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Spectral Measures

Finite-dimensional: A ∈ Cn×n self-adjoint, o.n. basis of e-vectors {vj}nj=1

v =

(
n∑

k=1

vkv
∗
k

)
v , v ∈ Cn Av =

(
n∑

k=1

λkvkv
∗
k

)
v , v ∈ Cn.

Infinite-dimensional: Self-adjoint operator L : D(L)→ H with spectrum

Λ(L) = {z ∈ C : L − z not bounded invertible}.

Bad news: Typically, no longer an o.n. basis of e-vectors.

Spectral Theorem: Projection-valued spectral measure E (assigns an
orthogonal projector to each Borel-measurable set) with

f =

(∫
R
dE(y)

)
f , f ∈ H Lf =

(∫
R
y dE(y)

)
f , f ∈ D(L).

Intuition: Diagonalises an infinite-dimensional operator.

GOAL: Compute (scalar versions of) E .



Motivation

Scalar-valued measures (action of projections):

µf (Ω) = 〈E(Ω)f , f 〉

Lebesgue decomposition theorem:

dµf (y) =
∑
λ∈Λp

〈Pλf , f 〉 δ(y − λ)dy︸ ︷︷ ︸
discrete part

+ ρf (y) dy + dµ
(sc)
f (y)︸ ︷︷ ︸

continuous part

.

Crucial in: quantum mechanics, scattering in particle physics, correlation
in stochastic processes/signal-processing, fluid stability, resonances,
density-of-states in materials science, orthogonal polynomials, random
matrix theory, evolution PDEs,...

Example: in quantum mechanics, µf describes the likelihood of different
outcomes when the observable L is measured. Can also solve SE

i
df

dt
= Lf , f (0) = f0, via f (t) =

(∫
R

exp(−ity) dE(y)

)
f0.



A Hard Problem!

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized... this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.” W. Arveson, Berkeley (1994)

Some methods do exist, but treat cases with a lot of structure (e.g.
compact perturbations of tridiagonal Toeplitz, some classes of singular
Sturm–Liouville operators, etc.)

In contrast, want a general method to resolve spectral measures of L
(e.g. PDEs, integral operators, infinite matrices,...) and not an underlying
discretisation or truncation.

finite-dimensional NLA ⇒ infinite-dimensional NLA



Ideas from Physics: Smoothed Measures

Idea: For z = x + iε, use

µεf (x) =

〈
(L − z)−1 − (L − z)−1

2πi
f , f

〉
=

1

π

∫
Λ(L)

ε

(x − λ)2 + ε2
dµf (λ).

Convolution with Poisson kernel: smoothed measure.

Converges weakly to measure as ε ↓ 0:∫
R
φ(y)µεf (y) dy →

∫
R
φ(y) dµf (y), as ε ↓ 0,

for any bounded, continuous function φ.

Approximate µεf via µεf ,N (N = truncation parameter).



Numerical Balancing Act: Magnetic Graphene
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Numerical Balancing Act: Magnetic Graphene



Numerical Balancing Act: Magnetic Graphene



Theorem (C. (2021))

If we know rate of off-diagonal decay of infinite matrix, can compute
measure in one limit. Extends to other operators such as PDEs.

This is through a rectangular least squares type problem that computes
(L − z)−1f with (asymptotic) error control. N(ε) chosen adaptively.



Example: Integral Operator

Lu(x) = xu(x) +

∫ 1

−1
e−(x2+y2)u(y) dy , x ∈ [−1, 1].

Discretise using adaptive Chebyshev collocation method.

Look at µf with f (x) =
√

3/2 x .
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Example: Integral Operator
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|ρf (x0)− µεf (x0)| = O(ε log(ε−1)) and need N ≈ 20/ε.

⇒ Infeasible to get more than five or six digits!

Q: Can we do better?



Accelerating Convergence

Let m ∈ N, K ∈ L1(R). We say K is an mth order kernel if:

(i) Normalized:
∫
R K (x)dx = 1,

(ii) Zero moments: K (x)x j integrable,
∫
R K (x)x jdx = 0 for 0 < j < m,

(iii) Decay at ±∞: There is a constant CK , independent of x , such that

|K (x)| ≤ CK (1 + |x |)−(m+1), x ∈ R.

Theorem (C., Horning, Townsend (2021))

If K is mth order, Kε(x) = ε−1K (xε−1) and µf locally absolutely
continuous near x0 with density ρf then

Pointwise: If ρf locally Cn,α near x0 then

|[Kε ∗ µf ](x0)− ρf (x0)| = O(εn+α) +O(εm log(ε−1))

Lp: If ρf locally Wn,p near x0 (1 ≤ p <∞) then

‖[Kε ∗ µf ]− ρf ‖Lploc = O(εn) +O(εm log(ε−1))



Rational Kernels

Idea: Replace Poisson kernel with rational kernel

K (x) =
1

2πi

m∑
j=1

αj

x − aj
− 1

2πi

m∑
j=1

βj
x − bj

.

Can compute convolution with error control using resolvent

[Kε ∗ µf ](x)

=
−1

2πi

 m∑
j=1

αj〈(L − (x − εaj))−1f , f 〉 −
m∑
j=1

βj〈(L − (x − εbj))−1f , f 〉

 .
Fix aj in UHP, bj in LHP ⇒ unique {αj , βj} s.t. K an mth order kernel.

NB: At moment recommend {aj = bj} equally spaced along {Im(z) = 1}.



Integral Operator Revisited
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See paper for general differential (even PDEs), integral and lattice
operator examples - use sparse spectral methods for discretisation.



Beautiful Fractal Structure!
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Spectral measure of magnetic graphene, computed to high precision (see log

scale) using m = 4 kernel.



ODEs Matlab Example

[Lu](x) = cp(x)
dpu

dxp
(x) + · · ·+ c1(x)

du

dx
(x) + c0(x)u(x), p ≥ 0,

[Lu](x) = −d2u

dx2
(x) +

x2

1 + x6
u(x), f (x) =

√
9/π · x2/(1 + x6).

xi= linspace(0,5,101); % Evaluation pts

f=@(x) x.^2./(1+x.^6)*sqrt(9/pi); % Measure wrt f(x)

c={@(x) x.^2./(1+x.^6),@(x) 0,@(x) -1}; % Schrodinger op

mu=diffMeas(c, f, xi, 0.1, ‘order’, 1); % epsilon=0.1, m=1

SpecSolve currently has capabilities for ODEs on real line & half-line,
integral operators, and discrete operators.



Eigenvalue Hunting

Example: Dirac operator.

Describes the motion of a relativistic electron.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential, coupled system on half-line:

DV =

(
1 + V (r) − d

dr + κ
r

d
dr + κ

r −1 + V (r)

)
.

Map to [−1, 1] and solve shifted linear systems using sparse spectral
methods.



Eigenvalue Hunting
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NB: Previous state-of-the-art achieves a few digits for a few excited states.



Programme: Foundations of Infinite-Dimensional
Spectral Computations

Q: What is possible in infinite-dimensional spectral computations?

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.1

⇒ Algorithms that realise the boundaries of what computers can achieve.

Have foundations for: spectra with error control, spectral type (pure
point, absolutely continuous, singularly continuous), Lebesgue measure
and fractal dimensions of spectra, discrete spectra, essential spectra,
eigenvectors + multiplicity, spectral radii, essential numerical ranges,
geometric features of spectrum (e.g. capacity), spectral gap problem, ...

1Holds regardless of model of computation (Turing, analog,...).



Simple example

Given a bounded Schrödinger operator on l2(N)

T (v) =


v1 1
1 v2 1

1 v3
. . .

. . .
. . .

 ,

can we compute the pure point spectrum (closure of set of eigenvalues)
from the potential v?

Answer: Best you can do (without further assumptions) is design a two
limit algorithm Γn2,n1 such that

lim
n2→∞

lim
n1→∞

Γn2,n1(v) = σpp(T (v)).



Structure of the Hierarchy

Spectra of 
Compact 

General Spectral 
Problem 

Spectral Measures 
(in this talk) Spectral Measures 

with reg. asms. 
(in this talk) 

Spectra of

Schrodinger operators

M.J. Colbrook. “The Foundations of Infinite-Dimensional Spectral
Computations.” ” PhD Diss. University of Cambridge, 2020.

J. Ben-Artzi, M.J. Colbrook, A.C. Hansen, O. Nevanlinna, M. Seidel.
“Computing Spectra – On the Solvability Complexity Index Hierarchy
and Towers of Algorithms.” arXiv preprint.



Concluding Remarks

DIAGONALISATION: General framework for computing spectral
measures of self-adjoint operators.

Convolution with RATIONAL KERNELS:

Can be evaluated using resolvent. ALL you need to be able to do is
solve linear systems and compute inner products.
High-order kernels ⇒ high-order convergence.
Generalises to normal operators for local spectral regions on curves.

Fast, local and parallelisable ⇒ State-of-the-art results for PDEs,
integral operators and discrete operators.

Forms part of a PROGRAMME for foundations of infinite-dimensional
spectral computations.

Ongoing and future work: foundations of computational PDEs,
foundations of (stable) neural networks, and computer-assisted proofs.
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For further papers in this program and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html

If you have further ideas or problems for collaboration, please get in touch!
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