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The parabolic equation method is an effective approach when the acoustic wave field is 
incident at low grazing angles onto a rough surface. The method consists of an integral 
equation and an integral, the first of which yields the surface field derivative. The main part of 
this paper is concerned with an approximation to this equation, valid when wavenumber times 
surface height is up to order unity. The approximation has several advantages. First, it allows a 
decomposition of the equation into deterministic and stochastic components. The stochastic 
part depends only locally upon the surface in certain regimes, and this can give rise to a great 
reduction in computational expense. Some basic statistical moments of the stochastic 
component are also considered. These are nonstationary, but for the incident field a simple 
stationary transformation is found, which can therefore be compared with Monte Carlo 
simulations using far fewer realizations. These results are demonstrated computationally. The 
final part of the paper describes the numerical implementation of the full parabolic equation 
method. Both of the integrals'contain singularities, and these are treated semianalytically. 

PACS numbers: 43.30.Hw, 43.30.Bp 

INTRODUCTION 

The problem of acoustic scattering from rough surfaces 
has received considerable attention in recent years. Different 
theoretical methods are used for various scattering regimes, 
such as perturbation theory for small surface heights and the 
Kirchhoff approximation for small slope. When the field is 
incident at low grazing angles, neither of these remains accu- 
rate at moderately large surface heights (Thorsos'), and a 
successful approach is the parabolic equation method (e.g., 
Thorsos, 2 Dozier, 3 Tappert and Nghiem-Phu4). This con- 
sists of an integral equation and an integral, relating the ver- 
tical derivative oN/latz of the field ß at the surface to the 

incident and scattered fields, respectively. The first of these 
is a Volterra equation, which is inverted to give o•/Sz at 
each range in terms of the incident field •t'i, • at all previous 
ranges. In this way, the influence of q'i,c at one point upon 
o•/Sz may persist for many correlation lengths along the 
surface. 

The main purpose of this paper is to introduce and ex- 
ploit an approximate form of this Volterra integral equation, 
which is shown to be accurate for surface heights times 
wavenumber up to order unity. The approximation has sev- 
eral advantages. It first allows us to decompose the problem 
naturally into two parts: a deterministic part plus a random 
part; these correspond to the field incident on a flat surface 
and its perturbation • due to the surface variation. When the 
correlation length is comparable to a wavelength, the solu- 
tion 8•/8z is far more localized than the corresponding full 
solution o•/a•z, depending only on nearby values of 3, and 
this then greatly reduces the computational expense. This 
field decomposition also enables us to examine some of the 
statistical moments, and we formulate some results for the 
autocorrelation of the stochastic component/• and for the 
vertical derivative. In particular, it is shown that 8 can be 

written as the product of a stationary function • and a deter- 
ministic one. By transforming to •, far fewer realizations are 
needed to form reliable statistics from Monte Carlo simula- 

tions. Accurate, nonstationary expressions are also given for 
tl•e mean and autocorrelation of •i.• for very rough sur- 
faces. The basic equations for the method are given in Sec. I, 
and in Sec. II the results are described and demonstrated 

computationally. 
Both integrals contain singularities, arising from zero 

denominators and an exponent tending to infinity. These are 
treated semianalytically, and the procedure and its numeri- 
cal implementation are described in Sec. III. The equations 
are discretized with respect to range and product integration 
used for both integrals. Where the singularities are most 
acute, away from the surface, the equations are recast in 
terms of Fresnel integrals. 

I. BASIC EQUATIONS 

We set out here the equations to be solved, following 
Thorsos, 2 and make some preliminary definitions. We also 
give the form of the incident field and the surface statistics 
that were applied for the computational results presented 
below. 

We consider in this paper the two-dimensional scatter- 
ing problem, i.e., from a one-dimensional surface. We will be 
treating the case in which the field is incident at low grazing 
angles and is well described by the parabolic wave equation. 
(For the case of nearly normal incidence, an integral equa- 
tion method can be found in Kachoyan and Macaskill?) 
Coordinate axes x and z are taken as in Fig. 1, where x is 
horizontal, x>0, and z is the vertical, decreasing down- 
wards. Let Y = (x,z}. The source will be centered around 
Yo = (0,0), at a distance z o • 22.4 below the surface. Denote 
by h• (x) the rough surface, and let h=hx -- z o. Here, h will 
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LncLdent. wave 

FIG. I. Representation of typical rough surface, z = h•(x). 

be taken to have Gaussian statistics and zero mean. In the 

treatment that follows, the derivative of h is assumed to be 
bounded. In the numerical work shown here, h is given a 
Gaussian spectrum. Denote the rms of the surface h (x) by • 
and its correlation length by L x. 

Here, q•i,• (•) denotes the (complex) incident wave 
field. It will be assumed that •i,c = 0 for x<0 and along the 
bottom boundary, and that h(x) is a pressure-release sur- 
face; •, (•) denotes the wave field scattered from the surface 
and ß (P) the total field, so that ß = •, + •i,½, and q• = 0 at 
the surface. The governing equations for the parabolic equa- 
tion method are 2 

•,,½ (•) = -- i'(G(•,,•')•) dx', (l) ß ,F at surface 

and 

ß • (•) _- •(•,•,) •,. 

Here, G is the Green's function given by 

= 2•rk(--x') 2 •--x --7 / 
G(x,z;x',z') / for x>x ,, 

L0 for x<x. 
(3) 

F • {x',z') =' (x',h t (x')) along the surface, and k is the wave- 
number. 

Denote a•/,9z along the surface by •'. Then, in terms of 
linear operators we can write ( 1 ) as 

•Pi.o = A•', (4) 

and (2) as 

•t's =B•'. (5) 

Although these operators are linear (for a given surface), 
the equations are not, since ̀4 and B vary with the surface, 
together with the vectors •i.• and •'. In other words, q•' and 
q•, depend linearly upon •, but nonlinearly upon the sur- 
face h(x). 

In the work shown here, a simple Gaussian-beamed 
source of width w is taken as the incident wave: 

) •in• (x,z) = 4 u"2 + 2ix/k u? + 2ix/k ' 
(6) 

We will take k = 1 and w = 8. In most of our numerical 

results, we have taken L• = 8, which is of the order of a 
wavelength, and this defines a situation of interest in many 
applications. Note that the large-scale variation of• takes 
place over many wavelengths. 

We need some additional notation: Let •o = •i• (zo) 
be the incident field along Zo, and let •/•, •o,, and.4 o denote 
the (deterministic) forms of •', •,, and .4, respectively, 
which would be due to a fiat surface at z o. We can then write 

and 

rS, =•,-- •os =B6'. 

For any of these quantifies.f, say, (f) will denote its ensem- 
ble average, taken over realizations of the surface. The auto- 
correlation function of the surface (with mean removed) is 
given by 

p(f) = (h(x)h(x + •)), 

so that in this work p(•) •2 exp( -- • 2/L :• 

II. APPROXIMATIONS AND RESULTS 

A. Approximations 

We will focus attention on the solution of •' from inte- 

gral equation (4). In the numerical treatment described in 
See. III, the incident field •i,• and integrals are diseretized, 
using N points, say. Here, .4 is represented by a lower-trian- 
gular matrix, the inversion of which requires O{N :•) opera- 
tions and relates the solution •' (x) to the values •.• (x'} at 
all previous ranges O•x'<x. In this way the influence of • 
can persist non-negligibly for many correlation lengths 
along the surface. 

As noted in See. I, Eq. (4) gives •' as a nonlinear func- 
tion of surface roughness h(x). We now approximate the 
solution by linearizing this dependence: The nonlinearity 
corresponds the stochastic part of.4, which is in the expo- 
nential term 

exp[i-•((•,)•)], 
of the kernel G, and this becomes 1 when the surface is fiat. 
We thus replace the operator A by its deterministic counter- 
part .40: 

q•i,• •do•'- (7) 

This approximation proves to be accurate for fairly high 
surface roughness, with k• up to order unity, and turns out 
to be very convenient. For smaller values of k•, the approxi- 
mation gives results almost identical with those from the full 
form. 

To get a heuristic idea of the order of accuracy of (7), 
consider the point values of G. Let • denote x --x'. The 
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above exponential tends to 1 as ß ,becomes large, and the 
exponent vanishes at ß = 0 since h' is bounded. For ß greater 
than a correlation length Lx, the exponent is on average of 
order O(k [ ff2/(x -- x') ] }. When E < L•, we can show that it 
is of order O(ekh ,2). Assuming a gentle surface slope, the 
exponent is small in both regions. The effect of integration 
over the kernel is to further reduce the departure of the oper- 
ator A from its deterministic form A o. (This comment also 
applies when there is a large surface slope because of the 
rapid phase oscillations which this induces.) 

We can now show some numerical results, which indi- 
cate more directly the accuracy of (7). Figure 2 compares 
the amplitudes of •' and its approximation A 6- •i,c for 
typical realizations, with (a) k•. = 0.5 and (b} k• = 1.0. 
For values of kq• lower than about 0.5, the results are virtual- 
ly indistinguishableß In these figures, Lx = 8. 

B. Field decomposition 

The approximation now allows us to deal separately 
with the deterministic and the purely stochastic effects: 
Since • = A • •q•o, •'--•A • '•i•c, and the operators are 
linear, we can write 

8'-----A• •& (8) 

When we calculate the full field q•, using the scattered field 
ß , from (5), we have 

The functions •i,• and q•o• are deterministic, and so for each 
realization it is sufficient to find 6'. Figure 3(a} shows an 
example of the real part of 6' for one realization with surface 
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.... I .... I .... I .... I .... I .... 
9 55 1 • ] 5• 2•0 2•9 189 

x 

FIG. 2. Amplitude of o•/o•z from Eq. (4) (full line} as a function of x 
compared with approximation (7) (dotted line} for (a) k• = 0.5 and (b) 
k• = 1.0. The correlation length is L. = 8.0. The results are virtually iden- 
tical for smaller values. 
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FIG. 3. (a) Real part oft•' (full line) as a function ofx for one realization 
with k• = 0.8, against the surface itself (rescaled, dotted line}. (b) Com- 
parison between full field •d and its approximation as functions of range, at a 
distance 50.0 below a surface with roughness k• = 0.8, showing close agree- 
ment. 

roughness k• = 0.8. The surface itself is shown for compari- 
son. From 6' is obtained the stochastic component 6, of the 
scattered field gt, at any depth, from which we can find the 
full field •. In Fig. 3(b) this approximation for ß is com- 
pared with the full solution at a depth z = 50 below the sur- 
face and shows very close agreement. 

The field decomposition has a further advantage in the 
scattering regime L• of the order of a wavelength, k• up to 1. 
While q• is determined purely by the source, the function 6' 
depends mainly on the surface roughness and its correlation 
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length. Thus 6' depends only on a small neighborhood of 
values of & Since W' ---- W• + •', this allows a significant 
computational reduction for W', from O(N 2) to O(N), as- 
sming a fixed number of grid points per correlation length. 
(This, in turn, enables us to calculate the field out to arbi- 
trarily large range.) In Fig. 4(a) the full form W' was com- 
pared with an approximation using both (7) and a restricted 
"window" of about four correlation lengths to find the sto- 
chastic component •'. The two curves again agree well. For 
comparison, another approximation to W' was then calculat- 
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FIG. 4. (a) Amplitude ]•'l from F_q. (4) (fullline) compared with approx- 
imation (dotted line) using Eq. (7) and restricted window of four correla- 
tion lengths to find 8' and then applying q•ø = q• + 8 ø. Here, k• = 0.5. (b) 
Iq•'l as in (a) (full linc) compared with another approximation (dashed 
line) calculated by applying the same restricted window directly to Eq. (4), 
which gives complete lack of agreement. 

ed by applying the same restricted window to the full Eq. 
(4), without separating the stochastic part 6' from 
When compared with the full form of W', there is a complete 
lack of agreement, as shown in Fig. 4(b), even though no 
approximation such as (7) has been applied. This illustrates 
that, through the integral equation, the range of dependence 
of W• upon Wo is far greater than that of •' on & [ It should be 
stressed, however, that physically it is precisely the random 
variation which introduces multiple scattering and therefore 
nonlocal surface effects. The sense in which • depends non- 
locally upon Wo is not that of surface interaction but arises, 
through ( 1 ), from the parabolic equation. In our situation 
is a fairly small, fast-varying perturbation of Wo, and its sur- 
face effects are only local in comparison with this long-range 
dependence of W• on Wo. ] 

C. Moments of W,n• and •' 

One of the eventual aims is to find the moments of the 

scattered field •, such as {•(x,)•*(x2)), and their de- 
pendence on the statistics of the surface. Much progress has 
been made on this for volume scattering, e.g., Refs. 6 and 7, 
where the moments are governed by differential equations. 
For small surface heights the moments can be calculated by 
perturbation methods? but for very rough surfaces the 
problem remains open (see, for example De Santo and 
Browna). Equations (7) and (8) provide a convenient 
framework for one approach to the moments, and we can 
give some preliminary results for •.• and •'. 

Since the incident field is range dependent, its statistics 
are nonstationary with respect to x. If we assume that z} • 
[which is implicit in the condition •,• (0) •--0], then from 
(6)•,• at the surface can be written 

k[/in c (X) "•'•kllO(X)•g(x)h(x) , (9) 
where 

g(x) = 2?.0 
w • + 2ix/k' 

Since g is deterministic, we may calculate the moments of 
W•. using (9) and the known surface probability distribu- 
tion p, say. The mean of any function of q•i. (e.g., Papou- 
Ils •ø) is just the integral of its product withp over all possible 
values. The mean of q•i.• is thus found to be 

(10) 
and if we denote the autocorrelation function 

(•.• (x)q•3. (x') ) by ,•(x,x') and put •' = x -- x', then 

•5(x,x') -- *o(X)*o*(x')exp(-øa(• 'x') ) (11) 
where o 2 denotes the variance of g(x)h(x) d- g*(x')h(x') 
and is given by 

o•(x,x ') = •[g•(x) + g*•(x') ] + 2g(x)g*(x')p(D. 
These expressions hold for any •. One realization of q•m½ 

is compared with its approximation (9) for k• = 10 in Fig. 
5 (a) and agrees closely. 

When • is small, the situation simplifies. To first order 
in h, (6) becomes 
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FIG. 5. (a} Comparison between q•,,, (dash•l line) and approximation 
(9) (full line), along a typical surface with • = 10, when the source is at a 
depth of 100. (b) Predicted value of the amplitude of the mean of•' (full 
line) as a function ofx comparecl with simulations (dotted line), taking the 
average over 500 realizations, for k4fi = 2.0. 

kX•in ½ (X) = kX•D(X ) [ l -- g(x)h(x) ], 

and therefore 8 = •og(x)h(x). We can thus transform 8 to 
the quantity • = 8/xI•0g, so that •---h. Then, • is approxi- 
mately stationary, with mean zero and autocorrelation func- 
tion p. A major advantage of transforming to a stationary 
function is that far fewer realizations are needed when calcu- 

lating statistics from numerical simulations. 
Consider again q•'. Since,4 o is linear and deterministic, 

it follows that (,4•-]q•i•½)=,4•-](q•i•c). So from (7), 
(•') •- (.4 •- '•i,c), where (•i,c) is known from (10). This 

is again confirmed by numerical simulations and despite the 
approximation for ̀ 4 holds well for/(• up to around 2, as 
shown in Fig. 5(b). 

In a similar way one can express the second moment of 
q•' approximately as a double sum (or integral) over the 
function (•,c (x)•c (x + •)). Using the semianalytical 
forms given in Sec. lII below, it is then possible to write the 
moments of •s in terms of those of •,,c. This will be the 
subject of another paper. However, the accuracy of the ap- 
proximation for .4 rapidly deteriorates as k•b increases, and 
there is a need to develop a more consistent approach. 

III. NUMERICAL SOLUTION 

We give a brief description of the numerical approach 
used for the inversion of integral equation (4), and the for- 
ward integration (5). 

A. Solution of •' from (1) 

The region of integration (0,x•v), say, is discretized us- 
ing a regular grid of N points (x/}. Sufficient resolution is 
required for both h (x) and q•i,½ (x). This gives rise to discre- 
tization of the Volterra integral equation ( 1 ). Each subinte- 
gral 

is treated by a simple mmbination of pr•uct integration 
and mid•int rules, to be approximated by 

1• ( k (•--Z/)2.•,(X,) • exp i 2 x,_Xt ] 

• • X' 
where • = (x,,h• (x,)}, Xt = •(xt + x•_ • ), and 
Z• = h • ( X t ). (Product integration is suitable here b•au• 
both •' and the exponential, and their de•vatives, are eff•- 
tively boundS.) This yields a set of liner equations, so that 
(4) •mes a mat fix equation in which A is lower trangular 
and easily inve•ed. 

It is e•y to test the nume•cal solution for a fiat surface, 
since the integral can then be card• out analytically when 
•' is any polynomial in x. 

B. Solution of •Fs from (2) 

Although this is a forward integration, the nature of the 
singularity in G makes it more difficult to solve than (1). 
This difficulty increases with depth and integration cannot 
be dealt with by simple quadrature. 

Consider again a subintegral 

where • = (x•,z). The exponent oocuring in G in (3) can be 
written 

i(k /2){ [z -- hl(X') ]•/(x• -- x')}. 
Expanding h l as a Taylor's series about x•, ignoring terms in 
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(x,--x') of second order or higher, and writing 
x, -- x' = (x, -- x') -- (x, -- xr), this becomes 

2k x,--x 

q- 2h '(x,) [z-- h•(xr)]). (13) 
The derivative h'(x r) here can be approximated by finite 
differences. Substituting (13) into (12), making a change of 
variables, and again using product integration, the subinte- 
gral takes the approximate form 

• x 

e-'•k/2'aq•'(Xr+• )Jb, 7 dy. (14) 
Here, 

y= (X n --X') --112, a= --2h'(x,)[z--hl(xr)], 
b• = (x• --x•) -•, b•= (X n --Xr+l) --I 

and 

•uation (14) can be integrated by parts and put in te•s of 
Fresnel integr•s. •ese sub•tegr•s c• then be summ• 
over r to •ve the scatter• field • (x,,z) for •y depth z. 

Nume•cal simulations using the above scheme can be 
t•t• both against full analytical solutions, in special •ses, 
and more gener•ly against "exact" numerical solutions? 
Figure 6(a) shows the amplitude I•[ of the full field • a 
function of range and depth for a fiat surfak. The amplitude 
of ß for one r•lization of a rough suffa• with k• = 0.8 is 
•ven in Fig. 6(b). 

IV. CONCLUSIONS 

The parabolic equation method 2 is an effective one for a 
wave incident at low grazing angles on a rough surface. Our 
numerical approach has been described, and an approxima- 
tion to the method has been introduced, which is valid for k• 
up to order unity. The approximation has several conse- 
quences. It allows the wave field to be split into a sum of 
deterministic and stochastic components. This, in turn, 
greatly reduces the computational expense because the sto- 
chastic part has a localized behavior. The decomposition 
also provides a framework for examination of some of the 
statistical moments. These results and the numerical scheme 

have been demonstrated computationally. 

FIG. 6. Amplitude [W} of the full field as a function of range and depth (a) 
for a flat surface and (b) for one realization of a rough surface with 
k• = 0.8. Here, the source is at the left and the surface along the far side of 
the figure. 
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