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W. Arveson in 90s (leading operator theorist): “Unfortunately, there is a
dearth of literature on this basic problem, and there are no proven
techniques.”

Since then a lot of progress, but still much to be done!




Set-up
In discrete setting, operator acting on /2(N):

di1 d12 a3

A ar1 ax» a ... A
| a3 asx axz ... |° (Ax); = E Ak X -
) . ) keN

In continuous setting, deal with PDEs, integral operators etc.

Finite Case Infinite Case

Eigenvalues = Spectrum
Sp(A) = {z € C: A— zl not bounded invertible}

Eigenvectors = Spectral Measure (normal case)

Pseudospectrum
Sp(A)={z€C: [[(A-z)!| " < e

Goal: compute spectral properties of the operator from matrix elements.



sy
Why study spectra numerically?

@ Appears in a huge number of applications (e.g. quantum mechanics).

@ Open problem for > 50 years whether we can compute spectra, even
for just discrete Schrodinger operators in 1D.

@ Main challenges:

@ Convergence: Avoiding spectral pollution/gaining error bounds.

@ Lack of methods and algorithms in infinite dimensions: Which
assumptions do we need on the operators and how do we compute the
spectral quantities?
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@ Appears in a huge number of applications (e.g. quantum mechanics).

@ Open problem for > 50 years whether we can compute spectra, even
for just discrete Schrodinger operators in 1D.

@ Main challenges:

@ Convergence: Avoiding spectral pollution/gaining error bounds.

@ Lack of methods and algorithms in infinite dimensions: Which
assumptions do we need on the operators and how do we compute the
spectral quantities?

Common theme: use the resolvent (A — z/)~! I
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Figure: Finite section.



Motivation
Can be turned into this!

sp(Qa(®)) (Algorithm)
T

Spectrum

Figure: Guaranteed error bound of 1075.



Pseudospectra (square + rectangular finite) Quadratic methods (second order relative spectra)

Efficient numerics and rich theory [Wright & For self-adjoint A [Levitin & Shargorodsky 2004, Shargorodsky 2000]:
Trefethen 2001 and 2002, Toh & Trefethen 1996,
Trefethen & Embree 2005] Sp,(4, P,) = {z € C: B,(A — zI)?P, not invertible}

Some success with spectral pollution [Boulton & Levitin 2007] but
/ doesn’t always converge (can be arbitrarily bad) [Shargorodsky 2012].

Spectral problem solved?

Three limit algorithm proposed by Hansen in 2011. First computes

pseudospectrum using two limits and a quadratic method. Then _
requires a third limit to compute spectrum. Sharp without further

assumptions [Ben-Artzi, C., Hansen, Nevanlinna, Seidel. Preprint 2019]

and hence cannot be used in practice!

Directly deal with infinite dimensional operator

In some cases apply classical algorithms (some in other talks!); IQR [C. & Hansen 2019], IQL [Olver & Webb. Preprint
2019], FEAST [Horning & Townsend. Preprint 2019],... Many use sparse spectral methods based on ultraspherical
[Olver & Townsend 2013] or code such as Chebfun, ApproxFun,...



From eigenvalues to spectra: Using the resolvent norm

Recall for bounded operator T:

ITI = sup{[I Tl - [lx]| = 1}

Main message: the resolvent norm allows computation of spectra with
error control.



From eigenvalues to spectra

Definition 1 (Dispersion: off-diagonal decay)
Dispersion of A € B(/2(N)) is bounded by the function f : N — N if

cn = max{||(I = Pr(n))APall, | PaA( — Pr(a)ll} = 0 as n— oo,

f(n)

Extra Info

Neglected Info



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0, 00) — [0, 00) with g(x) < x.
Controlled growth of the resolvent by g if

(A —z)71| 7t > g(dist(z,Sp(A))) Vze C.

@ g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Sp.(A)= |J Sp(A+B).
1Bll<e

o Self-adjoint and normal operators (A commutes with A*) have
well-conditioned spectral problems since

[(A—21)7Y| " = dist(z,Sp(A)), &(x) = x.



From eigenvalues to spectra

Definition 2 (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0, 00) — [0, 00) with g(x) < x.
Controlled growth of the resolvent by g if

(A —z)71| 7t > g(dist(z,Sp(A))) Vze C.

@ g is a measure of the conditioning of the problem of computing
Sp(A) through the formula

Sp.(A)= |J Sp(A+B).
1Bll<e

o Self-adjoint and normal operators (A commutes with A*) have
well-conditioned spectral problems since

[(A—21)7Y| " = dist(z,Sp(A)), &(x) = x.

Know f,g = can compute Sp with error control!! I

1C., Roman, Hansen. PRL 2019



From eigenvalues to spectra

Idea: approximate locally via smallest singular value:
Vn(2) = min{o1(Pr(n)(A—2l)Pn), 01(Pr(n)(A*=21)Pp)}+cn | [[(A—2l) |7

(A= zl) 1 <dist(z,Sp(A)) < g H(I(A = 21) 7)< g7 (7a(2)).
Local search routine computes I',(A) and E(n,-) with

,(A) — Sp(A), dist(z,Sp(A)) < E(n, z), sup E(n,z) — 0
zely(A)

n=1

o
o

Norm Estimate
o - N w ) w o ~ == o




From eigenvalues to spectra

Laplacian on Penrose Tile

Aperiodic, no known method for analytic study.




From eigenvalues to spectra
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From eigenvalues to spectra
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Computing spectral measures: Using the resolvent operator

Main message: the resolvent operator allows computation of spectral
measures - “diagonalisation.”



Computing spectral measures

o If A normal, associated projection-valued measure EA s.t.
Ax = / AEA(N)x,  V¥x € D(A),
Sp(A)

@ View this as diagonalisation - allows computation of functional
calculus, has interesting physics etc.

@ Only previous work deals with A tridiagonal Toeplitz + compact
[Olver and Webb. Preprint 2019].

Suppose, for simplicity, A self-adjoint...



Computing spectral measures

Idea: Use the formula
(A— zl)_1 —(A- ?l)_1 B
27i B

/ P(Re(z) — A\, Im(z))dEA(N),
Sp(A)

P(x,€) = en™1/(x? + €?): convolution with Poisson kernel. Smoothed
version of measure.

epsilon = 0.1, N = 10
0.3 T T T
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Computing spectral measures

Idea: Use the formula
(A— zl)_1 —(A- ?l)_1 B
27i B

/ P(Re(z) — A\, Im(z))dEA(N),
Sp(A)

P(x,€) = en™1/(x? + €?): convolution with Poisson kernel. Smoothed
version of measure.

epsilon = 0.051000, N = 1000
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Computing spectral measures

I Know f = can compute measure in one limit?! I

This is through a rectangular least squares type problem.
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2C. Preprint 2019



Back to graphene

Beautiful fractal structure!




Computing spectral measures

Easy to marry these algorithms with spectral methods

Current work with Andrew Horning and Alex Townsend: extending to
continuous operators.

For example, basis choice of L2(R):

1 (14x)"

(1= ix)n it

In 1D leads to banded representation of ODEs on real line, connections
with Fourier series etc. Look at Schrodinger operator

pn(x) =

d2

A=_-L
dx?

+ V(x),

with V bounded and real.



Computing spectral measures

Easy to marry these algorithms with spectral methods
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Computing spectral measures

Easy to marry these algorithms with spectral methods
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Easy to marry these algorithms with spectral methods
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Conclusion

Challenges overcome:

@ Can now compute spectra of a large class of operators with error
control. The new algorithm is fast, local and parallelisable.

@ The resolvent can be use to compute spectral measures.
Connected work: Many other problems can also be tackled with the
resolvent; spectral type, fractal dimensions, ...

Future challenges:

@ Making these methods even faster - iterative methods for PDEs?

o Computing embedded eigenvalues.

Coming soon: numerical package with resolvent based algorithms
for discrete and continuous problems (with Andrew Horning).
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