Infinite-Dimensional Spectral Computations

Matthew Colbrook

(University of Cambridge + Ecole Normale Supérieure)

m.colbrook@damtp.cam.ac.uk

turbulent

fluctuations

Tt

quantum state of quasicrystal spectral measure of graphene Koopman mode of turbulent flow



The infinite-dimensional spectral problem
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Finite Case (B € C"™*") = Infinite Case (operator A)

Eigenvalues = Spectrum, Sp(A)
{zeC:det(B—2z)=0} = {zeC:A—znotinvertible}

GOAL: compute properties of Sp(A) from matrix elements

Many applications: quantum mechanics, engineering, chemistry, matter physics, statistical
mechanics, optics, number theory, PDEs, data science,...



The infinite-dimensional spectral problem

1920: G. Szeg0, "Beitrdge zur Theorie der Toeplitzschen Formen" - finite section, Toeplitz operators, OPs, ...
1960: J. Schwinger, "Unitary operator bases" - finite-dim. approx to Schrodinger operators in infinite-dim.
1983: A. Bottcher & B. Silbermann, "The finite section method for Toeplitz operators on the quarter-plane
with piecewise continuous symbols." - C*-algebra techniques (see also papers of W. Arveson and N. Brown).
1985: P. Deift, L. C. Li, & C. Tomei, "Toda flows with infinitely many variables" - infinite-dimensional QR.
1994: T. Digernes, V. S. Varadarajan & S. R. S. Varadhan, "Finite approximations to quantum systems" -
convergence of Schwinger's method for Schrédinger operators with compact resolvent.

1996: Fefferman & L. Seco, "Interval arithmetic in quantum mechanics" - computer-assisted proof of
Dirac-Schwinger conjecture (ground state energy of atom).

2005: L. N. Trefethen & M. Embree, "Spectra and pseudospectra” - pseudospectra of non-normal operators.

Mathematicians and physicists contributing to inf. dim. spectral computations include:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Béttcher (Chemnitz), W. Dahmen (South Carolina),
E. B. Davies (King's College London), P. Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton),
H. Goldstine (IAS), G. Golub (Stanford), A. Iserles (Cambridge), D. Jerison (MIT), T. Kato (Berkeley),
A. Laptev (Imperial), E. Lieb (Princeton), S. Mayboroda (Minnesota), W. Schlag (Yale),
E. Schrodinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA),
S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley), ...



Things that typically go wrong

Fundamental challenges:
@ Miss parts of the spectrum.
o Approximate false z ¢ Sp(A) - “spectral pollution”.

Even if a method converges,
@ How do we know what part of the approximation to trust?

“In practice, one often has to settle for numerical approximations to compute the spectra of
infinite dimensional operators. Unfortunately, there is a dearth of literature on this basic
problem and, so far as we have been able to tell, there are no proven [general] techniques.”

W. Arveson, Berkeley (1994)

- Z. Zhang, “How many numerical eigenvalues can we trust?,” Journal of Scientific Computing, 2015.
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[ Numerical linear algebra: Finite-dimensional = Infinite-dimensional




Background programme: foundations of
infinite-dimensional spectral computations

Key Question: What is possible in infinite-dimensional spectral computations?
How: Deal with operators directly, instead of previous ‘truncate-then-solve'.
= Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring intrinsic difficulty.

= Algorithms realise boundaries of what computers can achieve.

Common tool in this talk: Compute properties of (A — z)~*.

- M. Colbrook, “The Foundations of Infinite-Dimensional Spectral Computations,” PhD diss., 2020.
- M. Colbrook, V. Antun , A. Hansen “Can stable and accurate neural networks be computed? - On the barriers
of deep learning and Smale'’s 18th problem,” Proc. Natl. Acad. Sci. USA, to appear.



Talk structure: three problems

e Part 1: Computing spectra with error control.
o Part 2: Computing spectral measures.

o Part 3: Data driven computations and Koopman operators.



Part 1: Computing spectra with error control.

- M. Colbrook, B. Roman, A.Hansen “How to compute spectra with error control” Physical Review Letters, 2019.

- M. Colbrook, A. Hansen “The foundations of spectral computations via the solvability complexity index
hierarchy,” Journal of the European Mathematical Society, under revisions.



Example: quasicrystals
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Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals.
Right: Penrose tile, canonical model in physics.

Aperiodicity = interesting physics

Aperiodicity = considerable challenge to approximate Sp



Example: quasicrystals

Model: Perpendicular magnetic field (of strength B).

Matrix equation Matrix sparsity

X1
X2

= — Z eiajk(B)Xk’

k connected to j

X3




Example: quasicrystals
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Previous approaches: square truncations

missed info



Idea: rectangular truncations
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= Computation of ||(A — z)7!||~! = dist(z, Sp(A)) from above.
= Computation of Sp(A) via adaptive local minimisers.

- [Pseudospectra of finite matrices using rectangular truncations, e.g., useful for Arnoldi:]
T. Wright, L. N. Trefethen, “Pseudospectra of rectangular matrices,” IMA Journal of Numerical Analysis, 2002



Magnetic Field Strength

Example: quasicrystals

Square truncations New method
Spectral pollution. Convergent computation.

Magnetic Field Strength

Energy (Spectrum) Energy (Spectrum)

Does not converge Converges
No error control Error control



Remarks

Rigorously compute approximate states.
e.g. quasicrystals

Error control, output I',(A) & computed bound E:
e [,(A) — Sp(A)
® sup,cr,(a) dist(z,Sp(A)) < E, | 0.

Local, parallelisable and fast.

Extends to non-sparse matrices.

Extends to (certain) non-normal (AA* # A*A) operators.

Similar ideas work for PDEs...

uuuuuuu

American Physical Society

Asckes publoted week enine 28 JUNT: 2019

s Volume 122, Number 25



PDEs on unbounded domains

[Lul(x) = Y a(x)du(x) on L*(RY).

kezgoz|k|§/\/

Coefficients ay(x):
@ polynomially bounded

@ bounded total variation on compact balls

= Compute Sp(L) with error control!

NB: Open problem in quantum mechanics since Schwinger's work in the 1960s to do this for
general Schrodinger operators (even without error control).

- J. Schwinger, "The special canonical group,” Proc. Nat. Acad. Sci. U.S.A, 1960.
- J. Schwinger, “Unitary operator bases,” Proc. Nat. Acad. Sci. U.S.A, 1960.



Part 2: Computing spectral measures.

- M. Colbrook, “Computing spectral measures and spectral types” Communications in Mathematical Physics, 2021.
- M. Colbrook, A.Horning, A. Townsend “Computing spectral measures of self-adjoint operators” SIREV, 2021.



Spectral measures

Finite-dimensional: B € C™" self-adjoint, o.n. basis of e-vectors {v;}_;
n

n
_ K n _ ok n
v = Evjvj v, veC Bv = gAj\/J\/j v, veC
j=1 j=1

Infinite-dimensional: Self-adjoint operator £ : D(L) — H, (H = Hilbert space).
Bad news: Typically, no longer a basis of e-vectors.

Spectral Theorem: Projection-valued spectral measure £

g:</Rd5(A)>g, g Egz(/R)\dg()\)>g, g€ D(L).

Diagonalises infinite-dimensional operator L.



Spectral measures

Scalar-valued measures: v,(U) = ( £(U) g,g) (UCR).
~—~—

projection
QM example: v, describe likelihood of different outcomes when Hamiltonian £ is measured.

Lebesgue decomposition theorem:

drgN) = Y (Pyg.g) 8\ — \)dA+ pg(A) dA+ diufI(N).

eigenvalues );

continuous part

discrete part



Stone’s formula

V() = o (L = (x = i) = (£ = (i) MNeg) =+ | S

Convolution with Poisson kernel: smoothed measure.

Approximate via truncation of (£ — z)~! (N = truncation parameter).

- R. Haydock, H. Volker, M. Kelly, “Electronic structure based on the local atomic environment for tight-binding
bands" Journal of Physics C, 1972.

- L. Lin, Y. Saad, C. Yang, “Approximating spectral densities of large matrices” SIAM Review, 2016.

- M. Webb, S. Olver. “Spectra of Jacobi operators via connection coefficient matrices.” Communications in
Mathematical Physics, 2021.



Numerical balancing act with graphene




Measure Estimate

Numerical balancing act with graphene
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Measure Estimate

Numerical balancing act with graphene
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Numerical balancing act

Theorem (C. (2021))
Can compute measure if known rate of off-diagonal decay of infinite matrix. Extends to PDEs.

(£ — z)"1g computed using rectangular truncations and least squares with adaptive N(e).
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Problem: As e ] 0, N(e) = oo and vg — g = O(elog(e1)) (slow convergence).



Idea: rational kernels

1 < q o
Idea: K(x) = -— i - Ke(x) = e 'K (xet
ea: K(x) 2mzx—aj - (x) = e 1K (xe™ 1)
1 1 a1 1
al am (8%) 0
{aj}jZ, distinct points in upper half plane and _ =
q’"*l am—t m 0
1 m
Gen. Stone’s f.: [K. x vg](x) = Z (x—ea) =L - (x—€3)) ] g.8)
j=1
Stone's formula: == ([(£ — (x —ie)) ™t — (L — (x +i€)) Y]g, &)

Theorem (C., Horning, Townsend (2021))
If vz “sufficiently regular” locally near xo, then |[Kc * vg](x0) — pg(x0)| = O(e™ log(e~1))



Beautiful fractal structure!

Magnetic field strength

Horizontal slice = spectral measure at constant magnetic field strength.

Software package (developed with Andrew Horning):
SpecSolveavailable at https://github.com/SpecSolve

Current capabilities include: ODEs on real line & half-line,
integral operators, and discrete operators.

ISSN 0036-1445 prine)



Demo: radial Schrodinger operator

2 1 1
[Lu](r) = —%(r) + (E(é:g ) + ;(efr — 1)) u(r), r> 0.
c = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2)); % Norm squared
g = 0(r) exp(-(r-2).72)/sqrt(c); % Measure wrt g(r)
v={@(r) 0, @(r) exp(-r)-1, 1}; % Potential, 1=1
[xi, wi] = chebpts(20, [1/2 2]); % Quadrature rule
nu = rseMeas(V, g, xi, 0.1, ‘Order’, 4); % epsilon=0.1, m=4

ion_prob = wi * nu; % Ionization prob



Demo: radial Schrodinger operator

lpg — [Ke * vglllr/llpglle




Part 3: Data driven computations and Koopman operators.

New algorithm: ResDMD!

M. Colbrook, A. Townsend “Rigorous data-driven computation of Koopman spectral properties for dynamical
systems,” out this weekend on arXiv!



The setup: discrete dynamical system

Dynamical system: Statespace Q C R, F:Q = Q, x,11 = F(x,).
Given snapshot data: {x(™ y("™M_ with y(m) = F(x(m).
Goal: Learn properties of the dynamical system.
Challenges:
@ F is unknown
@ F is typically nonlinear

@ system could be chaotic

@ snapshot data could be noisy



Koopman operators in one slide

Vou 17, 1031 MATHEMATICS: B. 0. KOOPMAN. as
DYNAMICAL SYSTEMS OF CONTINUOUS SPECTRA
HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN
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Let g: Q — C, define
[Kel(x) = g(F(x)), xeQ.

K is a linear, so system determined by spectral information of K : L2(Q) — L?(Q)

= infinite-dimensional spectral computation from snapshot data!



Extended Dynamic Mode Decomposition (EDMD)
as a Galerkin method

Subspace span{y;}}; C [*(Q), W(x) = [¢1(x) -+ ¥n(x)] € CNV.

Uy = [U(x®)T ... \U(X(M))T]vay = [W(y®)T ... \u(y(M))T]T

&= ijgj =Vg, seek Kpyp € CV*N with Kg ~ VKpupg
j=1

M
: 2 (m) (m)
min_ /Q mox [[Kg](x) — W (x)Bg * du(x) ~ > Wme y(™) — w(x BH .

Koap = (Wi WU )T (W WWy) (W = diag(w, ..., wy))
M|i_f>“oo[‘|’§< WV x]ik = (¥, ;) and A)TOO[WQ Wy = (Kb, ;)

- P. Schmid “Dynamic mode decomposition for numerical and experimental data,” J. Fluid. Mech, 2010.
- M. Williams, I. Kevrekidis, C. Rowley “A data—driven approximation of the koopman operator: Extending
dynamic mode decomposition,” J. Nonlin. Sci., 2015.



|dea: matrix capturing the residual (ResDMD)

If g =Vg < span{wj}j’v:l and A are a candidate eigenvector-eigenvalue pair then

N
1Ke = Agllizq) = D 848 [(Kuow, Kubj) — Muok, Kabj) — Mt ) + A (o, )]
J k=1

N
Y BIE | VR WUy AU WU — AW WUy 4 A PWE Wk
N——

Jk=1 additional matrix Jjk

In large data limit (as M — o0), matrices W WWy, W5 WWy W WWx allow us to:
(1) Rigorously avoid spectral pollution.

(2) Compute spectra.




Spectral measures and Koopman mode decomposition

Measure-preserving dynamical system = spectral measures vz on [—7, T]per.

Koopman mode decomposition:

fel’(Q), flx)=[K"](x0) = > yA] ox(x0) +/ e $g,¢(x0) do.
e-vals ); ms [=m7]per

ctsly param e-functions
Vg can be computed using ResDMD:
@ High-order convergence.
@ Rigorous error control.

e Practical and parallel O(N?) computation using QZ algorithm.



Kernelized version for large state space dimension

Curse of dimensionality: 16 x 16 resol. of scalar, deg. 5 polys = N = 10%° basis functions!
Kernelized EDMD =- learns implicit basis in O(d) operations.

New method:
@ Apply kernelized EDMD to subset of data, select N dominant eigenfunctions as basis.
© Apply ResDMD with this basis and the remaining M data.

Rigorous and practical convergence as M — oc.
Can also check the basis a posteri!

- M. Williams, C. Rowley, and |. Kevrekidis “A kernel-based method for data-driven Koopman spectral
analysis,” J. Comput. Dyn., 2015.



Spectral measures in molecular dynamics, d = 20,046
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Turbulent flow past a cascade of aerofoils, d = 295,122

\ = 011 ) = 0-51i A = 071

o
acoustic sourcef .

'
o
o
04
A N a2
o o ¢
. o
s 015 o
08 > o
o
o0
res < 0.0054
o
2
turbulent 2 oo
fluctuations 1 o0
% o; 002
R o
= | o0 02
$ o
o oot
(v Y P
J 025

acoustic vibrations




Concluding remarks

Algorithmic results in a programme on foundations of inf.-dim. spectral computations.
e Part 1: Computing spectra with error control.

Idea: Rectangular truncations to compute dist(z, Sp(A)).

e Part 2: Computing spectral measures.
Idea: Convolution with rational kernels through the resolvent.

All you need: Solve linear systrems and compute inner products.

o Part 3: Data driven computations and Koopman operators.
Idea: New matrix for residual = ResDMD.

Further examples not in talk: spectral type (pure point, absolutely continuous, singularly
continuous), Lebesgue measure and fractal dimensions of spectra, discrete & essential spectra,
geometric features of spectra (e.g. radii, capacity etc.), spectral gap problem, ...

Details & code: http://www.damtp.cam.ac.uk/user/mjc249/home.html
If you have additional comments, questions, problems for collaboration, please get in touch!
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