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W. Arveson in 90s (leading operator theorist): “Unfortunately, there is a
dearth of literature on this basic problem, and there are no proven
techniques.”
Since then a lot of progress, but still much to be done!



Introduction Motivation

Set-up

In discrete setting, operator acting on l2(N):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , (Ax)j =
∑
k∈N

ajkxk .

In continuous setting, deal with PDEs, integral operators etc.

Finite Case Infinite Case
Eigenvalues ⇒ Spectrum

Sp(A) = {z ∈ C : A− zI not bounded invertible}
Eigenvectors ⇒ Spectral Measure (normal case)

Pseudospectrum
Spε(A) = {z ∈ C : ‖(A− zI )−1‖−1 ≤ ε}

Goal: compute spectral properties of the operator from matrix elements.



Introduction Motivation

Why study spectra numerically?

Appears in a huge number of applications (e.g. quantum mechanics).

Open problem for > 50 years whether we can compute spectra, even
for just discrete Schrödinger operators in 1D.

Main challenges:

1 Convergence: Avoiding spectral pollution/gaining error bounds.

2 Lack of methods and algorithms in infinite dimensions: Which
assumptions do we need on the operators and how do we compute the
spectral quantities?

Common theme: use the resolvent (A− zI )−1
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Introduction Motivation

Magneto-graphene
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Introduction Motivation

Can be turned into this!
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Figure: Guaranteed error bound of 10−5.



Pseudospectra (square + rectangular finite)

Efficient numerics and rich theory [Wright & 
Trefethen 2001 and 2002, Toh & Trefethen 1996, 
Trefethen & Embree 2005]

Quadratic methods (second order relative spectra)

For self-adjoint A [Levitin & Shargorodsky 2004, Shargorodsky 2000]:

Sp2 𝐴, 𝑃𝑛 = 𝑧 ∈ ℂ: 𝑃𝑛 𝐴 − 𝑧𝐼 2𝑃𝑛 not invertible

Some success with spectral pollution [Boulton & Levitin 2007] but 
doesn’t always converge (can be arbitrarily bad) [Shargorodsky 2012].

Spectral problem solved?

Three limit algorithm proposed by Hansen in 2011. First computes 
pseudospectrum using two limits and a quadratic method. Then 
requires a third limit to compute spectrum. Sharp without further 
assumptions [Ben-Artzi, C., Hansen, Nevanlinna, Seidel. Preprint 2019] 
and hence cannot be used in practice!

NEED ASSUMPTIONS

Directly deal with infinite dimensional operator

In some cases apply classical algorithms (some in other talks!); IQR [C. & Hansen 2019], IQL [Olver & Webb. Preprint 
2019], FEAST [Horning & Townsend. Preprint 2019],... Many use sparse spectral methods based on ultraspherical 
[Olver & Townsend 2013] or code such as Chebfun, ApproxFun,...



From eigenvalues to spectra: Using the resolvent norm

Recall for bounded operator T :

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}

Main message: the resolvent norm allows computation of spectra with
error control.



From eigenvalues to spectra

Definition 1 (Dispersion: off-diagonal decay)

Dispersion of A ∈ B(l2(N)) is bounded by the function f : N→ N if

cn = max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} → 0 as n→∞.

 



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x .
Controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z , Sp(A))) ∀z ∈ C.

g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have
well-conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x .
Controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z , Sp(A))) ∀z ∈ C.

g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have
well-conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .

Know f , g ⇒ can compute Sp with error control!1

1C., Roman, Hansen. PRL 2019



From eigenvalues to spectra

Idea: approximate locally via smallest singular value:

γn(z) = min{σ1(Pf (n)(A−zI )Pn), σ1(Pf (n)(A∗−zI )Pn)}+cn ↓ ‖(A−zI )−1‖−1

‖(A− zI )−1‖−1 ≤dist(z , Sp(A)) ≤ g−1(‖(A− zI )−1‖−1) ≤ g−1(γn(z)).

Local search routine computes Γn(A) and E (n, ·) with

Γn(A)→ Sp(A), dist(z ,Sp(A)) ≤ E (n, z), sup
z∈Γn(A)

E (n, z)→ 0



From eigenvalues to spectra

Laplacian on Penrose Tile

Aperiodic, no known method for analytic study.



From eigenvalues to spectra



From eigenvalues to spectra
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Computing spectral measures: Using the resolvent operator

Main message: the resolvent operator allows computation of spectral
measures - “diagonalisation.”



Computing spectral measures

If A normal, associated projection-valued measure EA s.t.

Ax =

∫
Sp(A)

λdEA(λ)x , ∀x ∈ D(A),

View this as diagonalisation - allows computation of functional
calculus, has interesting physics etc.

Only previous work deals with A tridiagonal Toeplitz + compact
[Olver and Webb. Preprint 2019].

Suppose, for simplicity, A self-adjoint...



Computing spectral measures

Idea: Use the formula

(A− zI )−1 − (A− zI )−1

2πi
=

∫
Sp(A)

P(Re(z)− λ, Im(z))dEA(λ),

P(x , ε) = επ−1/(x2 + ε2): convolution with Poisson kernel. Smoothed
version of measure.
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2πi
=

∫
Sp(A)

P(Re(z)− λ, Im(z))dEA(λ),

P(x , ε) = επ−1/(x2 + ε2): convolution with Poisson kernel. Smoothed
version of measure.



Computing spectral measures

Know f ⇒ can compute measure in one limit2!

This is through a rectangular least squares type problem.

2C. Preprint 2019



Computing spectral measures

Back to graphene

Beautiful fractal structure!
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Computing spectral measures

Easy to marry these algorithms with spectral methods

Current work with Andrew Horning and Alex Townsend: extending to
continuous operators.

For example, basis choice of L2(R) :

ρn(x) =
1√
π

(1 + ix)n

(1− ix)n+1
.

In 1D leads to banded representation of ODEs on real line, connections
with Fourier series etc. Look at Schrödinger operator

A = − d2

dx2
+ V (x),

with V bounded and real.



Computing spectral measures

Easy to marry these algorithms with spectral methods
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Computing spectral measures

Easy to marry these algorithms with spectral methods
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Computing spectral measures

Easy to marry these algorithms with spectral methods
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Conclusion

Challenges overcome:

Can now compute spectra of a large class of operators with error
control. The new algorithm is fast, local and parallelisable.

The resolvent can be use to compute spectral measures.

Connected work: Many other problems can also be tackled with the
resolvent; spectral type, fractal dimensions, ...

Future challenges:

Making these methods even faster - iterative methods for PDEs?

Computing embedded eigenvalues.

Coming soon: numerical package with resolvent based algorithms
for discrete and continuous problems (with Andrew Horning).
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