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Wave propagation and scattering are considered in a medium consisting of a slightly rough elastic 
layer adjoining a fluid half-space. The solution is obtained for the mean wave potentials in both 
media, due to multiple scattering within and reradiation from the layer. This is found by deriving 
effective transmission and reflection coefficients for each irregular boundary, and then showing that 
the problem is equivalent to the deterministic one for a plane-sided layer with these effective 
coefficients. The solution exhibits the dependence upon the variance and correlation length of each 
boundary explicitly. 

PACS numbers: 43.20.Fn, 43.30.Hw 

INTRODUCTION 

Wave propagation in layered elastic/fluid media is a fea- 
ture of many problems (see for example Brekhovskikh•), 
ranging from ice-covered oceans and seismology to nonde- 
structive testing. In many applications the boundaries are to 
some extent irregular (Takenaka et al. 2). However, in most 
theoretical treatments this is neglected, largely because of the 
intrinsic complications of multiple reflection and scattering. 
A natural approach to the problem is to treat the irregular 
surfaces as stochastic, and to seek the statistics of the scat- 
tered field. This is a common approach to half-space prob- 
lems, in which it is frequently of interest to find the mean or 
coherent component of the scattered field (e.g., Dacol 3 and 
Bass and Fuks4). Such results are almost always restricted to 
slight roughness, with some notable exceptions which treat 
the opposite extreme (Talbot et al. 5). 

In this paper we obtain the mean field for wave scatter- 
ing in an elastic fluid-loaded layer, in which one or both 
boundaries of the layer are slightly rough. The solution ex- 
hibits in a simple way the approximate dependence on the 
statistical characteristics of both surfaces. Furthermore, the 

method can in principle be extended to arbitrarily rough 
boundaries. The method is as follows: consider first the scat- 

tering of plane waves incident at a rough interface. The re- 
sulting mean field must obey a generalization of Snell's law, 
so that the average transmitted shear component, for ex- 
ample, is a plane wave propagating at the same angle as for 
a plane interface but with a modified transmission coefficient 
(see DeSanto and Brown, 6 Spivack?). These coefficients de- 
pend on the statistics of the irregular interface. Now for an 
irregular layer the total field may be treated as an infinite 
sum of components due to multiple reflection within and 
reradiation from the layer. Provided the layer depth is large 
compared with both the wavelength and the scale size of the 
surface, we can make the assumption that successive scatter- 
ings are independent, i.e., that after each interaction with a 

a)Present address: Eton College, Slough, Windsor SL4 6DW, United King- 
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surface H(x) and double propagation across the layer the 
features of the diffracted field are approximately uncorre- 
lated with H(x) itself. We then show that the mean total field 
is formally equivalent to that for a plane-sided layer in which 
the reflection and transmission coefficients for each bound- 

ary are replaced by the above modified ones. The solution we 
apply for the plane-layer problem follows the formulation of 
Sheard and Uscinski. s (See also Deschamps and Chengwei 9 
who similarly treat an immersed layer.) Thus the problem is 
reduced to finding these coefficients; this is done to second 
order in surface height by finding the field near to the surface 
using a tangent plane approximation. The solution is then 
complete; it is straightforward to extend this to a rough elas- 
tic layer immersed in a fluid, to multilayered media, to a 
model in three dimensions and so on. 

The tangent plane approximation developed here im- 
poses fairly strong restrictions on the surface roughness, but 
is used because it leads to tractable results which exhibit the 

main features of the statistical dependence. The main limita- 
tions of the solution are associated with this approximation: 
the coefficients have cusps at certain angles associated with 
poles and branch points, which may give rise to surface 
waves. Near such cusps each coefficient varies rapidly with 
angle of incidence, and so the approximation becomes re- 
stricted to much smaller roughness. In addition the local 
scattering assumption is violated by surface modes. These 
problems, however, may effectively be removed by taking 
absorption into account. This is described in more detail be- 
low, where the solution is examined for parameters pertain- 
ing to an ice/ocean medium. 

The plan of the paper is as follows: The preliminary 
equations are given in Sec. I. In Sec. II the effective coeffi- 
cients are derived, the system is solved, and the limitations 
and their resolution are explained. 

I. PRELIMINARIES AND BOUNDARY CONDITIONS 

We consider wave propagation in a two-dimensional 
system, consisting of an elastic layer with irregular bound- 
aries H•(x), H2(x ) adjoining a fluid half-space. It will be 

72 J. Acoust. Soc. Am. 97 (1), January 1995 0001-4966/95/97(1)/72/12/$6.00 ¸ 1995 Acoustical Society of America 72 



Medium I 

Medium 2 

Surface z=H• (xJ 

FIG. I. Schematic view of the scattering geometry. Medium 1 denotes the 
elastic layer, and Medium 2 the fluid half-space. A plane wave is incident 
from the fluid. The x and z axes are horizontal and vertical, respectively, and 
H•, H 2 denote the irregular upper and lower boundaries of the layer. 

assumed that these rough boundaries are drawn from some 
ensemble obeying given statistics. In particular we write 
Hi(x ) =zi+ hi(x ) where we assume that h• ,h 2 are stationary 
to second order. Thus (hi(x)) is zero and (hi(x)hi(x+ •)) is 
a function of • only. (Here and elsewhere the angled brackets 
denote the ensemble average.) The axes are, respectively, 
parallel and perpendicular to the mean surfaces (see Fig. 1). 
The propagation of elastic waves in the two media are mod- 
eled by potentials qb,• in the fluid, and &i and ½/in the solid 
(e.g., Ewingre). (The subscripts here denote "water" and 
"ice" corresponding to the envisaged application.) Displace- 
ment and stress are related to derivatives of these potentials; 
the boundary conditions are given by the (local) continuity of 
stress and normal displacement across each interface. These 
give equations relating the derivatives of the potentials at the 
surface. 

Consider for the moment solid and fluid half-spaces 
separated by a flat boundary. A plane acoustic wave imping- 
ing on the surface of the solid from the fluid (see Fig. 2) 
leads to a reflected wave in the fluid, and two transmitted 
waves (transverse and longitudinal) in the solid. The relative 
amplitudes and phases of these waves may be calculated by 
applying the boundary conditions. This gives rise to the vari- 
ous well-known reflection and transmission coefficients. 

Those required for the layer are listed in Appendix A; they 
are included for completeness since we need to describe the 
modification of these coefficients by surface irregularity. 

FIG. 2. Plane wave incident at angle 0• on a flat interface, and the resulting 
reflected wave and two transmitted components. 

We dertote by 0•, Op, and Os the angles between the 
normal to tl'e surface and the wave vector of the longitudinal 
wave in the fluid, the longitudinal wave in the solid and the 
transverse wave in the solfid, respectively. These are related 
by Snell's law for a flat surface 

k,, sin •,= k• sin Os=kp sin 0j,, (1) 
where k,,, kv, and k, are the corresponding wave numbers) 

It is necessary to restate here the generalization of 
Snell's law which holds for an irregular boundary. This is 
well known (at any rate for perfectly conducting surfaces-- 
see DeSante and Brownil Spivack 7) and can be stated as 
follows: Given a plane wave incident on a stationary rough 
surface, the average of all resulting waves leaving the bound- 
ary are plane waves with wave numbers which obey Snell's 
law [Eq. (1)]. 

Briefly this can be shown in the following way: an inci- 
dent plane wave is invariant in x in the sense that translation 
by • is equivalent to multiplication by e i•d, where k.• is the 
x component of the wave number. For an irregular statisti- 
cally stationary boundary, although waves are scattered into 
a spectrum of directions, the mean scattered field of each 
type obeys lhe same invariance by linearity of the governing 
equations. Thus the coherent field is composed of plane 
waves as for a fla: boundary, with modified coefficients de- 
termined by the surface statistics. These will be referred to as 
effective co,•ficients. 

Returning now to the irregular layer, the depth • of the 
layer is defined as 

tS=z•-z•. (2) 

We will reqaire •5 to be large for the validity of the assump- 
tion of independent scatter at successive interactions with a 
surface. This is quantified in Sec. II below. 

II. SOLUTION 

In this section we derive the main results. We will first 

examine the. scattered field, along a plane near each rough 
surface. To do so we use a tangent plane approximation 
evaluated to second order in surface height. The expressions 
obtained in this way allow us to derive effective transmission 
and reflection coefficients for each boundary. Finally we ap- 
ply these, using the summation method (see Refs. 8 and 9), 
to the deterministk: problem of a plane-sided layer, and show 
that this problem is equivalent to that of finding the average 
over a statistical ensemble of irregular layers. This completes 
the solution for the mean field. 

A. Scattered field near the surface 

We derive an approximation to the (unaveraged) trans- 
mitted field just beyond a rough surface, due to a plane wave 
incident from the fluid. This determines the effective trans- 

mission coefficient. The calculations for the remaining wave 
modes and coefficients are straightforward and similar, and 
the corresponding results will be summarized in Appendix A. 

The incident plane wave W• in the region z>ht(x ) is 
given by 

qSinc(X,Z )=Aeil•,(sin O•'-cos O•z). (3) 
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FIG. 3. Showing the first two sets of waves for the plane-sided layer. 

Since the effective coefficients are independent of the mean 
surface level z•, it is assumed in this derivation for simplic- 
ity that z•=0. 

The fluid/solid interface is written in terms of a size 

parameter e 1 and an unsealed surface hi(x); for brevity in 
this derivation we drop the subscript. Then 

h(x)=eh(x) and h'(x)=eh'(x), (4) 

where the prime denotes differentiation with respect to x. 
The angle a between the tangent to the surface at (x 0,z0) 
and the horizontal {see Fig. 3) is therefore given by 

tan a= eh'(x). (5) 

The surface is treated as being flat in the neighborhood 
of each point (x 0,z0). This leads to a tangent plane approxi- 
mation for the transmitted field in the vicinity of (x o,z0). We 
calculate the field at point Q with coordinates (x0,-A). 

For convenience we define a local coordinate system 
(•,r/) aligned with the tangent and the normal at each point 
(xo,%) on the surface (see Fig. 3). This is related to (x,z) by 

x=x0+ • cos re- r/sin re, 
(6) 

Z=Zo+ • sin or+ r/cos a, 

which thus defines r/and • 

•= (x-x0)cos re+ (z-zo)sin re, 
(7) 

r/= - (x-x0)sin re+ (Z-Zo)COS re. 

With respect to these coordinates, the point Q is given by 

•=- (A +Zo)sin re, 
(8) 

r/=- (A +Zo)COS a, 

and by (6) the incident field •.c due to the wave W• [Eq. 
(3)] can be written as 

=Aeikw sin( O•,-ct)•e-ikw cos(Ow-a) rteikw(sin 0wXo-COS 0.,z o) 
(9) 

The solution is now formulated locally in the same way as 
for a horizontal boundary. Assuming the surface to be ap- 
proximately flat near (x 0,z0), Snell's law gives 

kw sin O;=k s sin O• = k e sin 0•, (10) 
where 0•, = 0•, - re is the angle to the normal r/at (x o,zo) of 
the incoming plane wave and O• and O• are are the angles to 
the wave normal of the transmitted P and S waves, respec- 

tively. In general, of course 0• • 0•, - re where 0 v is the angle 
to the normal of the transmitted plane wave for a horizontal 
fiat surface. The angle 0 v is given by Snelrs law for a hori- 
zontal surface, Eq. (1). The relationship between 03(0•) and 
0v(0•) will be derived later. 

Applying Snell's law and the fluid/elastic P-wave trans- 
mission coefficient Tv(0•,) to Eq. (3) gives the P field in the 
ice near (Xo,Z0) 

•bl(•, r]) =Ae ik•(sin O'dro-cos O•Zo)eik•, sin 05• 

X e-in•, cos O•T• ( 0•,- re). (11) 

This is assumed to be valid at the point Q. Using Eq. (8) this 
gives 

where k•, sin 0• has been replaced by k•, sin 0•, using Eq. 
(10). 

Now, at Q the field •6• at Q for a fiat surface at z =0 due 
to the same incident field [Eq. (3)] may be written as 

c)•(Xo,_a)=Aei•,•, •i. O•oeit• • cos o•,aTp(Ow) ' (13) 

Our aim is to express the field q6• (12) in terms of the flat 
surface field q6• given by Eq. (13), in order to find an effec- 
tive transmission coefficient T r 

p- 

We must now expand the unknown terms in Eq. (12) in 
the small parameter e. Only terms up to second order in • 
will be needed explicitly. First, ot can be written: 

ot = arctan(eh') = eh ' + 0 ( 6 3). (14) 

Using Eq. (14), sin ff• may be expanded about sin 0• to give 

sin( 0,,- re) -- sin 0•,- eh' cos 0•,.- e 2 

+O(e3). 

sin 0w 

(15) 

The expansion of the transmission coefficient Tv at 
= 0•,- otisstraightforward: 

' ' " 

+O(e3), (16) 

where T3(0•,) is the first derivative of Tv with respect to its 
angular argument evaluated at 0 = 0•. 

The evaluation of cos 0• is slightly longer. Using Eq. 
(10), 

cos 0;= 41 -sin 2 0;= 1- •' sin e 0•, 
kv 

(17) 

into which we substitute Eq. (15) to obtain 
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cos 0•= 1-•-• sin 02•+e • 2h' sin 0w cos 0• 

k• . 2 O(•)) m. -e 2 • (•s 0•-sin 2 0•)•'•+ 
08) 

Since cos • Oe • 1 - (k•/•)sin • this s•plifies ann expands 
to 

•' • sin 20• 
• • ( _ ez kw 

• cos • O• • •s • o• 

+ g• •os • 0• / +ø•3• ' 
For convenien• •is will be wrRten 

•s 0•=cos 0e+ ey•h'+ e2y•h'2+O(e3), (20) 
where y•,yz are •e •efficients in (19) of e,•, respectively. 
•e ex•nentials in •. (12) may now be exp•ded. •n- 
sider fi•t the te• 

ex•ike cos 0• •s a(A +z0) }. (21) 
Using Eqs. (20) and (14) •e exponent may be written 

x 1-e 2 •+O(e n) (A+z0). (22) 
The ex•nential in (21) thus becomes 

exNike •s 0• •s 

= •xp{ i•[•s 0•a +,(co• 

(23) 

which is 

exp{ikp cos o• cos 

= exp{ik t, cos 0•,A }exp{ ik•,[ e(cos 

(24) 

Expanding the se•nd exponential on the right, we finally 
obtain 

ei•e •s 0'e • ,(a+• o) = ein• • oea[ 1 + eS] + e2•2 + O( e3)], 

where • •d • •e given by 
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t3t=ikt•(h cos 0•,+ 

-•,i}(• 2 cos 2 0.+ r,:•'2a2+2a• '•,t cos 

(26) 

Similarly the second exponential in (12) can be written 

exp{-ikw sin 0•, s"n ot(A+Zo)} 

= exp{ - ikw( sin 0w- e cos 0•/i. ' - e 2 
+O(e3))[e]•' +O(•3)](A+ZO)} 

h' 2 sin 0• 
2 

(27) 

and we eventually obtain 

e-i•w •i,•,• si,•,:a+:o)= 1 + e/3 t + e2/32 + O(e3), (28) 

where/• and f12 are defined by 

fit = -ik,•A sin 
(29) 

t•2=ikw h '2 cos Ow A-k w sin Owht• '-k2• sin 20wh'2A. 

Finally fi'om the first exponential in Eq. (12) we have 

cos O•h 2 -e k w COS 2 
(30) 

Substituting expressions (16), (25), (28) and (30) into 
Eq. (12), we obtain 

This expression is related in a transparent way to Eq. (13) for 
the flat surface form &], so that &l may be written as the flat 
surface field raodified by terms involving e:. 
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•j (x0, - A) - 

This is multiplied out to give 

•i(X0,-- A) = 

(32) 

4,](x0,-A) ( { cos 2 2 cos z 

+[32-ik•,g cos O•,(13,+S1)]+•-T'•+ik•, cos 0•, h T•(O•,)-(13•+80h'T•(O•,) +O(e 3) (33) 
From this we can obtain directly a 'local' transmission coefficient •',(x0), which defines Ihe transmitted field near to the 
surface: 

•,2 •e(xo) = re(0•,) + e( re( 0•,) ( •l - ik•,lt cos 0•, l•i) - 1• r;( 0•,) ) + •2 r•,( 0•,)( 8j 13• - k2.,h 2 cos 2 0,,) + -•- t;(0•,) 

cos Ow([3• + a,)]+ikw cos O•,•h'T•( Ow)} +O(•3). (34) 

This is the expression we seek for the local form of the 
scattered field. The remaining reflected and transmitted com- 
ponents at each boundary follow similarly (see Appendix A). 

B. Effective transmission and reflection coefficients 

The expression (34) is now in a form which is easily 
averaged. As mentioned in Sec. I we assume that the surfaces 
are statistically stationary. We will again suppress subscripts 
in h 1,2 since no confusion arises. 

The first order terms in • are all linear in/• and g', which 
both have mean zero, and thus the O(•) term vanishes. 

The normalized autocorrelation function P(O of the sur- 
face h(x) is defined as 

(h(x)h(x+•)) 
P(•)= (h(x)h(x)) =(h(x)h(x+ •))' (35) 

so that p(0)= 1. 
We require the quantities (h2), (hh'), and (h'2). Since the 

surface is stationary, these may be given in terms of the 
correlation function P(0 (Papoulis) n as follows: 

, dp(•) d2p(•) 
{hh )=--•- •=o' {h'2)=---•-•- •=o (36) 
In many cases (hh') will vanish, i.e., the autocorrelation 

function has continuous derivative at zero. This is an indica- 

tion of smoothness of the surface. For example, a Gaussian 
autocorrelation function with characteristic scale length L 

gives 

1 

(hh')=0, {•,2)= •2, (38) 

which leads to a relatively simple form for the modified co- 
efficients. However, surfaces with, for example, fractal auto- 
correlation function 

p( •) = exp{ - ( •/L ) } , (39) 

have features of arbitrarily small scale, and these cross cor- 
relations are then given by 

1 1 

(hA')- L' (h'2)=-• -•' (40) 
We have considered the field point Q with coordinates 

(x0,-A). Henceforth, we will set A to zero, to obtain the 
averaged field at the mean surface level. The justification for 
this is as follows: We can suppose that A is at most of order 
O(e). In the analysis which follows we discard terms of order 
O(• 3) and higher. Therefore, any remaining terms which con- 
tain 3, are either linear in the surface, and thus vanish on 
averaging, or deterministic. The latter components must be 
due to a flat surface reflection/transmission and therefore 

valid for any value of A. 
Setting A=0 in Eq. (33) and averaging gives the effec- 

tive transmission coefficient T/, as 

T;=Te+•{re(k•,k • cos 0•, cos O,-k• COS 2 
k2• sin cos cos 

+ir;(k•, cos O•,-kt, cos Oe)- rek•, sin 
r'_' l 

For the particular case of a surface with a Gaussian autocor- 
relation function, this becomes 
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FIG. 4. Real (full line) and imaginary (dotted line) components of the reflection coefficient due to a wave incident on a flat interface from a fluid onto an 
elastic half-space, as functions of incident angle. Increasing degrees of absorption in the solid are taken into account by giving the wave numbers an imagina• 
part kp..-}k•,(l+id) and ks--*k,(l+id) where d is as follows: (a) no absorption; (b) d=0.02; (c) d=0.04; (d) d=0.06. The parameters of the media 
correspond to water and ice: speeds of propagation %=3500 ms -], c,=1800 ms -], and c,,= 144fl ms -], and densities p,=910 kgm -3 and p,,= 1000 kgm -3. 
The locations of nearby singularities due to poles and branch cuts are indicated by P and B, respectively. 

cos cos 2 o,, 
1 r'_'/ 

(42) 

C. Absorption and properties of the coefficients 

The approximations for the effective coefficients [Eqs. 
(41) and (A4)] depend upon the first and second derivatives 
of the flat surface coefficients with respect to angle of inci- 
dence. At certain critical angles of incidence although they 
remain finite these derivatives (especially the second) may 
become very large. Near such angles the validity of the ap- 
proximation becomes weaker. Physically, this can be under- 
stood as follows: if, for a given incident angle 0, we consider 
the coefficient T say as a function of the relative angle 

then for 0 near a critical angle this coefficient varies much 
more rapidly along the surface. Thus in this sense the surface 
appears "rougher" Io a wave at these angles. 

Figures 4(a)-6(a) show the standard reflection and 
transmission coefficients [Eqs. (A3)] for the case of a com- 
pressional wave incident from water onto an ice half-space. 
Two of the critical points present in these figures are at 
branch points of the coefficients (marked B), representing the 
places where •in 0•, and sin O s become unity. The waves pro- 
duced at these angles are a type of surface wave referred to 
as lateral waves (•)berall)? The presence of the branch 
points causes rapid phase variation of the coefficients, giving 
rise to large derivatives. 

Two other critical points occur (indicated by P); these 
are the poles corresponding respectively to the generalized 
Rayleigh wave and Ihe Scholte wave. Such poles are not on 
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FIG. 5. Components of the transmitted compressional wave, for increasing degrees of absorption. All parameters are as in Fig. 4. 

the real axis in the 0 w plane, and hence the coefficients do 
not strictly diverge. In the ice/water case shown here, the 
poles are sufficiently far off axis that their effect is not ap- 
parent. The magnitude of the coefficients varies rapidly near 
a pole, and so the derivatives would again become large. 

These considerations limit the approximation to certain 
ranges of incident angles, to an extent determined by the 
surface roughness. However, the problem may be circum- 
vented if absorption in the media is taken into account. The 
presence of absorption dramatically smooths out the rapid 
variations with angle. This is introduced into the model as 
nonzero imaginary components of the wave numbers. In the 
figures shown here this has been done for the solid only. The 
effect of increa.sing absorption on the flat surface coefficients 
is shown in graphs (b) to (d) in each of Figs. 4-6. The 
imaginary component of the wave numbers gives rise to 
imaginary angles in the solid for a real angle of incidence in 
the fluid. This effectively moves the branch points away 
from the real axis in the complex 0w plane, and largely 
smooths out the cusps in the coefficients. Similarly the poles 

corresponding to the lateral and Rayleigh waves are moved 
further away from the real axis of 0•. Although these mea- 
sures are physically reasonable, values must be chosen ap- 
propriate to each situation to which these results are to be 
applied. 

It should also be noted that the breakdown of the tangent 
plane approximation at the Rayleigh angle has another inter- 
pretation. The approximation (33) implicitly assumes single 
scatter at each surface interaction. However, the Rayleigh 
and lateral waves couple with the surface, and so this as- 
sumption is violated. The method therefore gives incorrect 
results near to the Rayleigh angle. Such an error arises with 
the Kirchhoff approximation, and this is quantified and dis- 
cussed by Dacol. 3 

The effective reflection and transmission coefficients 

were calculated for the same amount of absorption as in Figs. 
4, 5, and 6(d). The corresponding results are shown in Figs. 
7, 8, and 9, respectively. Here the scale of roughness is given 
by k•ea=0.1, and the surface irregularities are assumed to 
have a Gaussian autocorrelation function. It is interesting to 
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FIG. 6. Components of the transmitted shear wave, for increasing degrees of absorption, as in Fig. 4. 

note the significant qualitative differences between the flat 
surface coefficients and the corresponding effective rough 
surface coefficients. 

D. Solution for the total mean field in the layered 
medium 

Having obtained all relevant effective reflection and 
transmission coefficients we can proceed as for a plane-sided 
layer to find the total mean field. The reasoning that this 
analogy can be made is given below. First we summarize the 
method for the plane layer. This has been described 
elsewhere 8'9 and will not be repeated in full detail here. 

Consider first a field incident on a plane layer from the 
fluid. We may think of the resulting solution as composed of 
an infinite series of transmitted and reflected waves; thus the 
first component is the transmitted wave defined by the ap- 
propriate elastic/fluid coefficients. The second component is 
its reflection from the top boundary, and so on. These will be 
referred to as the first and second components, etc. The sum 
of these waves is convergent, and satisfies the boundary con- 
ditions. The series is therefore the solution for the layered 

system. (We need not distinguish at this point between wave 
modes.) The solution due to a source in the water consisting 
of a spectrum of plane waves may thus be obtained by su- 
perposition .of the corresponding solutions as described 
above. This solution, following the notation in Sheard, ]3 is 
summarized in Appendix B. 

We now return to the problem of an irregular layer. We 
make the crutcial assumption that successive scatters are in- 
dependent at either surface. More specifically, consider the 
field scattered (either by reflection or transmission) :it one 
surface h ], say. We will assume that, after propagation across 
the layer, scattering at h2, and propagation back to hi, the 
variation in •:he resulting field is approximately statistically 
independent of h•. This "decoupling" of the field from the 
scatterer results from the fact that the features imposed on 
the wave at ,each interaction change markedly with diffrac- 
tion. (The independent scattering at h 2 is of course a further 
cause of statistical alecoupling.) The effect is well known in 
the study of wave propagation beyond a random phase 
screen, and the analogous assumption is used in the formu- 
lation of the moment equations for propagation in random 
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FIG. 7. Real (full line) and imaginary (dotted line) components of the ef- 
fective reflection coefficient due to a rough interface, with k•a=0.1. The 
amount of absorption here is d=0.06, corresponding to Fig. 4(d). 

media (see Uscinski•4). The assumption dearly breaks down 
for sufficiently shallow layers. The characteristic length scale 
for propagation beyond a phase screen is kL2, TM and so we 
require that the depth $ is much greater than this quantity, 
i.e., 

o• kL 2. (43) 

Now, the total field whose average we will eventually 
obtain can be thought of as the infinite sum of the scattered 
field components arising at and propagating from each sur- 
face interaction; the total mean field is thus given by the sum 

2.0 

0.5 1.0 1.5 

FIG. 8. Components of the effective transmitted compressional wave, for 
roughness as in Fig. 7, with absorption similarly corresponding to Fig. 5(d). 
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FIG. 9. Components of the effective transmitted shear wave, for roughness 
and absorption as in Fig. 7, corresponding to Fig. 6(d). 

of the mean of these individual components, by analogy with 
the plane layer case. Consider therefore the nth component 
Pn, say. We can write this as 

Pn=(Pn)+P•, (44) 

where the random component P• has mean zero. Suppose 
first that the mean (P•) is a plane wave. Now P,• is the 
"incident" or driving field for the (n + 1)th component Pn + •, 
and can write symbolically 

Pn+l-S((gn))"l-S(Pn), (45) 

where the linear operator • represents scattering due to the 
interaction with the surface. After averaging, terms (•(P,•)) 
resulting from the component P• must therefore vanish, 
since this quantity arises from previous scatterings which can 
be assumed to be independent of the current scattering. The 
remaimng term •((P•)) then gives, after averaging, another 
plane wave, with amplitude determined by the effective co- 
efficients as discussed previously for unscattered plane 
waves. Thus it follows that the mean 

(P•+ ,) = (,•((P,,))) (46) 

is again a plane wave. Finally, since the incident field Pt is a 
plane wave it follows by induction that (P•) is indeed a 
plane wave, as assumed. Therefore at each scattering the 
mean field is modified by the effective coefficients, and so 
the mean total field is obtained as for a plane-sided layer 
with the relevant coefficients simply replaced by the effec- 
tive coefficients. The complete solution is summarized in 
Appendix B, using these effective coefficients which are 
given in Appendix A. This mean field description is qualita- 
tively valid for any degree of surface roughness, since only 
the coefficients are approximated. 
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III, CONCLUSIONS 

The mean field has been found due to a wave impinging 
on an elastic layer with adjoining fluid half-space, in which 
the boundaries of the layer are slightly rough. The solution 
has been considered explicitly for the case of an ice/ocean 
medium. In this method effective coefficients were first 

found for the elastic/vacuum and elastic/fluid half space 
problems using a tangent plane approximation. It was then 
shown that under the assumption that successive scatterings 
are uncorrelated, the mean field is exactly equivalent to the 
solution of a plane-layer problem with the effective coeffi- 
cients applied. 

The approximation of the effective coefficients is non- 
uniform, in the sense that it becomes relatively poor at angles 
of incidence which are near to poles and branch points, and 
breaks down where these angles give rise to surface waves. 
This problem is circumvented, however, when absorption is 
taken into account. The existence and precise location of 
these poles depends upon the parameters of the medium in 
each case. 

This method of solution can in principle be extended to 
a multilayered system, or to propagation in a three dimen- 
sional medium. The situation for the higher moments, how- 
ever, is significantly more complicated, since they are not 
linear in the field. 
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APPENDIX A: SUMMARY OF EFFECTIVE 
COEFFICIENTS 

This appendix sets out the effective coefficients which 
are obtained. Some of the flat surface forms of these coeffi- 

cients are also included, but most can be found elsewhere 
and are omitted. Each expression is truncated after the term 
quadratic in the surface height. We introduce the following 
notation for surface statistics: 

(h•>=l, <h2h•>=A2, <h•2>=B2. (A1) 
Each effective coefficient will be a function of deriva- 

tives of the corresponding flat surface one with respect to the 
angle of incidence of the incident plane wave. These are 
simply denoted R•, etc. 

The effective impedances of the media to waves in the 
fluid and P and S waves in the solid are denoted by Z,•, Zp, 
and Z s , respectively, and are defined by 

Z w- c•'pl Zp- Cp[}2 Z s- CsP2 (A2) cos 0,..' cos 0p' cos O s ' 
Here, p• and P2 are the densities of the fluid and solid, re- 
spectively, and c•.,, c v , and c s are the speeds of propagation 

of, respectively, the transverse waves in the fluid, and the 
transverse and shear waves in the solid. 

1. Fluid/solid coefficients 

The reflection and transmission coefficients for a plane 
wave incident from a fluid onto a plane solid surface are then 

Z v cos 2 20s+Z• sin 2 2O•-Z., 
R w - 

Z•, cos 2 20•+Z• sin 2 20s+Z,•' 

p, 2Z• cos 20s 
r,,v=-•- Zp cos 2 20•+Z, sin 2 20s+Z,•' (A3) 

p.• 2Zs sin 20s 

Pi Zt, cos2 20,+Z• sin 2 20s+Z.•' 
The effective coefficients in the case of a rough surface are 

R•,= R.,+ e•2{ - 3R•k2., cos 20,,,+A •[2iR•,k,• cos 0,• 
-Rwk w .,;in Ow(l +i)]+B 1 •- , 

cos cos cos 
k2• sin 20.• -k} cos 20.,)+A• iT.,•, 2k•, cos 

+iT'.,p(k., cos O.,-kv cos Op)-T.,pk., sin 0.,) 
+ B • v_ (A4) 

cos cos 0s-/q 2 cos 2 0s 

k} sin 20,• -/c• cos 2 0•)+A t iT• 2k, cos 0, 

•T•.s(k • cos O•-k• cos O•)-T•k• sin 0• 

2. Solid/fluid coefficients--Incident P wave 

A plane P wave incident from a solid onto a plane fluid 
interface gives rise to coefficients which we denote Rpp (P- 
wave reflected component), R•, s (S wave), and T•,., (transmit- 
ted wave in the fluid). For brevity these are omitted. The 
effective rough surface forms are 

d{ - 3a./.} cos 
X sin Or,( 1 + i) - 2iR•vki, cos Ov] +B• 
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R•,s=Rps + ß•2{ _Rps(kpks cos 0p cos O•+k• 2 cos 2 O s 
(2 kp sin 20p 

+kp 2 COS 20•)+A• iRps 2k s cos Os 

-iR•s(k • cos Oe+k s cos O•)-Rp•ke sin 0e) 
2 /' (•) 

r;•= r•+ d{ r•(a)a• •os 0• co, 0•-•} •o, 2 0• 
- •} •o,: 0•) +A,( r• ,in 0• 

2 

-iTpw kp sin 20p +iT;•(kw •s O• 2k w cos 0• 

-•p cos Op) +• • . 

3. Solid/fluid--Incident S wave 

For a plane S wave incident from a solid onto a plane 
fluid interface the coefficients are denoted R•p, R•, and 

For a rough surface these become 

R•rs=Rs•+ ß2•{ _3R•sk•2 cos 20•+Ai(Rs•k s sin 0s(1 
+i)-2iR•ks cos Os)+B1 •- , 

ß _ 2{ -R•p(kpk• cos Rs•-Rsp+ • Op cos Os+k• cos 2 Os 

k• sin 20• +•} co,: 0.)+a• i•. 2•. •o• 0• 

-iR•(kp cos O•+k• cos O•)-R•pk• sin 0•) 
+ B 1 , (A6) 

r _ •{ r•(• •os 0• •o• 0•-• cos: 0• rsw- Tsw + • 

- k• cos 20w) +A • ( Tswk p sin Os 
k• sin 20 s 

-ir• 2• cos 0• + ir;•(• ms O• 

-k• cos 00 +B• •/' 

4. Solid/vacuum--Incident P wave 

In this case the flat-surface coefficients are denoted by 

Rpp and Rp•. For a rough surface these become 

ß _ •2{ 2 O,+A2[2tRp•kp cos 0, Rpp-Rpp+ß -3Rppkp cos 2 ' ' 

-R,t•k p sin 0p(1 + i)]+B2 R;• • 2 / ' 
(n7) 

. _ 2{ -R•(k•k• cos R•-Re•+ •2 0• cos O•+k• cos 2 0 s 

+• co• • 0•)+/•(•.•. •i• 0• 
2 

2k• cos 0• 

+k s cos 0 s +B 2 . 

5. Solid/vacuum--Incident S wave 

Finally, for a plane S wave incident on a flat solid/ 
vacuum boundary the coefficients are Rs• o and Rss. 

When the boundary is rough the effective coefficients 
are given by 

ß -- 22{ -3Rssks 2 Os+A2[2tRssk s cos Os Rss-Rss+ß cos 2 ß , 

-R•k• sin Os(l +i)]+B 2 , 

(AS) 

• _ 2{ _Rsp(k•ks cos Os+k• 2 cos 2 O s Rsp-Rsp+ •2 Op cos 

+ k• cos 2 0•) +A 2 Rspks sin Os 

k• 2 sin 2 O s 
-iR•p 2k• cos 0• t-iR•p(kp cos 0• 
+k s cos Os +B2 ß 

APPENDIX B: SUMMARY OF SOLUTION FOR 
IRREGULAR LAYER 

In the following, the notation used to distinguish coeffi- 
cients is as in Appendix A, but an additional superscript de- 
notes whether the coefficient refers to the solid/fluid bound- 

ary (superscript D) or the solid/vacuum boundary 
(superscript S). For convenience it will be assumed that the 
mean upper boundary z 2 is given by z2=0. As before, $ 
denotes the depth of the layer. 

Consider a plane wave •bi, ½ incident on the solid layer 
from the fluid half-space, 
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q•inc= A eik w sin t•(X- XO) e - ik•, cos 

= A e - ik• • ø• e - in• • or(z-z) (B1) 

In the layered system •e solutions for the fluid potential 
•w, •d P •d S potentials •i, •i in the solid take the fo•: 

•( x,z ) = A e • • ø• x- xo• ( e - in• 

+ g•wei• • •(z-2• 

+ Twse-i• •s O•ei• s • os• s s + 

X( T•ve-i• •s O•aei• • •s 

+ Tw•e-ik w •s Ow3eik p • • • S • {R•M• 

•( x,z ) = A e •, sin •(X- Xo)( T•se- • 

+ lwse • lKss•13 • •spN14• 

+ Twpe-i• • O•Seii e • 

+ R•eMn}). 
In these expressions the six quantities M i arise as coefficients 
in mode-coupling matrices. These are described in ReE 13 

and are somewhat lengthy to reproduce in full, and are there- 
fore omitted here. 
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