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The coherent component of the field scattered at grazing angles from a slightly rough pressure 
release surface is found. This is valid for multiple scattering and is based upon the parabolic 
integral equation method. Also examined are the scattering of planes waves under the method 
and in particular, the effect of truncating the boundary integral. It is shown that the coherent 
field remains invariant when the source and receiver are displaced vertically by equal and 
opposite distances, as was found numerically in a previous paper. In general, this can be shown 
to hold because the coherent field due to any plane wave is specular; however, under the 
parabolic equation method reflection is not specular, and thus the result is of particular interest. 
Reflection coefficients are given in closed form for several surface statistics, valid asymptotically 
at large distances. 

PACS numbers: 43.20.Fn, 43.20. Bi, 43.30.Hw, 43.30.Dr 

INTRODUCTION 

One of the main aims of the study of acoustic scatter- 
ing by rough surfaces is to relate quantities such as the 
mean or coherent component of the field to the statistics of 
the surface? -n A common approach to this is to consider 
the effect on incident plane waves. For a pressure release 
surface, the Helmholtz equations describe the field as a 
boundary integral in the normal derivative, which in turn 
is expressed as the solution of an integral equation. When 
the incident and scattered wave fidds propagate at small 
angles to the surface, the full Helmholtz formulation may 
be replaced by the parabolic equation (PE) method. 5-a In 
this forward-scattering approximation the Green's func- 
tion is recast in a paraxial form, and the region of bound- 
ary integration is truncated to lie between the vertical 
planes of a source and the "receiver." In particular, the 
derivative of the field at the surface is treated as the result 

of scattering only from the direction of the source plane. 
The PE method has proved extremely useful for for- 

ward scattering; it is highly efficient computationally and 
this formulation has allowed accurate inverse scattering 
solutions 9Jø to be developed. (For the inverse solutions at 
nongrazing incidence see, e.g., Ref. 11.) Nevertheless in 
several respects the method is not well understood. In Rcf. 
12 it was found numerically that for a Gaussian beam at 
grazing incidence, scattering under the PE method obeys 
an image property: The coherent field remains invariant 
when the source and receiver are displaced vertically by 
equal distances in opposite directions. Now as is shown 
below, this is a general property of rough surface scatter- 
ing, because for arbitrary angles of incidence the coherent 
reflection of plane waves in specular. However, specular 
reflection under the PE method cannot easily bc checked 
and it has remained unclear why the method should pre- 
serve this invariance. 

In this paper we obtain the coherent scattered field at 

low grazing angles, and examine the scattering of pianes 
waves under the parabolic equation method. In particular, 
we describe the effect of boundary truncation in the 
method on plane waves; we obtain the corresponding co- 
herent component and show that it is not specular. This is 
applied to a full incident field, and is used to show that the 
coherent field obeys the image invariance property. This is 
an important test of the method, in view of the nonspecular 
reflection of plane waves. The expressions obtained are 
valid for multiple scattering from slightly rough surfaces 
and depend upon the autocorrelation function of the sur- 
face and its derivative. At large horizontal distances from 
the origin, however, specular reflection is recovered. Effec- 
tive reflection coefficients for plane waves are then given, 
and in several cases are expressed in closed form. This 
calculation also provides a convenient measure of the de- 
pendence of accuracy of the PE method upon incident an- 
gle. 

The results are obtained as follows: The scattered field 

is found along a plane close to the surface by an expansion 
in terms of the vertical derivative of the field at the surface. 

This derivative is solved using the governing integral equa- 
tiori hnder certain approximations, and further manipula- 
tion yields tractable expressions which can easily be aver- 
aged. 

I. PARABOLIC EQUATION METHOD 

We consider the problem of a scalar time-harmonic 
wave field p scattered from a one-dimensional rough sur- 
face h(x), with a pressure release boundary condition. 
(For electromagnetic waves this corresponds to s or TE 
polarization, and perfect conductivity.) The wave field 
propagates with wave number k, and will be assumed to be 
incident and scattered at small grazing angles with respect 
to the surface. The field is governed by the wave equation 
(V2+k2)p---O. The coordinate axes are x and z, where x is 
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the horizontal x>O, and z the vertical, directed out of the 
medium. It will be assumed that the surface is statistically 
stationary to second order, i.e., its autocorrelation function 
is translationally invariant. The mean surface level is taken 
at z=0, so that h(x) has mean zero. The autocorrelation 

function (h(x)h(x+•)) is denoted by p(•), and we as- 
sume that p(•)-,0 at large separations •. (The angled 
brackets denote the ensemble average.) Then o•=p(0) is 
the variance of surface height, so that the surface is of 
order O(a). We will denote by L the charactefistc corre- 
lation length of the surface. 

Since the field propagates predominantly in one direc- 
tion, we can define a slowly varying part •b by 

•b(x,z) =p(x,z)exp( --ikx). 

Incident and scattered components ½i and ½s are defined 
similarly, so that ½-----•pi+tps. We will sometimes denote by 
the •b• ø the field which would be reflected from a fiat sur- 
face, tpsø(x,z)=--•i(x,--z). It may be assumed that 
•,(x,h(x)}=O for x<0, so that the area of surface illumi- 
nation is restricted, as for example when the field is a di- 
rected Gaussian beam. The governing equations for the 
parabolic equation method •'6 are then 

½i(r) = -- G(r;r') dx', ( 1 ) 

where both r={x,h(x}}, r'={x',h(x')} lie on the surface; 
and 

f• •ps(r) = G(r;r')•dx', (2) 

where r' is again on the surface and r is now an arbitrary 
point in the medium. Here G is the parabolic form of the 
two-dimensional Green's function given by 

[t•x;x ,[ik(z--z')2] exp[ 1' for x' 
=0, otherwise, (3) 

where a = 1/2 i/xfer. [This form gives rise to the finite 
upper limit of integration in (1) and (2).] The Green's 
function is derived under the assumption of forward scat- 
tering, i.e., that the field obeys the parabolic wave equation, 

•P•,+ 2ik•pzz= 0, (4) 

which holds provided the angles of incidence and scatter- 
ing are fairly small. 

II. COHERENT FIELD AND IMAGE PROPERTY 

In this section we will examine the parabolic equation 
method, first showing the characteristics of scattered plane 
waves, and then finding the coherent field for multiple scat- 
tering at grazing incidence. We first discuss the scattering 
of plane waves from a rough surface in general, and the 
specular description of the mean field due to an arbitrary 
source. 

A. Specular reflection for arbitrary angles of 
incidence 

In general, provided the rough surface is statistically 
stationary, the coherent scattered field due to an incident 
plane wave is again a plane wave. This is well known (e.g., 
DeSanto and Brown•), but it is useful to demonstrate it 
briefly here. The invariance which we require follows im- 
mediately from this. 

Suppose that a plane wave exp(ikxx + ik,z) is incident 
with wave number k upon the statistically stationary rough 
surface h(x), where kz= k,d-•. Denote the resulting 
scattered field by Pscat- We can choose (h) =0. 

Now, translation by • is equivalent to multiplication 
by e •,'•, that is, 

exp ( ik•,[ x + • ] + ik•z ) = e a,• exp ( ik•x + ik,z, ) 

for all x and •. Then, since the equations are linear in the 
incident field, and the surface is stationary, 

) ) (5) 

for z above the highest part of the surface. Since this holds 
for all x and • it follows that 

(p•t(x,z)) = R•,•(z)e i•' , (6) 
where R•,,(z)=(Pscat(O,z)). Thus (p•t(x,z)) is a plane 
wave as a function ofx along any z plane. Now, away from 
the surface the coherent field is governed by the wave equa- 
tion. Therefore 

x _ R e ikxx-ik'2 •Pscat (X,Z) / -- kx , (7) 

where R• is the effective reflection coefficient, R• 
----- R[•(zl)e ik•zl, and this is the required result. Thus, since 
any incident field can be expressed as a distribution 

tpi= • A ( kx)e ikxx + ikzz dk x 
of such plane components, the coherent scattered field is 
equivalent to the field due to the modified "image" 

(•b,) = f a (kx)R•f i•x-i•z dk x . 
This leads immediately to the following, which we refer to 
as the image property: The coherent field remains un- 
changed if the source and observation point are displaced 
vertically by equal distances in opposite directions. 

This property can be viewed as the result of the com- 

mutativity between the operators S• and L+g acting on 
functions of x, where L+• is free-space propagation 
through a distance • between two horizontal planes (the 
sign being chosen according to the direction of propaga- 
tion), and S•i is an averaged scattering operator: 

[ ] = 

Here, S• and L• commute because, as is shown by {7), 
they have in common the eigenvectors e a•. Therefore for a 
rough surface at z=O, and z• near the surface, we can write 
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the mean scattered field at any z' in terms of the incident 
field •Pi,½(x) at z: 

( lPscat ( X,Z' ) ) = Zzl_z,ShLz , - •pinc (x) } 

= L2 h - (•' +•)&l(½i,c (x)). 

This depends only on the sum z' +z, which shows the re- 
quired invariance. Analogous results clearly hold for three- 
dimensional wave propagation, and for elastic and layered 
media with irregular interfaces. 

Approximate values for the effective reflection coeffi- 

cients Rkx have been provided by various methods, for ex- 
ample, perturbation analysis, • the Kirchhoff approx- 
imation, 1'2 and the smoothing method. 3 

B. Coherent field at grazing incidence 

We now examine the scattering of plane waves under 
the parabolic equations set out in Sec. I. The coherent 
component will be obtained, and from this will be found 
the coherent field due to an arbitrary forward-going source. 

The significance of plane-wave scattering in the PE 
method is to some extent formal rather than physical, since 
plane waves violate the assumption of restricted surface 
illumination. However, the results yield insight into the 
effect of boundary truncation and provide a tractable route 
to the calculation of the full coherent field. 

In order to proceed we find the field along a plane, as 
follows: We assume slight roughness so that there is a 
plane at gl close to every point on the surface h(x). By 
expanding tp• to second order in (Zl-h) about h(x), we 
write tp• in terms of functions including dtp/dz. The plane 
wave contributions to &b/dz are found by applying a non- 
local approximation to Eq. (1). Note that, since the ex- 
pansion of tp s is in functions which themselves depend on h, 
the h dependence of each term is not restricted to its coef- 
ficient. The results will be obtained to second order in h, 
i.e., to 0(o2). Since z• is of order a, we may neglect terms 
such as h2Zl and h•. 

Consider the slowly varying part •bi=pe -ikx of an in- 
cident field p which obeys the parabolic equation (4). We 
may assume that this field can be written as a distribution 
of plane-wave components 

lPi(x,z)= A(O)•biø(x,z) dO, (8a) 

where 

Oiø(x,z) =e -i•x exp(ik[x sin O+z cos 0] ). (8b) 
Define S=sin 0--1. When kh(x)cos 0 is small we can 
write 

•b/ø (x,h) = exp{ik [xS + h (x) cos 0 ] } 

•ei•$[ 1 + ikh(x)cos O- ( k2/2 )h2(x )cos 2 0]. 
(9) 

For fixed wave number k this holds at low grazing angles 
and for moderate surface roughness, but of course is not 
uniform in k. Along the surface h(x) the component (9) 
has z derivative 

Oiø(x,h ) 
-- =ik cos 0 ) 

-ei•S[ ik cos O-k2h(x)cos 2 0 

-- ( ik3/2 )h2(x)cos 3 0]. (10) 

Consider now the scattered field at z•. Writing this as 

•b•(x,z•) =•bs(x,h + [z•-h l ) 

and expanding about the surface h we obtain to second 
order in (Zl--h) 

+ 

1 2 02•s(x'h) 
022 (11) 

We will restrict attention to x>> L, where L is the 
surface correlation length. This is not a significant limita- 
tion since, in this regime, •p• is negligible for small x. Now, 
the boundary condition gives •(x,h) = - •bi(x,h). Also the 
zerothoorder (i.e., flat surface) solution for the scattered 
field is •b•ø(x,z)=-•Pi(x,-z). From this the second-order 
term in ( 11 ) may be written 

021ps( x,h ) 
022 =- o•-•+o(a) (12) 

and the quadratic factor (z•--h) 2 allows the O(rr) term to 
be neglected: 

O•bs(x,h) O•b(x,h) O•bi(x,h) 
Oz 02 Oz 

(13) 

The term &p(x,z)/02 in (13) can be written as the solution 
of Eq. (1) in Sec. I. It was found in Ref. 12 that for 
moderately rough surfaces this is reasonably well approx- 
imated if G in the integrand is replaced by its flat surface 
form G(x,z;x',O)=a/x•--x'. This introduces an error of 
order O(o2), which may again be neglected because it oc- 
curs in (11) with an additional factor (z•-h). Thus 

;o • a O•b ( x',h ) lPi( x,h ) --• -- • -•z dX '. (14) 
This form is known as a generalized Abel's equation, and 
has the solution (e.g., Ref. 13) 

O½(x,h) = a x-x' l 02 

Using (12), (13), and (15), we can rewrite (11) as 

(15) 
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(16) 

We now consider the restriction of the right-hand side 
of Eq. (16) to the plane-wave components of •Pi. Accord- 
ingly, define 

½•ø (x,za) -- - •iø( x,h ) - (z• - h) 

ß (17) 

By (9) the integral term in (17) can be written 

d fo • •ø½x',n(x')) (18) 

where 

d f•: e ikSx' Do(x) =•xx a qx--x' (19) 

d f•: k2h2(x,)cos2 0 I2(x) - 
e&Sx ' 

2a•x_x,•x', (20) 
and 

x eikSx' 

I(x) = fo ikh (x')cos 0 ct •-•-•--x' dx'. (21) 

Since 12 is 0(o 2) and occurs in (17) with a factor O(rr), 
we may neglect it. Note that I is linear in h. Now the 
deterministic (i.e., surface independent) term D o can be 
expressed in the form 

q- iS 1 ( -- kSx) }e iksx ], (22) 

where C a, S 1 are the Fresnel integrals TM 

f• sin t 
cos t 1 y 

•-dt, Sl(y)= • •dt. 
For the moment, we will retain the notation D o. So by (9), 
(10), and (18) the expression (17) becomes 

k2 •b• ø (x,zt) = - 1 + ikh (x) cos 0- • cos 2 0 

X [h2(x) + (Zl-h) 2] )e ikxs 
-(za-h) +•xx + ikcos0 

k3 O)dkxS] --k2h(x)cos 20--i-•- h2(x)cos 3 . (23) 
We must now find the mean of ½.•. On averaging, all terms 
which are linear in h vanish, and (23) gives 

0 Zl ( (•(x,zi))=--• Do(X)-- l+ikzi cos 0 

--• COS 2 0 eikXx+ h(x)• , 
(24) 

where • is the variance of the surface height. Here we 
have neglected an O(a 3) term ik3zi• cos 3 0/2, which is 
also of third order in the grazing angle. Three other terms 
in • have cancelledß 

It remains to evaluate the term involving the integral 
I. By the chain rule we can write 

(h•):[ d(hI) Idh•. 
Consider first the mean of d(hI)/dx. The average can be 
taken under the integral sign in I, so from (21) this tern 
becomes 

d[ • ei•s•' ] •'•l fo a• ikp(x--x')cøs Odx' , 
where p(x-x') is the autocorrelation function 
(h(x)h(x')). We can put •=x-x' and write this as 

(d(hI)• d [• ikxS e -ikS• Od•]. fj 
Since x • L and the autocorrelation function falls to zero at 
large separations, we can replace the upper limit of inte- 
gration by m, so that the integral becomes independent of 
x and we obtain 

[d(hI) )k2S eikxSf• e -iksg = - cos 0 p(•) d•. 

(26) 

Consider finally the remaining term {I dh/dx) in Eq. 
(25). The derivative dh/dx can be taken inside the inte- 
gral, so that 

= • eisa' ik(h x' dh(x) X 
(27) 
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Since the correlation function p is stationary, we can write 
(see Papoulis? 5 p. 317) 

, dh(x)\ dp(g) 
' (28) 

where •=x--x'. So, reasoning as before, (27) becomes 

[ i dh > ik O ei•Sx • e-ikS• dp(• ) •- COS -- \ dx a x[• d• d•. (29) 
Collecting terms, and using (25), (26), and (29), Eq. (24) 
can now be written 

( {½•(x,z•))•---- Do(x)-- l+ikz• cos 0 

• O) e ikxx-- r 0 e ikxx, cos (30) 
where the coefficient T o is given by 

• e-i•g[ 
ro=• cos ldp(•)] I ik 

(31) 

The integral T o is calculated in closed form for certain 
cases below. It is convenient to reverse the approximation 
(9) and write (30) as 

ZI 
opsO(x,z,) > • _-- Do(x ) _eik(sx+z. cos 0) _ To ei•X. 

(32) 

This is the first of the results required; it represents the 
mean field near the surface due to a plane incident wave 
under the parabolic equation method, using approximations 
(9)-(12) and (14) and is valid for x•L. 

We obtain reflection coefficients for forward-scattering 
at grazing incidence by letting z I --,0 (see remarks later) or 
simply to write the deterministic part by appealing to the 
exact solution for a flat surface: 

<lpsø(x,zl) ) m --eikXx( 1 + To). (33) 
Suppose now that •Pi is an incident field written as in 

(Sa). From (33) 

0Ps(X,Z) ) ------- -- ½•(x,--z) -- f•r.4 (0) r o e •k(s• •o• o). 
(34) 

As mentioned above, although this is restricted to x • L, it 
is not a significant limitation because we can assume 0, to 
be negligible at smaller values of x. The Appendix gives T O 
in closed form for three cases: Surfaces with Gaussian, 
exponential (fractal), and modified exponential (subfrac- 
tal) autocorrelation functions. 

C. Spatial and asymptotic dependence 

Although we have discarded certain terms in (32), the 
expression gives an opportunity to examine the angular 
dependence of the accuracy of the PE method. It can be 
seen that the coherent field (32) is nonplanar as a function 
of x, but having neglected the term in ZiG • cos 3 0 the de 

parture from plane-wave behavior is contained completely 
in the deterministic part D O [see (22)]. Consider a fiat 
surface, so that To----O in (32). For sufficiently large kxS 
the coefficients C• ,S• approach 1/2, D O approaches a plane 
wave, and specular reflection is recovered: 

z I z I 2• ( 1 q- i) e i•$x 
= -- 2ikz• x•e •s•. ( 35 ) 

(Some care is needed in choosing the sign of the square 
root correctly. ) This is an asymptotic limit for large x, but 
is not uniform in angle in incidence. On the other hand, for 
low grazing angle •r/2--O, the coefficients C•,Si vary 
slowly with respect to x so again D O is plane wave e ikSx 
modified by a slowly varying envelope, and in fact vanishes 
in the limit. Now, in the large x asymptotic limit (35), Eq. 
(32) remains inaccurate for a fiat surface: The exact solu- 
tion atz• is e i•(xs-z' cos 0). However from (32) and (35) the 
reflection at z• is given as 

< lps • ( X,Z 1 ) > • -- e i•sx [ 1 -- ikz• ( 2 x/-- 2S -- cos 0 ) ] 

• -- exp [ ikSx -- ikz• (2 •2 - 2 sin 0 

-cos 0) 1. (36) 

This implies a phase error of 

2kz(cos 0- x/2-2 sin 0), (37) 

which, to second order in the grazing angle O'=rr/2--O, 
becomes 

(kz/4)0'3+0(0'4). (38) 

This error arises in applying the integral Eq. (1) to relate 
the surface derivative dtb/dz and the incident field, and is 
therefore inherent in the PE method. 

We also wish to show that the PE method obeys the 
image property. As we have discussed in Sec. II A, this 
follows immediately if the mean reflection due to plane 
waves is specular. The preceding comments make clear 
that this holds at low grazing angles, and at all other angles 
in the limit of large x. This is the case despite the above 
phase error (38). 

Some remarks should be made concerning the rela- 
tionship between the component tb•ø(x,z) at z=zl and at 
z=0. First, we were able to set zi to zero in (33) because 
the only zi-dependent terms remaining after averaging 
must be negligible or deterministic, and in the latter case 
this step is clearly valid. Thus the coherent field could have 
been obtained by setting zi = 0 from the start. However, for 
zi chosen above all points on the surface the (unaveraged) 
scattered field has a straightforward physical interpreta- 
tion. 

Second, it may at first seem inconsistent with the wave 
equation that a nonplane component zl D o appears only for 
z•-•0. Since this part is purely deterministic, we can sup- 
pose here that the surface is flat. Recall that D O (22) is the 
0 component of the exact solution (15) for the derivative 
d•p/dz due to the decomposition of •pi. The term z• D O oc- 
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curs in expanding the field at z 1 (11 ) about h----0. Thus the 
fields at z=z 1 and at z=0 are consistent with the parabolic 
wave equation, the additional x dependence arising purely 
from the boundary truncation at x=0. (As discussed ear- 
lier the individual 0 components of the solution are to be 
interpreted formally rather than physically in the region of 
small x.) When the plane wave components are recom- 
bined, from (15) and (19) we get 

r 0½0(X,0) &Pi(x,O) A ( O) Do dO= -- rr -- -- -- 2• -- 
• 3z & 

Thus for a flat surface we obtain from (32): 

a½•(x,0) 

= - ½i(x,-zl) + 
where the second equation can be seen by taking Taylor 
expansions of ½i and d•b//dz. This is correct to first order in 
z l, so that the additional spatial dependence in the com- 
ponents D o does not cause inconsistencies in the reflected 
field. 

III. SUMMARY 

We have considered scattering at grazing incidence 
from rough surfaces under the parabolic equation method. 
The coherent component of the field for slightly rough 
surfaces has been found (34), and expressed in terms of the 
autocorrelation function of the surface. Effective reflection 

coefficients (33) have been given for scattering due to in- 
cident plane waves. We have examined the effect of trun- 
cating the boundary integral upon plane waves; the field at 
a near-surface plane was obtained (32). Plane-wave reflec- 
tion is not specular, but at low grazing angles or in the 
limit of large x it becomes specular. However a phase error 
remains (38) even in the large x limit. Nevertheless, this is 
sufficient to verify preservation of the image property. Ex- 
tension of the results to the higher moments, from Eq. 
(23), should be straightforward. 
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APPENDIX: EXPLICIT EVALUATION FOR SPECIFIC 
SURFACES 

We return now to the effective coefficients (33). The 
integral in coefficient T O [Eq. (31 )] is a Laplace transform. 
In several cases of interest we can express this integral in 
closed form, or in terms of standard functions. We give 
three examples. In each case the parameter L determines 
the correlation length of the irregular surface. The first two 

functions are characteristic of surface features which are 

jagged compared with the third, the Gaussian autocorre- 
lation function. 

(1) Consider the "fractal" autocorrelation function 

p(•) =o • exp(--•/L). 
Then 

l 

The coefficient T o takes the value •4 

k 2 oo / 1 \e -g(i•s+l/œ) 
o:oOfo j 

k 2 S+ 1/ikL 

--•a •cøsO i•l/L' (AI) 
(2) The "subfractal" autocorrelation function is 

p(•) =•( 1 + •/L)exp(--•/L). 
In this case 

I dp(•)=•exp(•) S 1 
The coefficient is given by • 

k • 

To= • • cos [ S+ 1/2ikL 1 
(3) Finally, consider a Gaussian autocorrelation func- 

tion, 

p(•) =• exp(--•2/L2). 
We can again find the integral exactly, with coefficients in 
terms of standard functions. Here, 

(-5[ 1 dp(•) =• exp S+i• p(g)s dC ' 
The integral in T o is the sum of two Laplace transforms, 
and can be written (see p. 146 of Ref. 16) 

To= (k2/•a) • cos 0 exp(-- (kLS):/8) 

{• '/•[(kLS)•I X (ikS) 

2 / L•3/2 /3• /ikSLS} 
Here, F is the Gamma function, K is the modified Bessel 
function of the third kind, and D is the parabolic cylinder 
function. 
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