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1. INTRODUCTION 

Much work has been done in recent years on the scattering of waves in random media. 

Of particular importance are the moment equations, describing the statistical behavior of 
the wavefield, for most of which exact analytical solutions have not been found. Operator 
splitting has now been used for the fast and accurate numerical solution of the fourth 
moment [4] and may also be applied to the higher moments. The purpose of this note is to 
examine the accuracy of the method in terms of properties of the operators. 

Operator splitting is particularly suitable in this case: the operators appearing in the 
equations are easily integrated separately, while their sum is not, especially for strongly 
scattering media. It turns out that for the most important class of moments, the symmetric 
ones, the commutator of the operators is small when acting on the solution space, and the 
method is thus highly accurate. The results here are not precisely quantitative but illustrate 
the broad behavior of the solution. 

In Section 2 we give a brief description of the physical setting and moment equations, and 
the approximate solution used. The accuracy of this solution is examined in Section 3, and 
some motivation is given for the consideration of the commutativity of the operators. 

2. MOMENT EQUATIONS AND APPROXIMATE SOLUTIONS 

We describe briefly the mathematical and physical setting. Further details can be found 
in [4] and [7]. We will assume here that a monochromatic plane wave u, with wavenumber 
k, is incident on the half-space (z > 0) of a twodimensional medium (z, z). We suppose the 

medium has a refractive index n(t, z) =< n > +,~nr(z, z), where the angle-brackets denote 
an ensemble average, and nr is a Gaussian random variable with mean 0 and variance p. 
(Time-dependence may be ignored since in most applications n changes very slowly relative 
to the wave-speed.) Denote by f the normalized autocorrelation function of nr, so that 

f (0 = P(O/P(O), where 

P(E) = 11 < q(+, z’)n& + c, 2”) > d(z’ - 2”). 

Let L be the correlation length of the medium in the r-direction. We define the parameter 
I’ = k3p2p(0)L2, which describes the strength of the scattering. The wavelength is assumed 
to be significantly shorter than L, and scattering therefore takes place mainly in a forward 
z-direction. (With this assumption one obtains a parabolic equation for u which involves a 
randomly variable multiplication operator. The numerical propagation of this wavefield has 

long been carried out by operator splitting methods; see [6,3,5].) 
An important and much-studied class of problems which arises is that of the moments, 

which describe the averaged behavior of the wave and are governed by differential equations. 

In particular the fourth moment m(r) =< ZI~(Z)~~(Z)U~(Z)U~(Z) > (where ui(%) denotes 
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u(ti, L)) yields the scintillation index and spectrum of intensity fluctuations [7]. The fourth 
moment can be recast in terms of two transverse dimensions and obeys the equation: 

g = (A’ + B’)m 

where 

A’ = * a2 
-+@g 

8’ 
= -2r [l - !Jtt, $1, !?(<, 59 = f(E) + f(d 

l = @1- 22 - 23 + td)/SL, 7 = (21 - 22 + 2s - 24)/2L, and 2 = z/kL2. This has the 
initial condition m(<, q, 0) G 1. 

More generally, we consider the 2nth symmetric moments m, given by m(zi, . . . , zn, 

Yl,*** I Yn) =< ~1.. .u,,uit.. .u:, > where ui = u(z~),u~J = I, and zi, 5/i are co- 
ordinates on the z-axis. We can write the differential equation for such moments [l] as: 

$f = (A’ + B’).m, (2) 

where A’ 
1 n 

= zi_1 
x(4 - A:), 

and B’ = B’({ti}t {pi}) = -c 2 [p(zi - zj) + p(yi - yj) - 2p(li - yj)] . 
i,j=l 

Here, Ai = 6’2/&~, and Ai = 02/ayf, and again the initial condition is m i 1. In practice 
the dimension of this problem can always be reduced, by stationarity and other symmetries, 
as it has been for the fourth moment. 

In applications (see [4]) th e medium may typically be described, for example, by correla- 

tion functions of the form p(t) = e -e3 (Gaussian medium) or p(t) = (i + ]t])e’lfl (fourth 
order power law medium). In particular p is always even in [ and monotonic in IS]. We 
will also assume that p has continuous first and second derivatives. This excludes the class 
of ‘fractal’ media, which any discretization inevitably fails to describe properly. From these 
assumptions and the symmetries in equation (2) follow certain elementary identities: in 

particular m({zi},(Yi}) = m(P{+i}tQ{Yi}) = m(-{zi}t-{Yi}) = m'({Yi)t{G)) for any 
permutations P and Q. Furthermore, m is bounded and continuous. Where we need to 
think in terms of specific spaces we may restrict the moments to some compact set, with 
the square-integral norm. 
2.1. Formal solution and approximation. Denote by [X,Y] the commutator XY - 

YX of operators X and Y. The solution of (2) can be written formally as 

m(r + AZ) = exp [J I 
‘+*‘(A’ + B’)~z] .m(r) (3) 

since [Ai + B:, Jzy(A’ + B’)dr] = 0 for all I, zi, 22. (To see why this condition is sufficient, 

write the exponential as the series CrwO s , where C = J(A’ + B’), take derivatives on 
both sides of the equation, and compare with Eq. 2). We can write equation 3 as 

m(r + AZ) = exp(A + B).m(r) (4) 

where, in general, A and B depend on At, and here, in particular, A = Ar.A’, B = At.B’. 
We write the following approximation for (4): 

m(z + AZ) = exp(A).exp(B).m(r) (5) 



Operator Splitting for the Random Wave Moment Equations 89 

It is easy to show that this has error of order (AZ) ‘. However, expanding and comparing 
terms we see that the error is a function of the commutator (see e.g. [2]) and is in fact, to 
first order, [A, B]/2. In general the accuracy of operator-splitting depends far more crucially 
on [A, B] than on the simple quantity AZ. The main object of this note is to emphasize this 
point and to show that in our case the behavior of [A, B] leads to high accuracy. 

Unless [A, B] = 0, in which case (5) is exact, some subtlety is needed in characterizing 
[A, B] as “small.” The natural measure for bounded operators, [[[A, B]11/(211All /B[]), does 
not apply here, since we have an (unbounded) differential operator. On the other hand 
the requirement that II[A,B]II/(2IIABmll) b e small is too strong, since [A, B] may be small 

when acting on the solution space even if /[[A, B]II is large; this is the situation in our 

case. The quantity we will have in mind is I1[A,B]mll/(211ABmll). With the norm this is 
a global quantity, which reflects overall accuracy. There is another aspect to the accuracy: 
we are interested only in a particular small region of the solution, and we can examine the 
point-wise error there. 

The implementation of the numerical solution for the fourth moment using equation 5 is 
described in [4]. To summarize briefly: a finite region of the ([, q)-plane is first discretized. 
exp(A) has a simple explicit solution using the Fourier transform, which is approximated 
computationally with the Fast Fourier Transform, and exp(B) is already in explicit form. 
The boundary conditions, which depend on lower-order moments, are handled analytically. 
This computational scheme is fast and accurate up to very large scattering strength l?. On 
the other hand the discretized operators A and B have, respectively, purely imaginary and 
purely real eigenvalues; accurate, stable solutions for A+B become increasingly unattainable 

as I’ becomes large. 

3. RESULTS 

As indicated, when the operators A and B nearly commute, the approximation (5) is 
accurate. In general [A, B] itself will not be small, but in our caSe it can be shown that 
[A, B]m is small for all solutions m. Roughly speaking the values of m are clustered around 
a certain subset of coordinates; [A, B] m is zero on that set, and Il[A, B]mjl is therefore small. 

It may be illustrative to consider an extreme example, in which [A, B]P = 0 for a non- 
trivial projection P : Denote by Cp the operator PCP for any operator C, and by Q the 
complement 1 - P of P. Let A and B be operators such that A = AQ + P, B = BQ + P, 
where [AQ, Bg] is large. Note that exp(zP) = Q + exp(z)P. Now let fc be an initial con- 
dition. Then, if I,-, = Pfo, we have that [A, B]fO = 0. Also, f(z) = exp(J,(A + B)) = 

exP(Z(Ag +Bq))exp(2zP)fo = exp(flz)fc, and therefore f(z) = Pf(z) for all z. Thus for 
an initial condition in subspace range(P) the solution stays there and the splitting of A and 
B is exact; but if any component of the initial condition is in null(P) splitting may be very 
inaccurate. 

3.1. Operator-splitting for the symmetric moments. We consider again the mo- 
ments m =< 211.. .U,Uil.. . Ui, > whose equations are given by (2). Let X be the vector 
space R” x R”, and let $2 be the submanifold of elements of the form ({zi}, P{Zi}) for any 
permutation P, where i = 1,. . . n. Write dist(~, Sz) = infgEn 112- yll for + E X, where the 

norm is the usual L2-norm on R . 2n In practice Sl is the only region of the solution which 
is of interest. In the fourth moment, for example, m(Q) gives the scintillation index and 
spectrum of intensity fluctuations. We now have: 

LEMMA 1. m has effective support on 51 in the following sense: 

(1) Ifz=(w.. r%,Yl, . . . , 9,) then Irn(zJl falls to zero as dist(c, Q) increases. 
(2) lml reaches a maximum at every point on St with respect to some transverse direction. 

PROOF: 

(1) It is sufficient to consider = = (z’, 22,. . . ,~n,~l,... ,I,,) and to assume that 
dist(:, $2) = I+’ - 211 = o, say. Then for large Q, ~(2’) is statistically indepen- 
dent of all tl(ti)‘s, and m w < u(d) >< q1u212.. . lu,,12 >= 0 since < u >= 0 
everywhere. 
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(2) Again, it suffices to consider the neighborhood of a point 2 = (~1~12,. . . ,z,,q, 
. . . , 2,) where zl is far from 22,. . . ,t,. Now m is real on R. Let ml, rn2 be 

the real and imaginary parts of m respectively, so that Irnl = J-z. If 2’ = 
(zI+<,z~ ,..., z,,,tl,... 

< u(+*(z1 + 6) >< 

drnJa< = 0. Thus at g, aImI/@ = 

We now have the following: 

LEMMA 2. [A, B] = 0 on R, i.e. ([A, B]f)(g) = 0 for ali 2 in R. 

PROOF: First, by the symmetry B({Zi}, {yi}) = B({yi}, {ti}), g = e = 0 on R and 
838 
lq = @ on Q for all i. Now, 

s 

[A, B]f = (;;)’ -(~[‘hB]f-~[&,Blf) 
i i 

and 

on Q, and similarly for [A:, B]f. So [A, B]f(a) = 0 for all f. 

An analogous calculation must be made for the fourth moment whose simplified equation, 
given by equation (l), is the form used in [4] and elsewhere. (Here R corresponds exactly 
to the axes < = 0,~ = 0): 

LEMMA 3. [A, B]m = 0 along the {, 7 axes. 

PROOF: With A, B as given, [A, B]m = Bc,,m + Bcm,, + B,,m( (where the subscripts 
denote differentiation). We will consider the axis 7 = 0: 

B is constant along this axis, so B, = 0 there. 
B is also symmetrical about the axis, i.e., 
B is even in t, so that BE = 0. 

Similarly, since p is an even function, its derivative is odd, so B, is even in [, and thus 

Bcs = 0. 

Since [A, B] acts locally, we also have [A, B]m R 0 for regions bounded away from Q. It 

follows that [A, B] is small on the solution space, as required. 
This result can be replaced by a weaker, but more precise statement: the local, step-wise 

truncation error on R is zero to second order in At. In addition many other terms appearing 
in the expansion of the error disappear on Q. For example the functions B[A, B]m, AB2m, 

and all terms left-multiplied by [A, B] vanish there. Consequently the nonzero factors of 

third- and higher-order terms in AZ become relatively small, a fact borne out by numerical 
convergence tests. 
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