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Abstract

This paper considers the problem of forecasting coastline position in response to a fluctuating wave climate. Statistical

moments are introduced as a method for describing shoreline evolution and variability. Equations are derived and solved for the

statistical moments of shoreline position. These equations describe analytically the time-dependent ensemble averaged solution,

and its dependence on wave climate without the need for computationally intensive Monte-Carlo simulations. The average is

understood to be taken over the ensemble of possible wave sequences. An example application, based on a time series of

nearshore synthetic wave conditions, is used to illustrate how the technique might be used in practice to account for both short-

and long-term variability in wave climate.

D 2004 Published by Elsevier B.V.
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1. Introduction

Changes in shoreline morphology are the result of

physical processes with a range of temporal and spatial

scales. From a practical perspective, there is interest in

beach response to distinct storm events (short-term)

and in coastal evolution over some years and decades

(long-term). Long-term changes trace the general trend

in morphological variations over a time span approx-

imately coinciding with the period of design life for

coastal structures (DeVriend et al., 1993). Storm events

can lead to large but often transient deformations of the
0378-3839/$ - see front matter D 2004 Published by Elsevier B.V.

doi:10.1016/j.coastaleng.2004.07.002

* Corresponding author.

E-mail address: dominic.reeve@plymouth.ac.uk

(D.E. Reeve).
beach, with the effects being smoothed over a period of

months. From a long-term perspective, the morpho-

logical response to storms is analogous to dnoiseT about
the long-term trend, caused by the fluctuating morpho-

logical forcing of the waves, tides and surges.

Estimation of long-term shoreline movement and its

variability remains a difficult open problem.

The ability to predict changes in coastal morphol-

ogy is hampered by a lack of observational data, and

by the prohibitive computational complexity of

applying deterministic dynamical equations for fluid

flow and sediment transport over even relatively short

periods of a single storm (De Vriend et al., 1993).

Therefore, much research has focused on simplified

models for longshore or cross-shore transport. An

equation governing the longshore transport of sand on
(2004) 661–673
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a beach was derived by Pelnard-Considere (1956).

This has been subsequently extended to account for

variations in wave direction and sediment transport

along the shore (Larson et al., 1997). At its simplest,

the equation for the position of a single chosen depth

contour, y(x,t), from a fixed datum line takes the form

of a linear diffusion equation with constant coeffi-

cient, and has gained the epithet of the done-line
equationT. This model has proved remarkably robust,

and over the past decade has been used widely,

typically to examine shoreline changes over periods of

months or years (see Hanson and Kraus, 1989;

Kamphuis, 1991; Larson et al., 1997).

In practical applications, the one-line model has

been used with sequences of forcing conditions that are

considered representative of the conditions likely to

occur in the future. Wave conditions are required to

drive a one-line model and these are often available

only as summary statistics. These conditions might be

monthly average conditions determined from several

years of data or, synthetic time sequences composed by

combining fragments of records together. LeMehaute

and Soldate (1979) addressed the problem of using

wave statistics to drive the one-line model and

proposed a procedure for constructing representative

wave conditions. A more rigorous approach is to use

Monte Carlo simulations. Vrijling and Meyer (1992)

applied the one-line model to perform Monte Carlo

simulations of the shoreline position near a port, while

Dong and Chen (1999) included random temporal

variability in a Monte Carlo study based on a one-line

model modified to account for some cross-shore

sediment exchanges. In both cases, assumptions were

made about the statistics of the forcing conditions that

restrict the application of the techniques to more

general situations. An alternative is to use a formal

averaging procedure and solve the resulting equation

for the mean shoreline position. Reeve and Fleming

(1997) used a time-averaged form of the one-line

model and historical shoreline positions to infer the

distribution of time-averaged sediment sources and

thence to estimate likely future mean position of the

shoreline. While providing an indication of the typical

position of a beach and its sensitivity to variations in the

boundary conditions, none of these approaches pro-

vides a direct method for determining the mean and

variance of the shoreline in the presence of fluctuating

wave conditions.
In this paper, we derive solutions to the equations

for the first and second moments of the shoreline

position (i.e., the coastal plan shape), as governed by

the one-line equation. Specifically, we formulate

equations for the ensemble average shoreline position

(or coastal plan shape) and its variance. General

solutions are obtained for forcing conditions with

arbitrary probability density functions and temporal

autocorrelation function. The solution expresses the

spatial variability of the coastal plan shape explicitly

with time in terms of the statistics of the underlying

wave climate. An illustration of how the methods can

be applied in practice is given, together with some

results for specific cases.

The derivation of the equations is given in Section

2, together with their general solutions for the case of

the evolution of an arbitrary initial coastline. Solutions

for a specific case of beach nourishment are presented

in Section 2.4. In Section 3, the steps needed to apply

the method to practical situations are illustrated using

hindcast wave data covering a period of almost 30

years. A discussion of the results and conclusions are

contained in Section 4.
2. Governing equations and moments

A longshore current is generated by oblique

breaking waves; this current can generate longshore

transport of sediment along a beach. However,

quantitative estimation of sediment transport rates is

extremely difficult. Transport rates may be inferred

from changes in beach volumes derived from ground

or aerial surveys. Direct measurement of longshore

transport has been attempted using a variety of

techniques, such as deposition of a tracer material or

installation of traps. Equations proposed for calculat-

ing longshore transport have been based on a number

of different concepts, including: the energy flux

approach, the stream power approach, dimensional

analysis, and force-balance methods.

The energy flux approach is based on the principal

that the longshore immersed weight sediment trans-

port rate, Ils, is proportional to longshore wave power

per unit length of beach, Pls. The most widely used

formula in this category is commonly known as the

CERC equation (U.S. Army Corps of Engineers,

1984). The equation was derived for sand beaches and
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has been developed over a number of years. The

formula is intended to include both bedload and

suspended load and is usually given in the form of:

Ils ¼ eVPls ð1Þ

where Pls is the longshore component of wave energy

flux (sometimes referred to as wave power) per unit

length of beach, given by:

Pls ¼ ECg

� �
b
sinhbcoshb ð2Þ

and where eV is a dimensionless empirically derived

coefficient. The volumetric transport rate, Qls, is

related to Ils by:

Qls ¼
Ils

C
ð3Þ

where

C ¼ qs � qwð Þgk ð4Þ

and k is the porosity. A suggested value for eV using

Hs is 0.39 for sand sized sediments (U.S. Army Corps

of Engineers, 1984). More recently, Schoonees and

Theron (1994) suggested a value of eV=0.41 for sand

with D50b1 mm based on fitting an energy flux

expression to observational data. Bailard (1984) used

the concept of stream power to derive an equation for

eV (depending on sediment fall velocity, bed velocity

and breaking wave angle), which could be used in the

CERC formula. He concluded that this modification

of the eV coefficient extended the range of application

of the CERC equation, which can also be applied to a

range of sediment sizes due to the dependence on fall

velocity.
Fig. 1. Definition of terms f
Kamphuis (1991) developed a formula for long-

shore transport for use on sand beaches, derived from

mathematical relationships between groups of dimen-

sionless variables, rather than from physical princi-

ples. For a typical sand, the formula may be written as

an annual transport rate (Qls) with units of m3/year,

given by:

Qls ¼ 6:4� 104H2
sbT

1:5
p tanbð Þ0:75D�0:25

50 sin2hbð Þ0:6

ð5Þ

Eq. (5) was found to be valid for data obtained in

both laboratory and field conditions.

Equations such as Eq. (3) or (5) may be used in the

one-line model of beach plan shape evolution. The

starting point for this study is the extended one-line

equation for the evolution of the beach plan shape

presented in Larson et al. (1997, Eq. (9)):

B

Bx
aKð Þ þ By

Bt
¼ K

B
2y

Bx2
þ BK

Bx

By

Bt
ð6Þ

where y(x, t) denotes the beach position in relation to

a fixed datum line set parallel to the trend of the

shoreline, K is a measure of the sand transport rate

along the beach (Qls divided by the depth of closure)

and a is the angle of breaking wave crests relative to

the datum line. It is noted that this equation is

applicable strictly only for cases where the wave

crests make a small angle with the shoreline contour.

Fig. 1 illustrates the definition of terms.

In general, K and a will be functions of longshore

distance and time (x and t, respectively). For given

values of K and a Eq. (6) may be solved numerically

to find y. In practice, it can be more usual to have K

and a as functions of time at a point taken to be
or the one-line model.



D.E. Reeve, M. Spivack / Coastal Engineering 51 (2004) 661–673664
representative of the region of beach under consid-

eration. This analysis, therefore, is restricted to the

case where K and a vary in time only, but in a random

fashion. In this case Eq. (6) becomes:

By

Bt
¼ K tð Þ B

2y

Bx2
ð7Þ

If we treat the shoreline position as a randomly

varying function (or stochastic variable) then we may

characterize it by, for example, its mean and variance

over time at a fixed point along the shore. We may

also be interested to find out how the mean and

variance varies with position along the shoreline. The

mean and variance are the first and second central

moments of a distribution. More generally, the

variance may be determined from the first and second

moments. In this paper, we consider the first and

second moments only. In order to derive expressions

for the moments of shoreline position it is necessary to

assume knowledge of the statistical variation of K;

this is of course also required in approaches using

Monte Carlo simulations. We consider K to be a

realization of an ensemble and so may be written as

the sum of its ensemble average and a deviation from

this average:

K ¼ hKi þ d tð Þ ð8Þ

where the fluctuating component, d(t), has mean zero.

In what follows we also assume that d(t) is statistically
stationary and has known statistics. The assumption of

stationarity is not crucial but simplifies the analysis

slightly. K is thus treated as a stochastic variable. In

turn, this means that through Eq. (7) the shoreline

position is also a stochastic variable. The chosen

model (Eq. (8)) allows us to describe cases where K is

not statistically stationary, specifically, where the

mean value of K is a function of time. That is we

write hKi=K0+j(t), where K0 is a reference value that

could be taken as the value used in a deterministic

application of Eq. (7) and j(t) accounts for determin-

istic seasonal or annual cycles, or longer term

departures from the reference value. For practical

applications K0 would be determined as the ‘best

estimate’ of the value of K for a coastal region, while

j(t) would describe, for example, changes in this best

estimate arising from models of climate change

impacts on wave heights.
In what follows we use the angled brackets to

denote an ensemble average; the average taken over

all possible realizations of the random function K. The

uncertainties in wave climate, sediment distribution

and other key variables are then implicitly represented

in the stochastic diffusion coefficient. The relationship

may be made explicit by adopting a specific along-

shore sediment transport equation. An example of

how such an approach can be implemented is given in

Section 3.

As an illustrative example we consider the case in

which d is well represented by a Gaussian distribu-

tion. Other distributions such as exponential or

uniform can be treated similarly. However, on purely

physical considerations K must remain bounded and,

because of the small angle assumption, K must be

positive. Thus, a cut-off is introduced and the

corresponding truncated Gaussian distribution can be

written

C0

r0

ffiffiffiffiffiffi
2p

p
Z e

�e
exp � d2=2r2

0

� �
dd ð9Þ

where the cut-off e is a positive number smaller than

K0, and r0 is the standard deviation of d. Here C0 is a

normalization constant given by

C0 ¼ 2= erf
e

r0

ffiffiffi
2

p
�
� sgn � eð Þerf � e

r0

ffiffiffi
2

p
�� ���
ð10Þ

where erf(x) is the error function (see Abramowitz and

Stegun, 1964).

In what follows we will require the autocorrelation

function of d, denoted by q, and defined by

q tV� tWð Þ ¼ hd tVð Þd tVð Þi ð11Þ

where tV and tU vary independently over the values of

t being considered. The variance of d(t) is, therefore,
given by q(0) and will be denoted by q0. We will also

need the time-integral of d

f tð Þ ¼
Z t

0

d tVð Þdt ð12Þ



D.E. Reeve, M. Spivack / Coastal Engineering 51 (2004) 661–673 665
It may also be shown (see Papoulis, 1987) that f(t)

also obeys a Gaussian distribution with cut-off, which

can be written:

f tð Þ ¼ c

r
ffiffiffiffiffiffi
2p

p
Z te

�te
exp � F2=2r2
� �

df ð13Þ

where r(t) is the standard deviation of f, which varies

with time so that f is not stationary, and c is again a

normalization constant, and that

r2 tð Þ ¼
	 Z t

0

Z t

0

d tVð Þd tWð ÞdtVdtW



¼
Z t

0

Z t

0

q tV� tWð ÞdtVdtW ð14Þ

where the last expression follows because the order of

integrating and averaging may be reversed. For many

cases of practical interest the integral in Eq. (14) can

be evaluated explicitly as shown in the following

sections.

2.1. First moment

In this section, we derive and solve an equation for

the first moment, which describes the mean shoreline

position as a function of time. The first moment of the

shoreline position is a function of time and longshore

position, and is defined as

m1 x; tð Þ ¼ hy x; tð Þi ð15Þ

It is convenient to work with the spatial Fourier

transform of the shoreline position. Accordingly, we

denote the Fourier transform of the first moment by

M1 and write

M1 m; tð Þ ¼ hŷy m; tð Þi ð16Þ

where ŷy (m, t) is the Fourier transform of y with respect

to x and m is the transform variable. Given the

statistics of K we will obtain an expression for m1 as a

function of time. Taking Fourier transforms of each

side of Eq. (7) we get

Bŷy

Bt
¼ � m2Kŷy ð17Þ
This has the following solution over any time step

[t0, t1]:

ŷy m; tð Þ ¼ exp � m2
Z t

t0

K tVð ÞdtV
�
ŷy m; t0ð Þ

�
ð18Þ

Without loss of generality we set t0=0. Taking the

ensemble average of Eq. (18) and substituting Eq.

(8) into the result yields

M1 m; yð Þ ¼ exp

�
� m2

�
tK0 þ

Z t

0

j tVð ÞdtV
��

�
	
exp½ � m2f tð Þ�



ŷy m; 0ð Þ ð19Þ

In this equation, the only random part on the right-

hand side is the term hexp[�m2f(t)]i. The ensemble

average is found by integrating the product of the

quantity in the angle brackets and the density function

of the stochastic variable f(t) over all possible values.

From Eq. (13) this is given by	
exp � v2F tð Þ
� �


¼ c

r
ffiffiffi
p

p
Z te

�te
exp � m2F � F2

r2

� �
dF

ð20Þ
Eq. (20) can be written	
exp½ � v2F tð Þ�




¼ c

r
ffiffiffi
p

p
Z te

�te
exp

"
�
 

F

r
þ v2r

2

!2

þ v2r2

4

#
dF

ð21Þ
The integral can be performed analytically to give,

	
exp½�v2F tð Þ�



¼ c

2
ev

4r2=4 erf AþBð Þ�erf A�Bð Þ½ �

ð22Þ

where A=m2r/2 and B=te/r. Substitution of Eq. (22)

into Eq. (19) yields the transform of the first moment

as required:

M1 v; tð Þ ¼ c

2
e
�v2 tK0þ

R t

0
j tVð ÞdtV

� �
þv4r2=4

� erf Aþ Bð Þ � erf A� Bð Þ½ �ŷy v; 0ð Þ ð23Þ
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The first moment m1 can be obtained from this by

performing the inverse Fourier transform. The coef-

ficients A, B, and therefore m1, depend on the

statistics of the coefficient K via the quantity r(t).
However, the behavior at large v must be considered

to ensure that M1 is bounded so that its inverse

transform exists and can be computed. For further

details, including the demonstration that the expres-

sion for M1 is bounded for large m, the reader is

referred to Spivack and Reeve (2003).

While the underlying equations such as Eq. (7) are

useful in simulating changes in beach plan shapes and

examining qualitatively the dependence on K, the first

moment allows us to look at the evolution of the mean

plan shape, examine underlying persistent effects and

quantify their dependence on the statistics of K.

Equally important, however, is the spatial variabi-

lity, and the variation about this mean. This is given by

the second moment, and is important in bworst caseQ
estimation.

2.2. Second moment

The second moment m2 is defined to be the spatial

autocorrelation function of

m2 x1; x2; tð Þ ¼ hy x1; tð Þy x2; tð Þi ð24Þ

where x1 and x2 are any two points. Note that the

second moment is a function of three variables. From

the equations above, we can form and solve an exact

equation for the second moment as follows.

Define the two-dimensional Fourier transform M2

of m2, with respect to x1, x2, so that say

M2 m;x; tð Þ ¼
Z Z

hy x1; tð Þy x2; tð Þiei mx1þxx2ð Þdx1dx2

ð25Þ
The angled brackets can be interchanged with the

integrations, so that

M2 v;x; tð Þ

¼
*Z Z

y x1tð Þy x2tð Þei vx1þxx2ð Þdx1dx2

+

¼
*Z

y x1tð Þeivx1dx1
Z

y x2; tð Þeixx2dx2

+

¼ hŷy v; tð Þŷy x; tð Þi ð26Þ
This average can be evaluated explicitly in the

following way. Substituting Eqs. (18) and (8) into Eq.

(26) we obtain

M2 v;x; tð Þ ¼
*
e
� v2þx2ð Þ tK0þ

R t

0
j tVð ÞdtV

n o

� e
� v2þx2ð Þ

R t

0
d tVð ÞdtV

ŷy v; 0ð Þŷy x; 0ð Þ
+

¼ ŷy v; 0ð Þŷy x; 0ð Þe
� v2þx2ð Þ tK0þ

R t

0
j tVð ÞdtV

n o

�
e� v2þx2½ �f tð Þ� ð27Þ

The last term on the right is similar to the

expression arising for the first moment (Eq. (20)),

and the analysis carries through with m2 replaced by

(v2+x2) in Eqs. (20) to (25). For brevity, we set

j(t)=0 and therefore obtain the solution, written in

terms of error functions, as

M2 m;x; tð Þ ¼ c

2
e� m2þx2ð ÞK0te m2þx2ð Þ2r2=4 erf C þ Bð Þ½

� erf C � Bð Þ�ŷy m; 0ð Þŷy x; 0ð Þ ð28Þ

where C=(m2+x2)r/2 and again B=te/r. As in the case
of M1 the dependence on the statistics of K is

contained in the quantity r(t). The second moment

can then be found for any time t as the two-

dimensional inverse Fourier transform of M2.

2.3. Variance of shoreline position

Our aim is to develop a set of equations to examine

the mean spatial pattern and to quantify the departure

of the typical beach plan shape from this mean. This

departure is expressed as the variance of y�m1, which

can be expanded and expressed in terms of the second

moment as follows:

h y� m1ð Þ2i ¼ hy2i � 2hy x; tð Þim1 þ m2
1

¼ hy2i � 2m2
1 þ m2

1 ð29Þ
so that

h y x; tð Þ � m1 x; tð Þð Þ2i ¼ m2 x; x; tð Þ � m2
1 x; tð Þ ð30Þ

Note that the evolution of the variance cannot be

determined directly but must be evaluated from the

second and first moments by setting x1=x2ux.



Fig. 2. Gaussian and exponential autocorrelation functions, both

with a correlation time of 10.

Fig. 3. Realizations of a stochastic process with Gaussian statistics

and Gaussian autocorrelation function (lower curve), and exponen

tial autocorrelation function (upper curve).
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2.4. Variance of morphological forcing

The random component in the morphological

forcing is d(t). The statistical properties of the

evolving shoreline are determined by the statistical

characteristics of the forcing. In particular, both the

distribution function and the temporal autocorrelation

function appear explicitly (namely, Eqs. (14) and

(20)). In principle, the distribution and autocorrelation

functions can be determined empirically and the

expressions for the shoreline moments evaluated

numerically. Alternately, measurements may be used

to determine the parameters that give a best fit to an

analytical function. Two such analytical forms are the

Gaussian and exponential autocorrelation functions,

given respectively by

q gð Þ ¼ q0e
�ðg

T
Þ2 ð31Þ

and

q gð Þ ¼ q0e
�jg

T
j ð32Þ

where g=tV�tU and q0 is the mean square of the

fluctuating component of d. The typical rate of

variation of the coefficient K is characterized by the
correlation time scale, T. Fig. 2 illustrates the two

autocorrelation functions.

A diffusion coefficient with variations obeying a

Gaussian correlation function will exhibit irregular-

ities that are very closely grouped about the single

scale, T. In contrast, the exponential correlation

function falls off to zero more slowly and so

considerable contributions to the fluctuations in the

diffusion coefficient come from a wide range of

temporal scales. Fig. 3a and b shows realizations of a

stochastic variable that have a Gaussian and expo-

nential autocorrelation function, respectively. In both

cases, the variables are Gaussian distributed.

As mentioned above, if the initial coastline config-

uration depends on longshore position then the

statistics of y (x, t) will not be stationary with respect

to either x or t. The first and second moment solutions

are valid for an arbitrary initial coastline configuration.

In what follows, we will use the autocorrelation

function (32). In this case the variance in Eq. (14)

may be found in closed analytical form to be:

r2 tð Þ ¼ 2q0 T t � 2Tð Þ þ Te�t=T t þ 2Tð Þ
��

ð33Þ

For any given initial coastline position, inserting

Eq. (33) into Eq. (22) or (23), and Eq. (28) yields
-
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expressions for the transforms of the first and second

moments. The moments themselves or the variance

can then be obtained numerically using inverse fast

Fourier transforms.

Examples for an idealized situation with a Gaus-

sian autocorrelation function have been presented in

Spivack and Reeve (2003). Here, we consider the

following situation. The initial condition is a Gaus-

sian-shaped nourishment on an otherwise plane beach

line. The nourishment has a half-width of 500 m and a

peak extent of 50 m at x=1000. We take K0=267 m2/

year, j(t)=0, d(t) to be Gaussian distributed with cut-

off at 15 m2/year, with mean=0 and standard devia-

tion=457 m2/year. Fig. 4 shows the computed beach

plan shape at a time t=0.1 T after nourishment, where

T is the dcorrelation timeT of the fluctuations. For

comparison, the solution for the case where no

fluctuations in forcing are present is also shown (see

Carslaw and Jaeger, 1959).

2.5. Interpretation

The form of the analytical solutions for the first

and second moments of beach position (Eqs. (23) and

(28)) demonstrates that one is unable to obtain the

ensemble average results by simply putting a repre-

sentative value of K into Eq. (7). Fluctuations in the

forcing have a cumulative effect over time that must

be taken into account in order to get accurate results.
Fig. 4. Simple line graph for Gaussian nourishment example with

and without fluctuations with an exponential ACF.
The cumulative effect depends on the probability

density function and autocorrelation properties of the

fluctuations. The probability density function of K

reflects the distribution of storm intensity, and the

shape of the autocorrelation function will be deter-

mined by the duration of individual storms and the

groupiness of sequences of storms. The mean effect of

fluctuations in forcing is to accelerate the movement

of beach material along the shore relative to the case

of no fluctuations. Why? The effect of storms (during

which KNK0) shortly after nourishment has a propor-

tionately greater effect than later on as the transport is

driven by the second derivative of the plan shape. The

transport will be greater immediately after nourish-

ment when the shoreline curvature is larger than in the

later stages of evolution. On average, this leads to

accelerated diffusion of the nourishment material, in

comparison to the case where no variations in wave

climate are present.
3. Application and results

In this section, we demonstrate the application of

these concepts to a situation that is closer to what

might be found in practice. Hourly hindcast wave

conditions for a location on the southeast coast of the

United Kingdom (UK) have been obtained for the

period February 1, 1971 to May 31, 1998. Waves

were hindcast in deep water using the surface winds

output from a global meteorological model, and

transformed inshore to a fixed depth contour using a

spectral refraction model. The transformations were

done using a fixed water level corresponding to Mean

High Water Spring tide. The resulting time series of

wave conditions provided estimates of mean Hs, Tz

and wave direction at hourly intervals, a total of just

under 250,000 data values.

Time series of the diffusion coefficient K were then

calculated assuming a water depth of 6 m, a beach

slope of 1/50, a depth of closure of 10 m with the

CERC formula. This formula was chosen so that the

transport is a function of wave angle and height only.

This simplifies the statistical dependency but eases the

interpretation of results. The resulting time series was

analyzed to determine the interannual behavior of

some basic statistics, an empirical probability density

function and the autocorrelation function.



Fig. 6. Autocorrelation function of the detrended series of K.
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Fig. 5 shows the annual average values of K over

the period 1971 to 1998, calculated on the basis of

calendar years. The dashed line shows the best-fit

linear trend line, which is �12,980+6.67t, where t is

in years and runs from 1971 to 1998. A small but

well-defined annual signature is also evident in the

autocorrelation function calculated for the whole

series from the detrended time series of K (see Fig. 6).

The amplitude and phase of regular variations may

be found by Fourier analysis. Here, given its relatively

small amplitude we do not remove the annual cycle

from the series. Referring to Eq. (8) we can see that in

this case we will write j(t)=�12,980+6.67t. Sub-

tracting this from the raw time series leaves the

residual, random component. This has a mean value

of K0=267 m2/year. Removing this mean value yields

the residual, random component d(t). Fig. 7 shows the

empirical density function of the random component,

d(t). This has a mean of zero and a standard deviation

of 456 m2/year.

The shape of this density function is similar to a

truncated Gaussian, although the empirical distribu-

tion has a large dtailT. For the purpose of our

illustration we take the density function to have the

form 0.6e�(K+300)/300. This function is plotted in Fig. 7

as the dashed line. A comparison with the mean and
Fig. 7. Empirical probability density function of the detrended time

series of K. Also shown is the fitted exponential curve which has an

e-folding scale of 180 m2/year.

1990

Fig. 5. Annual mean values of K computed over calendar years for

the period 1972 to 1998. K is quoted in units of m2/year. The linear

trend has a slope of 6.6 m2/year and has been determined by least

squares fitting to the annual means.
standard deviation of the empirical distribution shows

that this choice is approximate, and further refinement

of the statistical distribution model is required to

capture the long tail in the empirical distribution.

Finally, the autocorrelation function of d(t) was

calculated and is shown in Fig. 8a, b, c and d at scales



Fig. 8. Autocorrelation function of the detrended time series of K. (a) Over ~1 year, (b) ~1 month, and (c) ~1 week, and (d) 4 days. In (d) the

fitted exponential curve, with an e-folding time of 1 day, is shown as the dashed line.
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varying from a year to days. The plots illustrate the rich

nature of the sediment transport rate behavior over

time.

Here, we approximate the autocorrelation function

by an exponential function:

q gð Þ ¼ e�
g
24 ð34Þ

which is shown by the dashed line in Fig. 8d. Note that

g and the time scale (Eq. (20)) are in units of hours.
Results were computed for the same beach

nourishment situation as described in Section 2.4

but with K0, j(t) and d(t) as described above

and with d(t) having a standard deviation equal to

456 m/year1/2. Results are shown in Fig. 9 for the

fluctuating non-stationary wave climate and for

the case of perpetual wave conditions giving K

equal to its average value over the period 1971 to

1998.



Fig. 9. Results using exponential fit to pdf and acf of drealT data.
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Fig. 9a shows the evolution of a Gaussian-shaped

nourishment over time in the case where the coastal

coefficient is constant in time and set equal to the

long-term average (267 m2/year), and no fluctuations
are present. Fig. 9b shows the evolution of the same

initial beach configuration but in the presence of

fluctuating conditions and long-term trend in the

longshore transport.
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4. Conclusions

In this paper, we have considered the problem of

forecasting coastline position in response to a

fluctuating wave climate. Statistical moments have

been introduced as a method for describing shoreline

evolution and variability. The basis for the theoretical

development has been the small wave angle form of

the one-line equation. Equations governing the

evolution of the first and second moments of beach

position in time and alongshore directions have been

derived. Solutions of these equations have been

presented for some specific cases. For more general

cases, solutions can be obtained using numerical

integration techniques. The solutions describe the

time-dependent ensemble average beach position,

and its dependence on wave climate without the need

for computationally intensive Monte-Carlo simula-

tions. An example application, based on a time series

of nearshore synthetic wave conditions, has been

presented to illustrate how the technique might be

used in practice to account for both short- and long-

term variability in wave climate. The solutions for the

moments of shoreline position provide a rigorous

basis on which to examine long-term shoreline

evolution from a stochastic perspective.

Several important points arise from the theoretical

development and numerical solutions. These include:

! Solutions for the mean and variance of shoreline

position have been found for idealized cases, and a

more general approach has been illustrated by

application to hindcast wave data.

! The solutions demonstrate that the mean shoreline

position is not obtained by inserting mean forcing

conditions into the governing equation. Fluctua-

tions in the forcing conditions have a cumulative

effect on the evolution of the shoreline; the nature

of this effect is determined by the distribution

function and the autocorrelation properties of the

fluctuations.

! The solutions also provide an explanation of why

beach nourishment is often observed to spread at a

faster rate than predicted using representative

values of coastal coefficient, K (or wave height

and period) in a deterministic one-line model.

! Cases where conditions are not statistically sta-

tionary, such as in climate change scenarios, are
amenable to analysis by the methods described, as

demonstrated by an example application.

! The methods described can be used to provide a

rigorous and independent check on shoreline

position statistics computed by Monte Carlo

models.

! The moment equation solutions complement

Monte Carlo simulation because they allow

quantitative analysis of the dependence of shore-

line position on wave climate.

Research on developing the moment equation

approach to the problem of predicting long-term

coastal morphological changes is ongoing. The

solution of the equations for more complicated

situations, such as shoreline change near groynes, is

the subject of current work by the authors.
List of symbols

a angle of breaking wave crests relative to datum

line

b angle between horizontal and beach

d randomly fluctuating component of the coastal

diffusion coefficient (m2/year)

e cut-off value of coastal diffusion coefficient

eV coefficient relating sediment transport to the

longshore component of wave energy flux

g time lag (=tV�tU)

j(t) deterministic time varying component of K

k Porosity

h angle between the wave crest and the shoreline

m, x spatial frequencies (Fourier transform variables)

q(tV�tU) temporal autocorrelation function of d
q0 value of q at zero time lag (tV�tU=0)

qs density of beach sediment

qw density of sea water

r(t) standard deviation of f(t), the integral of d(tV)
over the interval tV=0 to t

r0 standard deviation of d
Cg wave group velocity

E wave energy

erf error function

g acceleration due to gravity

Hs significant wave height

Hsb significant wave height at breaking

Ils longshore immersed weight sediment transport

rate
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K beach diffusion parameter

K0 best estimate or reference value of K

M1 Fourier transform of m1

M2 Fourier transform of m2

m1 first moment of shoreline position

m2 second moment of shoreline position

Pls longshore component of wave energy flux per

unit length of beach

Qls volumetric transport rate

Tp peak wave period

Tz wave mean zero up-crossing period

T temporal correlation scale
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