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Abstract. A method is presented for the reconstruction of a source term in the linear diffusion 
equation. This is applied here to a problem of coastline evolution and sediment transpon. The 
method is based upon inversion of the split-step solution, which is widely used to treat the related 
parabolic wave equation for propagation in inhomogeneous media. In this approach the effects 
of diffraction and scattering operators a~ treated separately, using the fact that their commutator 
is 'small' in an appropriate sense. It is explained how the method can also be applied to the 
recovery of the ocean sound-speed profile. 

1. Introduction 

In many areas of wave propagation and scattering a central problem is to recover the scatterer 
from measured data. Such applications range from acoustic ocean tomopphy and medical 
imaging to the prediction of coastline evolution. The scattering function may represent 
surface roughness, an inhomogeneous medium, or sediment supply (see for example Cannon 
and Ewing 1976; Wombell and DeSanto 1991; Spivack 1992; FlattC etal 1979; Weir 1989). 
In each physical situation the inverse problem will be posed according to the available data. 
Uniqueness of the solution cannot in general be assured, because dependence on the scatterer 
is highly nonlinear, and also one is typically attempting to reconstruct a continuous medium 
from finite information. 

The general form of the governing equations involves temporal and spatial derivatives 
of the field plus a sourcelsink or forcing term. In underwater acoustics, for example, the 
source term describes the effects of wave refraction and scattering due to variations in the 
ocean refractive index. In the prediction of coastline evolution this term represents the 
supply or removal of sediment along the shoreline through cross-shore movement. 

In this paper we present a method for the inversion of a linear diffusion equation with an 
unknown source term; this is applied here to a problem of prediction of coastline evolution. 
The equation is closely related to the parabolic equation for wave propagation in a randomly 
varying medium, and it is in this form that the problem is treated here. It is assumed that 
data is available at discrete range steps zi , and from this the integral .of the unknown function 
over each interval is found. The solution is based upon the 'split-step' method, which is 
widely used to treat the direct problem of finding the field when the medium is known. 

The method is applied here to the problem of predicting coastline movement. By 
inverting a generalized form of the equation describing the transport of beach material 
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along the shoreline, the magnitude and spatial variation of cross-shore sediment transport 
over time may be recovered. This type of information can be extremely important for 
planning the construction of beach and coastline protection works and also the maintenance 
of near-shore shipping channels. 

The paper is organized as follows: in section 2 the governing equations are set out and 
the inverse problem is posed. The solution of the ‘direct’ problem is described and from 
this the inversion algorithm is derived. The method is applied in section 3 to the specific 
problem of coastline evolution. and computational examples are given. 
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2. Inverse problem a n d  solution 

In this section we describe the problem to be solved, which is in effect to invert a diffusion 
equation, and give the method by which we will carry out this inversion. The accuracy 
of the algorithm will also be discussed. Computational examples will be given in the next 
section to illustrate one of several potential applications. 

2.1. Problem and equations 

Consider the following two-dimensional linear differential equation 

where a is some constant, and G ( x ,  z) is a continuous bounded function of both coordinates, 
which we will assume is slowly-varying in some sense to be discussed. The functions here 
may be either real or complex. The complex form of equation (2.1) arises, for example, in 
underwater acoustics or for electromagnetic propagation through a turbulent atmosphere. In 
such cases z denotes range, and a takes the value i/2k where k is a reference wavenumber. 
The term az /ax2  is then the diffraction operator, and the function G is the scattering 
operator, which represents variation in the refractive index 

G = ik(nz - l)/2. 

A related diffusion equation involving real-valued functions occurs in describing thermal 
diffusion and also coastline movement. This equation can be,written as 

a2Y - -  a y  - K -  + F ( x ,  z) 
az ax2 

where z now denotes time, and the function F on the RHS is a forcing function. The 
derivation of this is discussed in section 3 below. We will make the assumption that F is 
continuous and that F l y  remains finite everywhere. Thus y is bounded away from zero 
except where F itself vanishes. We can therefore define a function G (to be determined) 
by 

If y vanishes at any point (x‘, z’), G(x’ ,  z’) must be determined numerically from (2.3) as a 
limit. (Since the governing equation is linear, the solution y remains continuous everywhere 
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provided the initial condition y(x, 0) is continuous.) It is clear that (2.2) can be written in 
the form (2.1), with K =a, i.e. 

In what follows we therefore restrict attention to equations of the form (2.1). 
Now suppose we are given a partial solution for the function y(x, z). The problem we 

consider here is that of recovering the scattering function G(x,z) as far as possible from 
the measured values of y. 

2.2. Split-step method 

We first consider the direct problem. i.e. the approximate solution of (2.1) to find y when 
the function G is given. For this we describe the method of operator splitting commonly 
used to treat wave propagation problems in random media. 

Write (2.1) in the form 

- =  ay ( A + G ) y  
az (2.5) 

where A = cia2 /ax2 and for each z the range-dependent function G is considered as a 
multiplication operator G = G(x,  z). The formal solution for this equation over a small 
step < can be written approximately as 

This approximation becomes exact if the range-dependent operator (A + G) everywhere 
commutes with its integral. (This may be seen (Spivack and Uscinski 1989) by expanding 
the exponential operator as a Taylor series, taking derivatives of both sides of (2.6) with 
respect to z ,  and comparing the result with (2.5).) This condition is clearly satisfied if G 
is constant with respect to z, and is a good approximation provided G changes slowly over 
the interval [ z ,  z + cl. To lowest order the perturbation (i.e. step-wise) error can be shown 
to be (Spivack and Uscinski 1989) 

4 t 3 [ ~  + G, a ~ i a z i  

where [C, D ]  denotes the commutator C D  - DC of any operators C and D. The form 
of (2.6) immediately suggests the use of the well-known split-step solution, which was 
introduced to underwater acoustics applications by Tappert and Hardin (1974), and is in 
widespread use. This solution has the form 

(2.7) 

This is exact when A and G commute. 
commutator [A, GI and to leading order becomes 

Specifically, the error 6 is a function of the 
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which is of order 5’. This error dominates that of the exponential solution (2.6). which 
will therefore be neglected. The advantage of the above solution is that the individual 
exponential terms can be treated analytically; the function exp(J G dz) is already in explicit 
form, and exp(5A) can be written in terms of Fourier transforms 

eCAy(x, z )  = F-’(exp(iv’T)F(y)) (2.8) 
where F denotes the Fourier transform with respect to x and v is the transform variable. 
In numerical evaluation this is efficiently implemented by use of the fast Fourier transform. 
Note that a more accurate form of operator splitting is Strang’s splitting, in which the 
evolution operator is split into three exponential factors. This is of order 0 (t3); for our 
purposes, however, (2.7) is more convenient. 

2.3. Solution of the inverse problem 
We now return to the problem of inverting equation (2.1) when G is unknown, and derive 
the inversion algorithm. Suppose, for simplicity, that we are given the values of y(xi, z j )  

on a rectangular grid ( x i ,  z j } ,  where xi, zj are evenly spaced. We assume that the values 
of y are known at ‘sufficiently many’ points x i ,  z j  for the split-step approximation to be 
accurate. This requires that the transverse ( x )  resolution of y is sufficient to ensure accuracy 
of the fast Fourier transform, used in evaluation of (2.8). However, ,this restriction does not 
necessarily apply to derivatives in the range direction. This will be discussed below. 

Let < = zj+, - z j ,  which we have assumed to be constant with respect to j .  Denote the 
spatially-integrated form of G over each,range step 5 by 

C(x , z j )  =b G(x , z )dz .  (2.9) 

Given the function y(x. z j )  we can evaluate the diffraction term rU8*/axz using the Fourier 
transform as discussed above. Denote this ‘incomplete’ solution by Y ,  so that 

(2.10) 
We can now apply the split-step solution (2.7) directly and, substituting (2.9) and (2.10) 
into (2.7), write 
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Z j i l  

~ ( x ,  z j )  = ecAy(x. z j ) .  

(2.11) 

This is well-defined provided y(x, z )  (and therefore Y )  is bounded away from zero. We 
will assume for convenience that this holds everywhere. As remarked earlier, the method 
can easily be extended by continuity to allow for y vanishing at isolated poinis. 

The cases in which the functions G and y are real or complex must now be treated 
separately. 

(a) Real care. Suppose first that all functions are real-valued; this is the situation in the 
diffusion equation (2.2). Since y is assumed to be bounded away from zero (and also 
remains finite since G is bounded), we can  write 

This yields the integrated form of G, and is the solution which is sought. We cannot 
resolve the details of G more finely than the points at which y is known, although if G 
changes reasonably smoothly then we can interpolate, for example linearly, to approximate 
the values of G(x.  z )  at any z 

(2.13) 

C(x,  z j )  = W ( x ,  z j + d  - ln[Y(x,  z j l l .  (2.12) 

z - z j  
G(x ,  Z) = G(x,  z j )  +-[C(X, zj+i) - C(X,  z j ) ] .  

5 
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(b) Complex case. Now suppose that the quantities a, y, and G are complex, as in acoustic 
wave propagation. In this case equation (2.12) again holds, but is ambiguous, since the 
complex logarithm is multi-valued. In order to choose a so1,ution C ( x ,  z )  uniquely for each 
z we  may do the following: fix a value of x ,  say x = no, and then choose the principal 
value 

(2.14) 

so that Im(C) lies in [0,27r]. This choice is of course arbitrary. However, provided the 
resolution in the transverse x direction is sufficient, (2.14) fixes C(Q, z j )  for all other xa 
by continuity of y and its first derivative. This.2j-r phase ambiguity is implicit in (2.12) but 
is unimportant because a constant phase shift along a z plane has no effect on propagation 
in the z direction. However, it can be resolved, for each x ,  if the spatial average (G(x. z)), 
with respect to the vertical is known; furthermore, if G varies slowly with respect to x then 
continuity can again be used to determine G ( x j ,  z), say, in terms of G(xi-1, z). 

2.4. Accuracy of algorithm and data requirements 

It has been assumed above that values of y ( x .  z) are known on a rectangular grid ( x i ,  z j ]  
which is fine enough for the split-step approximation to hold. Specifically the resolution in 
x must be sufficient to ensure accurate numerical representation of the Fourier transform. 
This implies that azy/ax2 may also be well-approximated numerically. In the context of 
acoustic wave propagation, a widely-used rule-of-thumb in implementations of the split-step 
method (Spivack and Uscinski 1989), is 

where /* is the estimated standard deviation of wave-speed irregularities, L is the transverse 
correlation length of irregularities, and 

which is a measure of longitudinal correlation length, where p ( 6 ,  5 )  is the wave-speed 
autocorrelation function with respect to spatial separations (. 5 in the x ,  z directions 
respectively. An analogous condition for the linear diffusion equation is easily derived. 
This restriction requires far less resolution in range than in the transverse direction, and in 
particular does not assume that enough information is available to approximate the derivative 
ay/az numerically. (Indeed once the derivative is obtained the problem becomes trivial. 
since the unknown term in equation (2.1) can then be found by simple substitution.) This 
can be seen as follows. 

Over the given interval [z, z, + (1, the diffraction effect may give rise to appreciable 
changes in amplitude, due to already large variations (in phase and amplitude) of the function 
y(x, z). Thus the amplitude of the function Y = exp(gA)y may be significantly different 
from that of y. and in that case ay/az cannot be accurately recovered from the data. On 
the other hand, provided the scattering term G is small, it may not in itself be converted 
(through diffraction) into a large change in y. The scattering and diffraction effects over 
this step g then remain roughly separated since the commutator of these operators is small, 
and the inverse method presented above will be accurate. 
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3. Application and computational example 

3.1. Application to shoreline movement 

Methods of controlling coastal erosion have traditionally consisted of constructing static 
structures between the sea and the shore (e.g. concrete sea walls). These methods 
for ‘holding the shoreline’ have met with mixed success and are now justifiably being 
questioned, particularly in the light of their impact on neighbouring lengths of coastline. 
An equation of the form (2.1) arises i n  the prediction of coastline erosion and accretion. 
Inversion of this equation allows the distribution of the long-term sediment supply to and 
removal from the coast to be retrieved from historical records of the coastline position, 
thus providing a new insight into the long-term spatial and temporal variations in coastline 
alignment. In this case the real dependent variable is the position of the coastline from a 
datum line, and the independent variables are distance along the datum line and time. 
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Figure 1. Schematic diagram showing thc definition of variables. 

Consider a length of coastline as shown in  figure I .  The coastline position is defined 
as a function of distance x along the reference (datum) line-in this case the x axis (see 
figure I). Two simplifying assumptions are now made. The first is that the time scale of 
changes in the beach cross section normal to the shore is very different to the time scale 
of changes along the shore. The second is that similar sediment transport processes occur 
along the length of the shoreline under study. These assumptions restrict consideration to 
the case where depth contours are orthogonal to the shore normals. It is further assumed 
that changes in beach cross section are bounded and lie within a fixed vertical range d ,  
which is constant along coastline (see figure Z(a)). 

The continuity equation for the sediment transport S may then be written as 

as, as, ay 
ax ay at  
- + - + d- = 0 (3.1) 

where sediment transport is taken to be primarily induced by wave-driven longshore currents. 
An important factor governing wave-driven longshore transport is the angle ab between the 
wavecrest at the position where wave-breaking occurs and the local depth contour (see 
figure 2(b)). This angle may be related to the datum line via the relationship 

(3.2) 1 ay 
ax f f ~ = - ~ - a - - - .  2 
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Figure 2. (a) Definition of the naive beach profile depth d. (b)  Schematic diagram illustrating 
the definition of wave-climate shoreline orientation. 

For OL and ay/ax sufficiently small the longshore transport S is well approximated by its 
longshore component (S, << SA = S). Noting that with the chain rule a.S,/ax may be 
expanded to 

as, aab 
aUb ax 
-- 

it follows from equations (3.1) and (3.2) that 

(3.3) 

where 

Equation (3.3) was derived in the pioneering paper of Pelnard-Considere (1956), who used it 
to predict the impact of breakwaters and sand replenishment on a coastline. The quantity K 
plays the role of a diffusion coefficient and is usually taken to be a constant in applications 
(see, e.g. Tilmans 1991). Here the equation is written as 

(3.4) a 2 Y  
at ax* 
_ -  ay - K- + F ( x ,  t) 

where F(x , t )  represents the sediment source and sink distribution resulting eom all 
processes other than longshore transport, and is considered to be separable as 

W, 0 = Y(X, OW, 0 
as in equations (2.2) and (2.3). 
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Figure 3. Map of study region. 

3.2. Computational results 

The shoreline of the East Anglian coast contains a wide range of beach types and provides 
a formidable problem for predicting long-term morphological changes. The study area for 
this case runs south from Happisburgh on the North Norfolk coast to Felixstowe. Beaches 
along the coast typically comprise sand or sand and gravel. The shoreline is generally 
retreating and beaches steepening. The exception is at the location of nesses (coastline 
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bulges or gentle headland promontories). These features are known to migrate along the 
coast over a period of decades (Robinson 1966). 

In what follows, the inversion technique given in section 2.3 is used to investigate 
shoreline changes described by the position of the mean low water line (MLW). A local 
x axis was taken as the line running northwards from 649000E. 2737SON (relative to the 
UK national grid) as shown by the left-hand edge of the rectangular study region in figure 3. 
The position of MLW was derived from historical maps for the years 1884, 1904, 1947, 1971 
and 1980. 

A value of K = lo3 m2 year-' was used. Typical values suggested by standard formulae 
for full beaches (e.g. Walton and Chiu~1979) range from lo3 to lo8; the choice here reflects 
the fact that in this case there is a limited volume of sand on the shoreline. 

~. 

Results are shown as~the approximate time-integrated forcing, calculated as 

(3.6) 

Figure 4 shows the time-integrated forcing distribution for the periods 1884-1904 and 1884- 
1971 plotted along the datum line. This shows how the cumulative forcing dishibution has 
developed over the course of the last century. 

The computed distributions of the forcing show no definite underlying spatial trend, 
suggesting that systematic errors associated with the assumption of uniform longshore 
transport conditions are not significant. 
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F i m  4. The computed distribution of time-averaged sediment supply for the periods 188~- 
1904.1884-1971 and 1884-1980. Southwold, Benacre, Lowestoft, Gorleston, and North Beach 
correspond approximately 10 positions 2 km, 1 I km, 19km. 30km and 31 km north of the origin. 

Currently there are no means of verifying the calculated forcing functions directly as 
the historical measurements of sediment movement required for verification do not exist. 
However, the computed distributions show well-defined shucture, which can be identified 
with known local coastal behaviour. In particular, maxima in the forcing (corresponding 
to sediment supply to the shore) coincide with Winterton, Caister and Benacre nesses. 
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This is in agreement with the findings of Robinson (1966, 1980) who argued that nesses are 
locations at which onshore transport is a dominant process. The advance of Great Yarmouth 
North Beach by 300111 since the 1930's has been reported by Clayton e ta l  (1983). This is 
mirrored by a corresponding positive peak in the calculated forcing distributions. Minima 
in the forcing occur from Benacre to Southwold where there has been rapid retreat of the 
MLW (in excess of 2 m per year). 
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4. Conclusions 

A method has been described for the inversion of the two-dimensional linear diffusion 
equation, based upon an analogy with the split-step solution used for the direct problem. 
The region of accuracy depends on the spacing of the data in the range direction; 
roughly speaking, the method is accurate provided diffraction and scattering effects are 
approximately separable on the scale of each interval. The method has been applied here 
to a problem of coastline evolution, in which all functions are real valued. It can be 
extended, however, to the related complex-valued equation for acoustic propagation in an 
inhomogeneous medium such as the ocean. 
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