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Summary. An improved finite difference scheme is applied to simulate wave 
propagation in the vicinity of a slot normal to the surface of an elastic half 
space. It provides visualization of the scattered wave pattern at a sequence 
of time steps, and also the components of displacement as functions of time 
at a series of observation points. 

After being hit by a normally incident plane P pulse, the slot oscillates 
with two main cycles and two shear-compressional pairs of diffracted waves, 
and also Rayleigh pulses, are scattered from it. The resulting wavefronts are 
parallel to the vertical surfaces of the slot and curve in semicircular arcs 
around the bottom of the slot. 

Experimental tests of the theory were performed, using 0.5-6 MHz 
ultrasonic pulses on duralumin cylinders with surface-breaking slots ranging 
from 0.5-2 mm in width and from 2-6 mm in depth. The numerical results 
were confirmed by these experiments. 

Introduction 

The study of the pattern of elastic waves scattered by irregularities in a stress-free surface is 
important for seismology as well as for ultrasonic non-destructive testing. 

Expressions for first-order scattering by small variations in the surface topography were 
first obtained by Gilbert & Knopoff (1960) and developed since by many investigators. 
The various methods used are summarized in a survey paper by Hudson (1977). They apply 
mainly to scatterers with slopes at small angles to the surface, and with dimensions which 
are not large in comparison with the initial wavelength. These methods are applicable to 
regions remote from the scatterer. 

Recently several papers have calculated the displacements on the surface of the 
irregularity, mainly with steep slopes and prominent topographic features. Boore (1 972b, 
1973); Trifunac (1973); Wong & Trifunac (1974); Wong & Jennings (1975) deal with an SH 
initial disturbance, while Bouchon (1973) includes also P and SV incident waves. All found 
that the incident wave is considerably affected by the irregularity and that the effect 
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depends on the frequency and the angle of incidence of the initial wave. In geophysics, 
regions of amplification occur at the summits of mountains whereas attenuation is found at 
the bottom of depressions. 

In the present paper, a finite difference method is applied to study the motion of a slot 
normal to the surface of an elastic half space, as well as the scattering pattern due to a 
normally incident P pulse. 

A .  Ilan, L. J. Bond and M. Spivack 

Model assumptions 

The medium is assumed to be perfectly elastic, isotropic and homogeneous with com- 
pressional and shear velocities a and p respectively. The geometry is a half space with a slot 
normal to its surface. Let the y axis be along the length of the slot, andx be parallel to the 
free surface, and let z point vertically upwards. Let D ,  I be the depth and width of the slot 
respectively. A plane compressional pulse is incident at an angle e to the half-space surface. 
The problem is thus two dimensional, and is as shown in Fig. 1. 

Several sizes of the slot are considered where the ratio of the initial pulse width L to the 
depth of the slot, D,  is such that 5 z LID z 1. Also L/l varies between 2 and 5. 

INITIAL CONDITIONS 

Let us assume that the sources of disturbance cause a compressional impulsive plane wave. 
The initial function describing such a waveform has been obtained by the following 
procedure adapted from Boore (1972a). 

The input motion is required to fulfil the equations of motion in an infinite space. Let $ 
be the scalar potential and U, W be the horizontal and vertical components of displacement 
respectively. Thus 

while the equation of wave motion is 

1 
Figure 1. Cross-section of the model. 
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The plane wave approaching the surface at an angle e can be represented as follows: 
$ = g  [t - [x cos (e) + z sin ( e ) ] /a ]  

where g(t), for 4 = t - (x cos(e) + z sin(e))/a, is an arbitrary waveform. 
Using the finite difference method, the accuracy of the numerical results improves as 

the initial function is made smoother, as Ilan & Loewenthal(l976) and others have shown. 
To achieve this, the initial function was obtained by first integrating the Dirac delta function 
five times. 

GI = p v )  dv =H(U, 

where His  the Heaviside step function, 

G5 = t4/4! H(.g). (3) 
Then five consecutive central finite differences of G5 were taken over an arbitrary interval 

A.  The function has been normalized to be unity at ,$ = 0. This gives a smoothed 6 function, 

( S ( t ) ) =  [G5(t+ 5 A )  - 5G,(t + 3A) + 10GS(t + A )  - 10G~([ - A )  (4) 

+ 5 G,(E - 3 A )  - G5(t - 5 A)] /(230A4) 
and 

U =  cos (e )  (6 ( t ) ) ;  
The initial displacement for the case of e = n/2 is shown in Fig. 2. The width L of the initial 
pulse is defined to be L = 10 A. In the first stage, normally incident waves were assumed. 

W = sin (e) (6 (t)).  

Initial disturbance 
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Figure 2. The displacement due to the initial pulse. 
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Finite difference formulation 

A square grid with increment h is superimposed on the x, z plane. Thus x = ( j  - l ) h ; j =  1, 
M, and z = (k - 1)h; k = 1, N ,  and h is also defined as the unit of length. The time increment 
A t  is chosen in such a way that the von-Neumann criterion of stability is fulfilled in the 
form derived by Alterman & Loewenthal(1970), 
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A t  d h l d m  (5) 

In the following calculations the initial wave pulse was spread over 18 grid units. This 
guarantees that aliasing errors and numerical dispersion (see Boore 1972a) do not affect the 
results. 

Let Up , q r k  be the components of displacement at the grid point ( j ,  k )  at time level p .  
An explicit formula for calculating the displacements of inner points was obtained by re- 
placing the derivatives in the equation of motion with central finite differences. This formula 
was given by Alterman & Loewenthal(l970) and many others and will not be repeated here. 
On the stress-free surface the new composed approximation by Ilan & Loewenthal (1976) 
was used. This approximates the boundary conditions to the second order of accuracy and 
does not need the aid of fictitious lines (as do previous schemes). The formulae for the 
components of displacement on the horizontal stress-free surface are: 

.J! 

UP+ = - up- + 2 [ 1 - 2Efl’(2 - P’/la2)] u;k + 2€fl’Ui, k- * I .  k 1. k 

W p  I .  k + = - w;i + 2 [ 1 - E (a’ + $‘)I w! k + 2e(u2 w! k - 1 + ED2( w$ 1, k + w/- 1, k ) 

(6) + 0.5 e(3fl’ - la’) (uf+ 1,k - u,f- 1 ,  k )  - 0.5 €(la’ - 0’) !qf+ 1, k -  1 - ‘i- 1,k- 1 

where E = At’lh’. 

the following manner: 
On the vertical stress-free surface, equations (6) can be applied after transforming them in 

u - t w ;  w - u ,  ax-az; az-ax. 

Here ax indicates differentiation with respect to x. 
The displacements at the 90’ corner were calculated by the method of Alterman & 

Loewenthal (1970) and at the 270’ corner by that of Ilafi, Unger & Alterman (1975). This 
scheme was carefully examined by Ilan & Loewenthal (1976) and Ilan (1978) and was 
found to be stable and to give accurate results in half-planes and quarter-planes for a wide 
range of elastic parameters. 

For a normally incident wave the problem is symmetric with axis of symmetry along 
x=xo ,  where xo passes through the centre of the bottom of the slot. It is sufficient to 
calculate the scattered field on the right of the axis, and to impose the following conditions 
at x = xo: 

Conditions (7) were assumed also on the right boundary of the grid while on the lowest 
horizontal grid line boundary, the components of displacement were assumed to be zero. 
This delays artificial reflections from the grid boundaries up to the time when the first 
diffracted pulse arrived at the edges of the grid. Usually a grid of 60 x 60 points was used. 
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The values at the first and second time steps are known by equations (3), (4). The explicit 
fmite difference scheme provides a process to compute the displacements at successive time 
levels. No presuppositions are made about the solution and the various phases are computed 
simultaneously. 

Results 

In order to analyse the results the data were represented in two different ways. In the first, 
positions of all the grid particles were plotted at certain intervals of time in a manner 
adapted from Munasinghe (1 973). In the second representation, components of displace- 
ment at a series of chosen observation points were stored and eventually plotted as functions 
of time. This enables us to consider the excited area at consecutive time steps and to study 
the features of the scattered wavefronts and the direction of displacements. Measuring 
the positions of a certain wavefront at different time levels enables us to determine its 
velocity of propagation. Thus a better insight is obtained into the interaction between a 
compressional pulse and a vertically cut slot. 

SLOT D I S T O R T I O N  

The shape of the slot at consecutive time steps after it has been hit by a normally incident 
compressional pulse is shown in Fig. 3. The slot depth D is a third of the pulse length L and 
the ratio of the slot width 1 to its depth is 2/3. The displacements in Fig. 3 are amplified by 
a factor of 2 in order to emphasize the slot distortion. 

After being hit by the initial pulse, the slot surface begins to bow in and out, to stretch 
and compress in quite a complicated manner. Two main cycles of vibration can be 
distinguished apparently due to the initial and reflected waves. The vibration of the slot 
continues afterwards but attenuates rapidly. It appears that after the initial pulse has hit 
the upper comers two surface waves are created and propagate along the flanks with 

Figure 3. The slot shape due to a vertically incident P pulse at consecutive times, as indicated by the 
arrows. D/L = 113, I/D = 213. The displacements are amplified by a factor of 2. 
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Figure 4. Crosssection of the model at three time levels, ta/h = 28, 31,  38. The 
amplified four times. D/L = 1/2;1/D = 419. 

displacements are 

Rayleigh wave velocity. They superpose at the bottom and proceed upwards as is demon- 
strated in Fig. 4. The vertical component of displacement is attenuated at the bottom and 
along the flanks of the slot. Attenuation of 20 per cent occurs at the lower corner. On the 
other hand, the off-axis points of the slot surface acquire horizontal displacements. The 
maximum amplitude occurs at the upper corners and was found to be 0.65 of the amplitude 
of the initial pulse for the case of DfL = 113, lfd = 213. 

These results are generally in agreement with Bouchon (1973). 

T H E  S C A T T E R E D  F I E L D  

For the case of 90" incidence the main energy is obviously reflected normally. In addition, 
a diffraction pattern is created as follows: after arriving at the bottom of the slot the initial 
pulse excites a shear and a compressional pulse which propagate in an almost semicircular 
wavefront around the mid-point of the bottom of the slot. After arriving at the surface and 
being normally reflected, the main disturbance also creates a Rayleigh and a compressional 
wave propagating in wavefronts parallel t o  the vertical surfaces. The second cycle of the slot 
distortion causes a similar pair of diffracted waves with wavefronts parallel to the first 
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Figure 5. Crosssection of the model at three time levels, ta/h = 30, 39, 50, due to a vertically incident 
PpuIse.D/L= 1 / 3 , 1 / D = 2 / 3 .  

diffraction but with reduced amplitude. The position of the particles in the vicinity of the 
slot at three time levels is shown in Fig. 5. 

In Fig. 5(a) the main pulse has been reflected and the first diffraction can be seen. At the 
second time level (Fig. 5(b)) the first diffracted wave has propagated forwards and a second 
wavefront has just been created. In the third stage, the slot has almost calmed down and the 
main pattern of scattered waves can be seen. Plotting the particle positions by horizontal 
lines emphasizes the vertical but not the horizontal displacements. In order to complete the 
wave pattern, the particle positions were plotted also by vertical lines as demonstrated in 
Fig. 6. In this case the slot depth D is half the pulse width and l/D = 4/9. The displacements 
were exaggerated four times in Fig. 6(a), and eight times in Fig. 6(b). The scattering pattern 
is clarified by considering time series at certain observation points. In Fig. 7 these points 
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Figure 6. Section of a half plane with a slot to the right of the axis of symmetry at time level ta/h = 60. 
The displacements are amplified by the factors; (a) 4, (b) 8. DL, Di:  i = 1 ,  2 are the diffracted com- 
pressional, shear and Rayleigh pulses respectively. D/L = 1/2,1/D = 419. 

were situated on the free surface at various horizontal distances from the slot. The initial 
pulse arrives simultaneously at all the observation points and has only a vertical component. 
The seismograms of the vertical component show also the two Rayleigh diffracted waves 
and those of the horizontal component show also the compressional diffracted pulses. 
The time interval between two successive diffracted waves increases as the slot is made 
deeper or wider. In Fig. 8 the observation points are situated 21 h from the slot at various 
depths. Here the diffracted pulses arrive simultaneously at receivers situated at depths less 
than or equal to that of the slot. When the receiver is located deeper than the slot the arrival 
time increases due to  the increasing distance from the scatterer. In Fig. 9 the observation 
points are located at a constant depth of one pulse length at various horizontal positions. 
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Figure 7. Displacements on the surface of an irregular half space as functions of time in units of h / a  
at various distances from the slot. A schematic model is on the right. D/Z = 1/2, I/D = 4/9. The other 
details are as in Fig. 6.  

The first arrival is the compressional pulse diffracted from the bottom of the slot. The next 
pulse is the main compressional reflection arriving simultaneously at all the observation 
points. The two shear pulses diffracted from the bottom of the slot can be seen in the 
seismograms of the horizontal component. 

The results shown in Fig. 10 were obtained with receivers situated on the central axis 
at various distances R from the bottom of the slot. Fig. lO(a) shows the amplitude of the 

16 
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Figure 8. Displacements against time at a distance 21 h from the centre of the slot at  various depths. 
The other details are as in Fig. 6 .  

first compressional diffracted pulse, and Fig. 10(b) the amplitude of the reflected pulse as 
functions of R/L,  for slots with constant depth and different widths. The amplitude of the 
first diffracted pulse, Di, increases considerably as 1/L is made larger, as shown in Fig. lO(a). 
It decreases with the distance from the scatterer as is expected for radially propagated waves. 
Similar results were obtained for several depths of slots. The depth of the slot was found to 
have only secondary influence on the amplitude of the diffracted pulses. For very shallow 
slots DL and PP are superimposed but they become separated for D/L 2 0.22. 
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Figure 9. Displacements against time at a depth of 18 h equal to the pulse length L at various horizontal 
distances. The scale of the horizontal displacements is twice that of the vertical ones. The other details 
are as in Fig. 6 .  

The amplitude of the first shear diffracted pulse, Df, is zero on axis and varies with the 
angle from the axis, reaching a maximum value for an angle between 35-45', as shown in 
Fig. 9. The maximum amplitude of D: increases directly with l/L and is approximately half 
the maximum amplitude of 0;. 

The normally reflected pulse travels around the vertical boundaries of the slot, but its 
amplitude is reduced due to mode conversion. This reduction takes place even for shallow 
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Figure 10. Amplitudes of diffracted and reflected pulses as functions of the distance from the bottom of 
the slot. The distance is in units of the pulse length L. D / L  = 1/3 and l /D varied as indicated. The observa- 
tion points are situated along the z axis. 

slots where D/L = 0.1 1. A shadow zone can be seen under the slot; this zone becomes wider 
and deeper as l/L is made larger, as shown in Fig. 10(b). Here D/L = 1/3 and 0.22 Q l/L Q 

0.55. The amplitude of the reflected pulse depends mainly on the width of the slot, and it 
decreases as l /L increases. 

VERTICAL DISPLACEMENTS 
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E \ \ \ \ \  lll&l&\\\J 
Transmitter 

I 

0 2.5 TIME 10-6sec 7.5 10 

Figure 11. Ultrasonic pulse in a cylinder containing a surface-breaking slot. On the right is a schematic 
diagram of the experiment where the model dimensions are indicated in mni, and the wavelength is 
3 mm. 
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Comparison with experimental results 

Experiments were carried out using ultrasonic waves in a duralumin cylinder. The com- 
pressional wave velocity Q! in duralumin is 5327 m/s and p/a=O.48. The cylinder was lOcm 
in diameter and 13 cm in height with a slot cut along the diameter normally to the surface. 
In the first experiment, shown in Fig. 10, the slot had 2 mm depth and 1 mm width. A 
cylindrical compressional wave transducer, 25 mm in diameter, was carefully bonded to the 
opposite surface as indicated. It emitted a single-cycle pulse centred on 2.37 MHz which 
corresponds approximately to a 3 mm wavelength. 

The receiver was a thin (about 0.2 mm) broadband probe as designed by Harnik (1977). 
It was oriented perpendicularly to the surface and parallel to the slot at various distances 
(increasing by steps of 1.27 mm) from the slot. The vertical displacements plotted against 
time are shown in Fig. 11. The first pulse, arriving after the incident P pulse, propagates 
from the slot with Rayleigh wave velocity. This is similar to the numerical results depicted 
in Fig. 7. The identification of Rayleigh waves was confirmed by replacing Harnik’s probe 
by another receiver which is sensitive to Rayleigh waves only. 

TIME psrr 
0 1 2 3 4 5 6 1  

I 
0 9 2 3 4 5 

‘‘mrr 
Fig. 12. Vertical displacements as functions of time due to ultrasonic pulses. On the right is a 
schematic diagram of the experimental disposition. The transducer operates as both transmitter and 
receiver and emits pulses centred on: (a) and (b) 1.5 MHz, (c) 2.37 MHz. The dimensions in mm of the 
slots are: (a) D = 6 ,1=  2, (b) D = 5 , 1 =  0.5, ( c )  D = 2 ,1=  1. 
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In the second experiment the transducer, which is situated on the surface opposite the 
slot, operates also as a receiver. The time series of the displacements associated with slots 
of three different sizes were obtained and are shown in Fig. 12. Here, as in the numerical 
results shown in Fig. 9, the precursor to PP is a P pulse diffracted from the bottom of the 
slot. The depths of the different slots were 5, 2 ,  6 mm and their widths were 0.5, 1 , 2  mm 
respectively. The ratios between the amplitudes of the diffracted and the reflected pulses 
were 0.03, 0.08, 0.21 respectively. This ratio increases as the slot is made wider, which 
agrees with the computed results in Fig. 10. Direct comparison is not possible here because 
the experimental measurements were made in a region much further from the scatterer. 

The ratio between the amplitude of the diffracted and the reflected pulses indicates the 
slot width. The slot depth can be accurately calculated using the difference between the 
arrival times of the two pulses. In comparing the numerical with the experimental results 
one has to bear in mind that in the experimental, but not in the numerical, case the wave- 
front and the medium are of finite dimensions. Therefore edge waves from the boundary 
of the transducer and their various reflections are included in the experimental time series. 

In the laboratory, the probe is located on the surface and detects one component of 
displacement only, whereas using the finite difference method any observation point can be 
chosen and both components of displacement may be calculated simultaneously. Thus the 
numerical results provide a broader understanding of the scattering phenomena while the 
experimental results confirm some of the conclusions and do not contradict any of them. 

A .  Ilan, L .  J. Bond and M. Spivack 

Conclusions 

The improved finite-difference method of Ilan & Loewenthal (1976) was used to obtain the 
scattered field of a compressional impulse in the vicinity of a surface irregularity. 

First a simple case was considered; that of a compressional pulse normally incident at a 
slot cut vertically in the surface. Analysis of the numerical results shows that, after being hit 
by the initial pulse, the slot begins to oscillate with two main cycles of vibration. Every 
surface point becomes a source of a compressional and a shear diffracted wave, as is 
predicted by Huyghens’ theory. The contributions of the various source points combine to 
form scattered wavefronts which are parallel to the vertical surfaces of the slot and semi- 
circular around the bottom of the slot. The second cycle of vibration excites a second wave- 
front with reduced amplitude. 

The amplitude of the scattered pulses depends mainly on the ratio of the width of the 
slot to the initial pulse width, l/L. The amplitude of the diffracted pulses increases as l/L 
increases. The amplitude of the reflected pulse is reduced in a shadow zone under the slot, 
which becomes wider and deeper as l/L increases. 

Research is continuing on the more general scattering problems which arise when non- 
normally incident waves are applied or when SH, S V  and Rayleigh waves are incident. 
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