, Berkeley (1994)

all techniques.”



Executive summary
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DMD | EDMD piDMD mpEDMD
Aux. SVD matrices n/a n/a | YX*=VSVy |G 2A*G~2 =U,XU;
Koopman matrix (YXHT | GTA VoV G zU,UrG=
Nonlinear dictionary X v X e
Conv. spec. meas. X X X v
Conv. spectra X X X v
Conv. KMD X v X v
Measure-preserving X X X//* v

X = [x(l) ...x(M)],Y =

:y(l) my(M)] = (CdXM

are matrices of the snapshots (linear
dictionary), common to combine DMD with truncated SVD. G = W, WWy, A = VY, WYy
NB: piDMD is measure-preserving only if XX* and W are multiples of the identity.

mpEDMD: First convergent Galerkin method!
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Numerical examples
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Lorenz system: scalar-valued spec meas

x; = 100x; — x1), Xy = x1(28 — x3) — X3,

9j =Cj[x]j;

W, (MS(]E;O,QX 10°) M(SO,M))

6
s (N,10 ))

Wi (ng s g ;

g3

1072 1072 SRR
O( \\
‘/]/A\j\\
1073 103} ) s
107 1074 ‘ ‘
10° 10’ 102 108

10° T T 10° | ]
-0 —01|1
\ 92 —G2| |

L VA

10'1 F gs _

N

X3 = XXy — §x3,

Vy = Span{gj,fngj, ...,JCN_lgj}

0.8
0.6
0.4}

0.2r

8
A, = 0.1

Cdf of uéiios’loﬁ)

— g1
— )
gs
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Lorenz system: projection-valued spec meas

VN — span{gl, Y2, gSI:]Cgl'ngZ"(}CgBJ '"i%q_lglJ%q_ngJ%q_lg3}
¢(6) = exp(sin(6))

Y o 0)9850,0x108 (M1 L LSOLLACOR T

10° ) 100
—g1| ] 3
g2 |
g3
107} ;
i 101t
1072 ¢
3 . 102}
10-3_ O(‘%‘s.‘ [
: ~ 7 S
: J/Q)“'n.‘
T R — 1073
102 10° 10% 10° 108 10°




Lorenz system: projection-valued spec meas

VN — Span{gli 92, gSIJCgl'ngZJ:}CgB! "'J%q_lgl!%q_ng'Kq_lgB}

-20

¢(6) = exp(sin(6))

U [ ¢(N) dEn,nr(N)g2

5

o

40

30

20

10

-10

-20

-30

-40

-50

W [ d(N) dEN 1 (N)g3

40 -
30 B

Z »]

10‘*
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70

20

10
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Nonlinear pendulum

.7.6'1 = Xy, XZ - — Sin(xl), () = [—77:, ﬂ]per X R, At = 0.5
g(x) = exp(ix;) x; exp(—x5/2),  Vy =span{g,Kg,..,K°g}

mpEDMD, \ ~ e?™/4

0
0.2
= -0.4

1-0.6

EDMD, \ ~ ei37f/04

— 0.2
—
-0.4
v( \ ‘ ‘
)

1-08
1 E

112
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Nonlinear pendulum

10% Gauss. noise for Wy, Wy

0.5

Im(\)

-0.5

T

Noise free

1

0.5+
=
spectral é |
pollution
-0.5 ¢




0.8

0.7r

061

0.2r

0.1r

Mean residual (EDMD)

Nonlinear pendulum

S

e N1 = 200

e M1 = 250|

e M1 = 300

My = 350 -

M]_ - 400

e M} = 450 |

M, = 500

0.2

Og- Oé
Noise level

0.8

0.8

0.7

0.6

0.5

0.4r

031

0.2

0.1
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Mean residual (mpEDMD)

e M1 = 200
e V1 = 250
e M} = 300
M, = 350
M, = 400
e V[ = 450)
M; = 500

strongly consistent]
estimation

/

0 0.2

d4 0.6
Noise level

0.8 1
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Flow

time=0.001000
- -

e aal™ W

1260 1270 1280 1290 1300 1310 1320

|
AAA_j —8
= -10
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unstable

EDMD

Turbulence statistics
mpEDMD

time=0.001000
e

stable but
piDlVl D wrong

2
b %) 4
il B

4;__;| N
1260 1270 1280 1200 1300 1310 1320 0

-2 : . -2
. ” o P " 24 T
L i P L _‘ ! L :
5r ji 8 5r J -8 5r
S —— . S -10 T — -10 n—

1260 1270 1280 1290 1300 1310 1320 1260 1270 1280 1290 1300 1310 1320

x (mm) x (mm)

=
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Wider programme

Inf.-dim. computational analysis = Compute spectral properties rigorously.

Continuous linear algebra — Avoid the woes of discretization

Solvability Complexity Index hierarchy = Classify diff. of comp. problems, prove algs are optimal.

Extends to: Foundations of Al, optimization, computer-assisted proofs, and PDEs etc.

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th
problem," Proc. Natl. Acad. Sci. USA, 2022.

C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.
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Summary

Structure-preserving Koopmanism for arbitrary measure-preserving systems.

Some advantages:

* Converges for spectral measures, spectra, Koopman mode decomposition.
* Long-time stability and improved qualitative behavior.

* Increased stability to noise (e.g., measurements).

e Easy to combine with any DMD-type method!

What other areas of NA can successfully be combined with Koopmanism?

Code: https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition




Additional slides...



Solvability Complexity Index Hierarchy

Class ) 3 A, want to compute E: Q) = (M, d) €=——— metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d(l,(4),2(4) < 27"
* A,: Problems solved in “one limit”:
lim [, (4) = E(4)

* A;: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = £(4)

. Nn—00 Mm—0oo

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Error control for spectral problems

>.1 convergence

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00



Error control for spectral problems

>.1 convergence II; convergence

-

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00

e II;: F alg. {I};, } s.t. im [, (A) = E(A), max,ez(q)dist(z,I;,(4)) < 27"
Nn—>00

Such problems can be used in a proof!



Small sample of classification theorems

Increasing difficulty

Error control

A
l |

I1 I14 [1,

”O & \§ & L &

Ay € A G2, UIILE A, &3, UIILE Ay €3, UIL
I S & S & S

Z0 21 22



Small sample of classification theorems

Increasing difficulty

Error control

Hl HZ H3
G \ & < &
Al ;Zlur[l; Az QZZUI_Iz; A3 ;23UH3
A G < G N

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of
A compact operators
|
| & < & <

S & xS &
0 \ 22 23

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*  Spectral stability
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



