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The paper is concerned with the scattering of waves incident at grazing angles upon a rough 
surface on which Neumann boundary conditions apply, when the medium has a linearly 
varying refractive index. The scattering is governed by an integral equation, which uses a 
parabolic form of the Green's function. The numerical solution of this system requires careful 
analytical treatment of the Green's function, and the purpose of this paper is to describe the 
details both of the analysis and the numerical scheme. Some computational results are shown, 
and the accuracy of the inversion of the integral equation is tested by comparison with an 
analytical approximation. 

PACS numbers: 43.30.Hw 

INTRODUCTION 

The problem of acoustic scattering from rough surfaces 
has been widely studied in a variety of scattering regimes. A 
hard surface (Neumann condition) is needed for many ap- 
plications in aero- and ocean acoustics. Although it is fre- 
quently assumed that the medium has a constant refractive 
index, in practice this is often not the case, and an important 
extension of the models is to allow variations of the refractive 

index. The parabolic form of the Green's function has re- 
cently been extended (Uscinski •) to include the effect of a 
linear refractive index profile; this is valid for a wave field 
incident at low grazing angles, when scattering is accurately 
described by the parabolic equation method. 2• 

The governing equations take the form of an integral 
equation and an integral, which for a Neumann boundary 
condition, relate the field to the vertical derivative H(r;r' ) of 
the Green's function. (This approximates the normal deriv- 
ative • that usually appears in integral equation approaches. ) 
Numerical treatment requires the integral with respect to 
range of H. However H is not explicitly defined when its 
arguments coincide, and along a flat surface behaves like a 
delta function. The solution is complicated by the presence 
of weak singularities in the equations, as with the Dirichlet 
boundary condition. These difficulties are resolved by care- 
ful evaluation of H near the surface and extension of H to the 

surface by continuity. The main purpose of this paper is to 
describe this analytical treatment and the numerical solution 
that is then applied. 

Some results and illustrations are given. In particular, 
for the case when the profile variation vanishes, a simple 
analytical approximation for the field at the surface is exam- 
ined. This provides a test of the numerical solution for a 
given rough surface and allows the separation of the deter- 
ministic and stochastic components. 

I. GOVERNING EQUATIONS 

We consider the problem of a wave field at grazing inci- 
dence scattered from a one-dimensional rough surface. The 

Neumann boundary condition is assumed, that is, that the 
normal derivative of the field vanishes along the surface, and 
the refractive index in the medium itself is allowed to change 
linearly with depth. The coordinate axes are x and z, where x 
is the horizontal, x>•0, and z is the vertical, increasing up- 
wards (i.e., z is directed out of the medium). Let r = (x,z). 
The source is centered about r = (0,0), and the mean sur- 
face level is at z = z o. The rough surface itself is denoted 
h • (x), and h = h • -- z o so that h has mean zero. The surface is 
assumed here to have a bounded first derivative. In the nu- 

merical examples, h has Gaussian statistics and is stationary. 
Denote the rms of the surface h by & and its correlation 
length by Lx. 

The slowly varying part E of the wave field is defined by 

E(x,z)=p(x,z)e •k• 

The parabolic form of the Green's function G when the 
medium has an acoustic refractive index n (z) -- n o ( 1 + az), 
where no is a constant reference value, is given by (see Us- 
cinski • ) 

I 4 i expik((z-z' 2 G(r;r') = -•- 2 •' k ( x x ' ) -•- - - -;) -- X--X 

+a(z+z')(x-x') a2(x•-x')'•-• (1) 
12 J' 

when x'•<x and G = 0 otherwise, where r' = (x',z'). Then 
the derivative H = c)G/c)z' with respect to the second verti- 
cal coordinate becomes 

H(r;r') = o'(H l -- H2) , 

where 

(2) 

H,- z._-z_•' exp[t_• (.(z_ Z z'•)2 (x - x') 3/2 x - x 

+a(z+z')(x--x') a2(x--x')3.)] ' 
(3) 
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a [•_((z-z') 2 H, = -• (x -- x') •12 exp ' - X -- X' 

-t-a(z-F z')(x -- x') a2(x •x')3-]] , 
12 /J 

and 

(4) 

a = -- (i/2)x/•-/2o. 

The scattering and propagation is then governed by the 
following equations, • which relate the total field to the 
Green's function and the incident field along the rough sur- 
face: 

E,,c (x,z) = E(x'•') 8G (x,z,x',z') 
c•z' 

xdx'l,•n,cx•. ,'=*,cx'> +E(x,z), (5) 

which may be written in operator form as 

El, ½ = TE, 

and 

œ I E,(x,z) = -- E(x',z') c•G (x,z,x',z') 
(6) 

Equation (5) departs from the usual conventions for the 
analogous Helmholtz equations in the literature, and some 
discussion of this is required. The integral represents the 
limit of the integral in (6) as z approaches the surface. This 
differs from the common convention (for example, see Refs. 
5 and 6) in which the limit is taken first, i.e., the integral is 
over the pointwise limit of the integrand in (6). The integra- 
tion and limit operations fail to commute because as z ap- 
proaches the surface c•G/cCz' does not converge in the space 
L• ofintegrable functions. With the pointwise limit, for a flat 
surface the integrand vanishes almost everywhere, and the 
last term E(x,z) acquires a 1/2 factor. The integral limit (5) 
is arguably more convenient here, since this equation arises 
as the limit of Eq. (6), and also because the numerical treat- 
ment of these expressions approximates point values by inte- 
grals over small intervals. 

Now, the integral equation (5) must be inverted to give 
the total field Eat the surface, which may then be substituted 
in (6) to find the field everywhere in the medium. In the 
derivation of these equations the usual normal derivative 
OG/cgz' of the Green's function has been replaced by the 
outward vertical derivative. This implies a further small 
slope assumption, which is consistent with the parabolic for- 
mulation, and is discussed further elsewhere. • These equa- 
tions have weak (i.e., integrable) singularities as x'-•x. The 
main problem is to identify fully these singularities when 
r' • r, and to treat them numerically. The method of solution 
and the evaluation of the integral of H, will be given in Sec. 
II. An analytical solution of (5) as an infinite series when 
a = 0, and the approximation given by its truncation, will 
also be discussed. 

The incident wave in the numerical examples here is a 
simple Gaussian beam of width to traveling at a small angle 0 
to the surface: 

to 

E• (x,z) = 
x/w • + 2ix/k 

Xexp( -- 2z• + ikSw2(Sx - •'•'•'• '• 2-•x/• z).), (7) 
where S = sin(O}. In the computational examples that fol- 
low we have taken k = 1 and w = 8, and have considered the 
forward-traveling ca• 0 = 0. The surface correlation length 
is of the order of a wavelength. 

Some additional notation will be needed: •t Eo denote 
the incident field Em• (zo) along zo, and denote by T o the 
integral o•rator T [•. (5)] that would be due to a fiat 
surface. The numerical scheme (described •low) r•uires 
the region of integration (0,xs), say, to be discretized using 
a regular grid of N •ints {x• }, where x• = r•, and • is 
small comp•ed with variation in the surface and in the field 
E•,• incident upon it. 

II. SOLUTION 

The approach adopted in solving Eqs. (5) and (6) can 
now be described. Although the numerical method is similar 
to that which has been applied to a pressure release surface, 4 
careful analytical treatment is required, to deal with the sin- 
gularities in the Green's function and in particular to deter- 
mine the limiting behavior of H(r;r') as r'-,r. The integral 
of H over small intervals along the surface must therefore be 
evaluated explicitly. Although it is not possible to do this 
exactly for an arbitrary rough surface, the approximations 
that will be applied capture correctly the behavior near the 
singularities and are exact when the surface is fiat. The inte- 
grals of the function H away from the singularities are also 
required for the numerical inversion of (5) and the evalua- 
tion of (6), in which the factor E in the integrarids is treated 
as approximately constant over sufficiently small intervals. 
In the following equations z' denotes the value h• (x') at the 
surface, and the derivative dh/dx is written h '. 

A. Medium with constant profile 

1. Evaluation of H(r, r7 as r approaches the surface 

Suppose that the refractive index in the medium is con* 
stant. Then H = aH• and the exponent in H• simplifies. We 
consider the behavior ofHwhen r -- r' is small. This is nec- 

essary, firstly, because the integral of H is not completely 
defined by (2) about the point (x,z) = (x',z'), and must be 
extended by continuity. Furthermore, in doing so care must 
be taken to avoid taking the "wrong" limit. As an illustra- 
tion, consider H in the case of a flat surface. Then, for x' •x, 
putting z' = z in Eq. (2) gives H = 0. This is consistent with 
(5) only ifil behaves as a delta function at x = x' (see be- 
low). If we wish to quantify this by integrating H along the 
surface in a neighborhood of x, we might try do so for a 
slightly rough surface and let the roughness tend to zero. For 
small/•, expanding h about x this would give 

_ H(x•z;x',z')dx' 
•cth'(x) exp[(ik/2)h'2(x)(x--x')] dx'; 
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this tends to zero with h ', which is not valid. However if the 
integral of H is instead evaluated for z, at a small distance e 
away from the surface, and e is allowed to go to zero, the 
integral will approach the correct value in the limit. 

Now, let z -- hA(x) = •, where the surface h• is again 
rough. (Since z increases upwards • is negative.) Consider 
the integral 

x t t t H(x,z;x ,z )dx , 

where/3 (which will be the numerical discretization length 
Ax) is a fixed small parameter. If we expand z = h•(x') 
about x, the term z-z' becomes approximately 
• + (x - x')h '(x) and the function H becomes 

( • h '(x) ) H•a -(x_ x,)3/2 { (x_ x,)•/2 

X exp[•- e2 . (x_---•5-+ 2eh'(x) + (x--x')h'2(x))] 
The last term in the exponent is slowly varying and can be 
treated as zero over this interval of integration, since the 
form of the coefficients means that its main contribution 

comes as x'-•x. This equation can therefore be written 

H•a exp[ (ik/2)2•h '(x) ] (I, + I2) , (8) 
where 

and 

14 (x,x') - 
e [ ike 2 

(X --X') 3/2 exp[ 2(x --x') ) 

I2(x,x')-- h'(x) exp( ike2 ) (x-x') •/2 \2(x- x') ' 

Now, under the substitution 

k y = e 2(x -- x') 

the integral of I• becomes 

aI•(x,x')dx'= -2 exp y2 dy, (9) 

where b: -- *x/k/rr/3 (so that b is positive). This is a Fres- 
nel integral, and in the limit e-• 0, b vanishes and the integral 
takes the value 

lira I•(x,x')dx'= - •r (1 +i) . (10) 
•0 -/3 

The term I_, can be treated similarly. With the substitution 
y = e/xx/• •-- x' the integral becomes 

I2(x,x')dx' = -- 2eh '(x) dy (11) 
- •5 ---• ' 

where c = -- e/,fff. Integration by parts gives 
f ik6 2 \ ß 

--2h'(x)x•expk•-J+2•ikh'(x) ;:exp(t•y'-)dy. 
(12) 

In the limit, the second term tends to zero with e and the first 
simplifies to give 

iim I2(x,x')dx' = - 2h '(x)•-. (13) 
e•O 

Thus from (10) and (13) we obtain 

lim H(x,z;x',z')dx'•\• 2rr h'(x)- . e•O 
(14) 

For a flat surface this is exact, reducing to -- 1/2, so that 
H(x,z;x',z') is the delta function, -- •5(x - x')/2. 

We also require the integral of H over intervals of the 
surface in which x' does not approach x, but these are well 
behaved and are obtained easily from the more general case 
below. 

2. Evaluation of H(r; r•) for r in the medium 

Retaining the assumption that the profile is constant, 
consider the subintegral 

f •' • ' H(x,z;x',h ( x' ) )dx' 
over a small interval (xrx,+ • ), wherexr + • •x, when (x,z) 
is not on the rough surface. Now h(x r) can be expanded 
about x•, and omitting the factor ik/2 the exponent can be 
written 

[z-h(xr)] 2 B 

where 

X -- X* X -- X * 
--+2h'(xr)[z-h(x•)], 

B(x,z,xr) = [z - h(x,.)] 

X [z- h(x•) -- 2h'(x•)(x-xr) ] . 
(15) 

Similarly the coefficient becomes 

z__•z_' •a '(x (x - x') '/- ] O• (X--X') 3/2 --• )3/2 + ..... ' 
where 

A(x,Z,Xr ) : Z-- h(xr) -- h '(Xr)(X -- Xr) ß 
Thus H can be written 

(A h'(x•) )exp{ikh'(xr) H(x,z;x',z')•--a + (x_ x,)•/; 

X[z-h(xr)]}exp 2(x-x')' ' 
The separate components of H due to the coefficients A and 
h' can be approached much as before. Exponential factors 
that vary slowly are treated as constant over (X•,Xr + • ). The 
integral of H over (x•,x• +• ) becomes 

•r. , H dx'•aA exp{ikh '(xr) [z -- h(xr) ] } 

'ß • exp[ikB/2(x -- x') ] dx' x 
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+ ah '(x,)exp(ikh '(x,) [z - h(x,) ] } 

X f• .... exp [ik__B_/2 !_•_x -x')] dx'. (x-x ),/2 

(16) 

With the change of variable y-, x/kB/rr(x -- x') the first in- 
tegral is a Fresnel integral, 

2•B [C+iS]•, (17a) 
where S and C are the sine and cosine Fresnel integral, re- 
spectively, and 

A2=4 kB ahaB2 4 kB •r(x- xr) rr(x-x,+t) 

With the substitution y = kB/2(x- x'), after an integra- 
tion by parts and further change of variables, the second 
integral becomes 

The case r + 1 = n is similar. 

B. Medium with linear profile 

The treatment when there is a linearly varying profile in 
the medium is similar. The terms in the exponents in (3) and 
(4), which are due to the profile, vary slowly near the singu- 
larities and can be treated as constant over sufficiently small 
sub-integrals. Denote this slowly varying part as 

[ ik (a[z + h(X,) ](X- Xr) F(x,x,) = exp -•- 

---- (X --Xr) 3 (18) 
12 ' 

where X, may be chosen to be the midpoint of the interval 
(Xr,Xr+t). [Note that although the terms (x-X,), 
(x --Xr)3 in the exponent may become large, they do not 
give rise to rapid variation of F over distances considered 
here; in typical applications the profile parameter a is less 
than 10 2. However it is easy to deal analytically with larger 
distances because F begins to vary quickly only when the 
other exponential factor is itself changing slowly. ] The inte- 
gral of the term H• can then be found immediately from the 
approximations for the constant-profile case. The extra term 
H2 introduced by the profile remains to be dealt with. 

I. Integra/of He(r; r7 for r on the surface 

The integral of H2 over intervals (Xr,Xr+ I ) widely sep- 
arated from x dominates that of H, and is non-negligible 
even for a flat surface. In effect it is the main contributor to 

the repeated "bouncing" of the field against the surface. 
Apart from the slowly varying factors H 2 becomes 

f•ir+' exp(-? x•-•7) x/x--x' dx'. 
Substitutingy (positive), where try 2 = E2k/(x -- x'), the in- 

tegrand takes the form e •'y-' •y4, which integration by parts 
again yields in terms of Fresnel integrals. The contribution 
fro m H2 is then 

•'+ ' H2(x,z;x',z')dx' 
I• )3/2 (X --Xr) 3/2 ] =--a-- - 
3 

X'(x,x,)exp(i (19) 
2. Integral of Hdr; r7 for r in the medium 

When (x,z) is a point inside the medium the integral is 
treated similarly. After a change of variables and integration 
by parts we finally obtain 

• ' H2(x,z;x',z')dx' 
r 

--actF(x,x,)B 3/2 exp{ikh '(x•) [z- h(x,) ]} 

(20) 

where C and Sare again the cosine and sine Fresnel integrals, 
with A2, B 2 as in Eq. (17), and B = B(x,z,x• ) as in (15). 

C. Numerical treatment of equations 

With the calculations above, the numerical solution of 
Eqs. (5) and (6) is now straightforward, and is similar to 
that adopted for a pressure release surface. 4 The discretiza- 
tion{x• }, which may depend on the rms surface height 
gives rise to a discretization of the integral equation (5) and 
the integral (6). For example, for each n (5) becomes 

Ei,• (x,,z) = E(x',z') 

X-•7zG ' ( x,,,z,x',z') ,: h,(•,,). dx' z' = h•(x') 

• E(x,..z) . (21) 

Provided Ax is sufficiently small the slowly varying terms 
may be treated as constant over each subintegral and (21 ) 
may be written 

Ea.• (x.z) • GE, (22) 

where • denotes the vector E,. --E(x,•.h(x,• )), z = h(x. ), 
and • is the matrix: 

G,,,r(Z): H(x,z;x',z')dx', for r•n, 

G,, = 1 + H(x,z;x',z')dx'. (23) 

The constant 1 here is due to the term E(x,z) on the right- 
hand side of (5). The integrals are approximated by Eqs. 
(14) and (19) given earlier and this matrix equation is in- 
verted to solve for the field at the surface. The integral (6) is 
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FIG. 1. Amplitude of the field as a functio,• of range aud distance z from the 
surface. The source is located (beyoud the region shown) along the axis, 
which is to the left; the foreground extends slightly beyond the bouudary of 
the real medium. as indicated where the field vanishes. 

discretized in the same way; with the values now found for 
field at the surface, and the sub-integrals of H from (16), 
(17), and (20), the field everywhere can be computed. 

Although no analytical solution for an arbitrary rough 
surface is available, the accuracy of this method in practice 
can be examined using a number of obvious tests. The error 
is of order O(Ax); this cannot be improved upon without 

introducing substantially grater complexity in the analysis 
which is needed to evaluate G. Provided Ax is chosen to be 

small compared with variation in the surface itself and with 
Ei,• (x',z'), the accuracy will be satisfactory. 

The first check is that the boundary condition is satis- 
fied, i.e., that the normal derivative of the field E vanishes 
along the surface. This is clear from Fig. 1, which shows the 
amplitude of the field as a function of range x and the vertical 
z in a region around the surface (whose outline is marked by 
the discontinuity in E). In the case era nonconstant profile a 
and a flat surface the "bounce" length x,, i.e., the distance to 
the first intensity peak along the surface, is given by 
x, ---- (2zola),/2. Provided that successively scattered peaks 
are separated, it is easily shown from the ray paths that they 
should occur at intervals of 2x,. Figure 2 shows the ampli- 
tude of the field scattered from a flat surface as a function of 

range and depth, in a medium with a fairly strong linear 
profile. The interference and channeling effects due to the 
profile are clearly seen. Further results and illustrations are 
given elsewhere' and these will not be reproduced here. 

When the profile variation a is zero, an analytical check 
can be used for moderately rough surfaces, and this is de- 
scribed below, with some additional comparisons. 

D. Further results 

When there is a linear variation of the refractive index in 

the medium analytical treatment becomes intractable, par- 
ticularly for a rough surface since the profile introduces mul- 
tiple scattering against even a slightly rough surface. Sup- 
pose however that the profile is constant, and consider Eq. 
(5), E•,,,: = TE. The flat surface form T o is given in this case 
simply by 1/2. Recall that Eo(x) = E,,,• (X,Zo), i.e., the inci- 
dent field along the line z o in the absence of the surface. We 
can write T= T O + A r, and Emc = Eo + AE- Then A r is 
just the integral operator defined by 

FIG. 2. Contour plot ofthe amplitude of the field in a medium with a profile a 0.015. Range and depth are represenled by the horizontal and vertical axes, 
respectively, •s ith the source at the left, and the surface along at the bet!ore edge. lhe source is at 22 m, and the graph shows the field over a db;tance of 520 m. 
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FIG. 3. Amplitude of the field with the deterministic component removed 
from the numerical solution (dashed line) and the approximation equation 
(25) (dotted line), for a rough surface with k• = 0.2. (b) Comparison as in 
(a) for a different surface with kd• --- 2.5, with an extra term from Eq. (24) 
included in the approximation. 

At(f) (x) = H(r;r')f(x')dx' --f(x)/2, 

where r,r' lie on the surface. We want the solution 
E = T-'Ei,, and since To is constant (and therefore com- 
mutes with all other operators) we can write 

T-•=Tg'(1--To •AT + Tg:A • .... ) (24) 
so that 

E = (2 - 4At + 8A• .... )El. c. 

The terms A7 are easily evaluated by repeated application of 
At. Truncation then gives the approximate solution 

E(x,h(x))--•2E o + 2A• - 4ArEo, (25) 

where we have neglected products or powers of At, 
These expressions are quite convenient in several ways. Most 
usefully here, (25) provides a simple analytical test of the 
numerical solution for slightly rough surfaces. Figure 3 (a) 
compares Eq. (25) with the full numerical solution for the 
amplitude of the field, after the deterministic component 
Ei,c (r) has been subtracted, for k•b = 0.2. It is easy and 
computationally inexpensive to take further terms in the se- 
ries (24). Figure 3(b) shows the comparison for a different 
surface with kqfi = 2.5, when one extra term from the series 
(24) has been included. 

The first two terms on the right of Eq. (25) are purely 
"local," and although the last term may be regarded as once- 
scattered, it gives rise to the leading order multiple scattering 
component anywhere away from the surface. (Multiple scat- 
tering is usually considered to arise where the field results 
from more than one surface integration. 5) The expression 
can also be examined (by analogy with the pressure release 
surface 4) to quantify the distance over which the details of 
the surface appreciably affect the scattered field. The sto- 
chastic part of E along the surface is given by the last two 
terms, and from these an approximate form for the mean 
field along the surface is easily obtained. 

When there is a linear profile in the medium, the expan- 
sion (24) (for the appropriate operators T o and A r) does 
not hold because T o no longer commutes with At. It is also 
clear that no "local" approximation can be valid in that case 
since the wave field is repeatedly scattered at the surface, and 
analytical treatment both for hard and soft surfaces becomes 
difficult. 
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