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Abstract:   The problem of coastline evolution in the presence of varying wave-climate is studied. Statistical moments are introduced as mean of investigating shoreline evolution and variability. Equations for these quantities are developed and solved, for given wave-climate statistics. These equations describe analytically the time-dependent averaged solution, and its dependence on wave-climate; and circumvents computationally intensive Monte-Carlo simulations.
INTRODUCTION
      Strategic planning for the management of our coasts relies implicitly upon an understanding of the physical processes responsible for shaping coastal morphology. Morphodynamic models can play a key role in assessing the likely impact of coastal developments. Predictive models used in current practice are usually employed in a deterministic fashion and do not forecast the variability likely to be experienced in real situations. In this paper we will describe results from a research project that has developed a theoretical framework for stochastic shoreline prediction.  

      A review of the main difficulties in modelling long term morphological change and of a number of alternative modelling techniques has been presented in De Vriend et al (1993). Morphological forecasting methods are in use, based on solving detailed dynamic equations. This deterministic approach to morphological prediction was pioneered by Pelnard-Considere (1956) who presented an equation to forecast changes in coastline position.  The approach is a one-line model (as it predicts the position of a single depth contour) and has also become known as influence function theory.  However, a key drawback is that it requires as input exact values of environmental parameters unlikely to be available in detail; and gives no measure of the variability or estimate of likelihood of "extreme cases".

      One alternative to the deterministic modelling approach is to employ stochastic forecasting methods, such as Monte Carlo methods. That is, using independent realisations of wave conditions, a corresponding set of realisations of shoreline evolution can be computed. This set of results can then be used to calculate the `ensemble average' statistics of shoreline position. If a 1-line model is used the computational overhead of the Monte Carlo method may be restrained to a modest level, allowing predictions of the likely variability of the shoreline to be obtained, eg Vrijling & Meijer (1992).  A key input to this type of model is the statistical description of the driving forces.  In the case of a 1-line model this is a description of the wave climate.  To obtain physically meaningful results this approach requires a large amount of wave data to define accurately the joint statistical characteristics of the wave climate and water level over the prediction period. 

SUMMARY OF EQUATIONS
      In order to overcome the above difficulties a different approach has been adopted. By an appropriate formulation of the governing equations, the ensemble average can be obtained analytically, using well-established techniques (Spivack & Reeve 2002). This procedure provides a closed-form expression for the average position of the shoreline that may be evaluated directly. A corresponding expression may also be derived for the variance of the shoreline position. The  theory describes the evolution of an arbitrary initial coastline subject to a varying wave attack. Some examples for the evolution of beaches with localised beach recharge have been given by Reeve & Spivack (2001).

      In this paper we summarise theory and present some illustrative results. The quantities derived give an estimate of mean, and allow an examination of "worst-case" solution.  
     Our starting point is the following equation for beach plan shape y:
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or  in operator notation
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where  K is the stochastically varying wave climate, which is a known function of physical parameters, and which can be written as a mean (deterministic) part plus a random component with mean zero:
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Here the angled brackets denote the ensemble average. The function  y(x,t)  can therefore be treated and solved as a stochastic variable, in order to obtain its statistical behaviour over time.  The statistics of the random part  δ(t) are known or can be approximated. In particular we require the autocorrelation function, denoted  ρ(t). A typical record of wave heights and angles over a short period is shown in the following graph:   
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SOLUTION AND RESULTS

      The formal solution of time evolution of   y(x,t)  and its Fourier transform can be written respectively as
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      The statistics of the equation above can be found analytically. For example the mean profile can be written
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in which the unknown middle term can be evaluated to obtain
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In this expression  f(t)  is the integral of the varying part  δ(t’)  up to time t and  σt  is its variance:

                                                         [image: image9.wmf]2

00

()().

tt

f

tttdtdt

sr

¢¢¢¢¢¢

=-

òò


       This approach, as described above, allows us to quantify mean beach shape, and its variability, as functions of time and wave-climate statistics. For example the following graph shows the autocorrelation of  y(x,t)  as a function of spatial separation and time, and from this the variance can be obtained directly, thus providing an estimate of likelihood of extreme  events. 
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