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This paper considers the statistics of a plane wave scattered at low grazing angles from a 
one-dimensional rough surface, when the interaction with the surface is mainly in the forward 
direction. The mean intensity and autocorrelation of the scattered fiehi and the corresponding 
angular spectrum, to second order in surface height is found. The diffuse component of the spectrum 
vanishes with the square of the grazing angle, while the specular part approaches m]ity linearly. The 
higher moments of the field at the mean surface are also obtained. It is shown that to first order in 
the grazing angle the moments of the scattered field change only by a phase factor with distance into 
the medium, so that in the small angle limit the moments in the medium can be derived from those 
at the surface. The results depend explicitly upon the autocorrelation function of the surface and its 
first derivative. 

PACS numbers: 43.20.Bi, 43.20.Fn, 43.30.Hw 

INTRODUCTION 

In the problem of wave scattering by a rough surface we 
usually seek a statistical description of the resulting field. 
The first two moments can be obtained by several methods 
such as the Kirchhoff approximation and perturbation 
theory, •-4 but fewer results are known for the higher mo- 
ments and little progress has been made on the fundamental 
question of the probability density function. For further dis- 
cussion the reader is referred to the excellent review of De- 

Santo and Brown? 

At near-grazing incidence, the above approximations 
break down, although approaches such as the smoothing 
method s have been successfully applied in this rrgime. Fur- 
ther progress can be made, however, under the assumption 
that the field is predominantly due to forward scattering. The 
field can then be described by the parabolic equation ap- 
proximation, and the usual Helmholtz equations may be re- 
placed by the parabolic integral equation method. 6'7 This ap- 
proach has proved very useful; for example it has allowed 
the development of accurate inverse scattering solutions, 8'9 
and the inclusion of channeling in the medium due to a linear 
refractive index profile. •ø'u In a previous paper •2 the mean 
field was obtained to second order in surface height. 

In this paper we study the second and higher moments at 
near-grazing incidence and consider the angular spectrum. 
We first find the moments of the field at the surface; the 

accuracy depends upon surface roughness and angle of inci- 
dence, and diverges for moments of high order. We then 
consider the second moment in the medium, which describes 
the mean intensity and autocorrelation of the field and its 
angular distribution. This is shown to be independent of dis- 
tance from the surface, apart from evanescent components. It 
is found that the diffuse component of the angular spectrum 
vanishes with the square of the grazing angle, while the 
specular part linearly approaches unity. Although the ap- 
proximation takes into account multiple scattering it cannot 

exhibit backscatter enhancement, because the restriction to 
forward interaction at the surface precludes reversible ray 
paths. Finally we show that to first order in the grazing angle 
the moments in the medium may be derived from those at the 
surface since the)' are unchanged apart from phase factors. 

The results here are derived from expressions for the 
near-surface field given in Ref. 12. Powers and cross prod- 
ucts of the field are formulated and averaged, and these are 
truncated at second order. This procedure is divergent for 
high powers, and this places a bound on the accuracy of the 
higher-order moments which is established below. It is as- 
sumed that multiple scattering at the surface takes place in 
the same direction as the forward-traveling incident field; 
scattering outward from 1.he surface is not subject to this 
restriction. 

The paper is organized as follows: The preliminary 
equations are set out in Sec. I. In Sec. 11 the moments al the 
mean surface plane are foand and the accuracy of the bino- 
mial expansion is examined. The second moment in the me- 
dium is considered in Sec. III, where it is shown in effect to 
be independent of distance from the surface, and the corre- 
sponding angular spectrum is given. In Sec. IV the moments 
in the medium an• given to first order in grazing angle, and 
are shown in this case to ke related in a simple way to those 
on the surface. 

I. PARABOLIC I-'QUATION METHOD AND 
PRELIMINARIES 

We consider the problem of a scalar time-harmonic 
wave field p scatl:red from a one-dimensional rough surface 
h(x), with a pressure release boundary condition. (For elec- 
tromagnetic waves this co•responds to s or TE polarization, 
and perfect conduclivity. ]it is applicable to corrugated sur- 
faces provided polarization does not change under scatter- 
ing.) The wave field propagates with wave number k, and is 
thus governed by ':he wave equation (V2+ k2)p =0. The field 
will be assumed to be incident and scatlered at small grazing 
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FIG. 1. Geometry of rough surface scattering, where the medium is in the 
upper-half-plane. The arrow indicates a wave incident at an angle 0 from the 
normal, and/z denotes the grazing angle It/2-O. 

angles with respect to the surface. The coordinate axes are x 
and z, where x is the horizontal x•>0, and z the vertical, 
directed out of the medium. This geometry is shown in Fig. 
1. It will be assumed that the surface is statistically stationary 
to second order, i.e., its mean and autocorrelation function 
are translationally invariant. The mean surface level is taken 
at z=O, so that h(x) has mean zero. The autocorrelation 
function (h(x)h(x + O) is denoted by P(0, and we assume 
that p(0•0 at large separations •. (The angled brackets de- 
note the ensemble average.) Then o'2=p(0) is the variance of 
surface height, so that the surface roughness is of order 
O(rr). We will denote by L the characteristic correlation 
length of the surface, where applicable. 

Since the field propagates predominantly in one direc- 
tion, we can define a slowly varying part •p by 

•ptot(X,Z) = p(x,z )exp( - ikx ). 

Incident and scattered components •i and • are defined simi- 
larly, so that ½tot=½i+½. It may be assumed that 
½i[x,h(x)] =0 for x•<0, so that the area of surface illumina- 
tion is restricted, as for example when the field is a directed 
Gaussian beam. The governing equations for the parabolic 
equation method 6'7 are then 

0: O½(r') 0i(r)= - G(r;r') • dx', (1) 

where both r=(x,h(x)), r'=(x',h(x')) lie on the surface; 
and 

f o: Oqs(r') ½(r)= G(r;r') • dx', (2) 

where r' is again on the surface and r is now an arbitrary 
point in the medium. Here G is the parabolic form of the 
Green's function in two dimensions given by 

G(x,z;x',z ') 

= a • exp 2(x-x') }' for x'<x, (3) 
0, otherwise, 

where a = «x/i/2•rk. [This form gives rise to the finite 
upper limit of integration in (1) and (2).] The Green's func- 
tion is derived under the assumption of forward scattering, 
i.e., that the field obeys the parabolic wave equation, 

•,,+ 2ikCzz= 0, (4) 

which holds provided the angles of incidence and scattering 
are fairly small with respect to the x direction. (G can also be 
obtained directly from the full free-space Green's function 
by the appropriate low-angle approximation.) We will invert 
(1) to give the induced source &b/Oz at the surface, but the 
field in the medium will be related to this using the full wave 
equation rather than the integral (2). This allows scattering 
into all directions. 

Now, Eqs. (1) and (2) do not apply to the scattering of 
plane waves at small or negative x because of the truncated 
lower limit of integration, equivalent to the restriction on 
surface illumination. Nevertheless, we can formally apply 
the integral equation to a plane wave, to obtain a solution 
which will be asymptotically accurate and physically mean- 
ingful at large values of x. This procedure is used in Ref. 12 
to derive the mean field. In the remainder of the paper we 
will assume that x is sufficiently large for this to hold. (It is 
easier simply to set the lower integration limit to -oo but we 
retain this form for consistency.) 

Consider an incident plane wave exp(ik[xsin 0 
+z cos 0]), where 0 is the angle with respect to the normal. 
The grazing angle is then denoted /z= rr/2-0 (see Fig. 1). 
This plane wave has slowly varying component exp(ik[Sx 
+ z cos 0]), where 

S = sin 0- 1, (5) 

which we refer to as the reduced plane wave. Denote the 
scattered field due to such a plane wave by •pø(x,z). We 
introduce the following notation for field cross products 

•tF,s( V;Z ) = •t01(Xl ,Z )' ' ' {pOr( X r 

X •pOrs'l(Xr+ 1 ,Z)''' •Or+s(Xr+s ,Z), (6) 

where the bar denotes complex conjugation and for conve- 
nience we define 

V = { 01,... , Or+ , ,X 1 ..... XF+S}. (7) 

We then define the moments mr, s by 

mr,s(¾;Z)=(Or,s(g)). (8) 
Among the most important of these are the one-point and 
intensity moments. We write 

M n( O,x;z ) = ( ( •ø(x,z ) )") (9) 
and the moments of intensity or "symmetric" moments 

mn,•( O,x ;2): m•,•( 0,... O,x ..... x;z) = (I 4'ø(x,z) [ 2•) - 
(10) 

For incident plane waves the quantities in (9) and (10) are 
statistically stationary and we may omit the variable x. 

II. HIGHœR I•1OlIIENT$ 

In this section we obtain the moments of the scattered 

field at the mean surface, for incident plane waves. We begin 
by summarizing the method and results of Ref. 12 for the 
scattered field. 

It is assumed that the surface is only slightly rough, so 
that there is a horizontal plane at z=z• close to all points on 
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the surface h(x). For each x, the scattered field //J(X,21) may 
be expanded to second order in (z•- h) about h(x), and thus 
written in terms of the field itself and its first two derivatives 

at the surface. Of these, the field is given by the boundary 
condition, the first derivative is found by an analytical solu- 
tion of Eq. (1) to second order in h, and the remaining term 
is solved similarly. 

We thereby obtain the following [Eq. (23) of Reß. 12]: 

=- 1 +ikh(x)cos O- 5- cos 20[h2(x)+(z•-h) 2] 

[D• )ldlø xeikxS--(zl-h) + -- +(ik cos 0 

] -k2h(x)cos 2 0-i 5-h2(x)cøs30)eikXs ' (11) 
where 

and 

d for ½ikSx' D0(x): (12) 

fo r e ikSx' Io(x)= ikh(x')cos 0 ee• x7•_x , dx'. (13) 
If we take z• =0 several terms cancel, and we can write 

(11) as 

½0(x,0)= eikSx+ h h dl o - --Do+----. (14) 
rr rr dx 

We may set z I to zero here for the following reason: The 
results which follow are obtained by taking polynomials in 
expression (11) and neglecting terms of order 0(o 3) or 
higher. However, z I is of order rr, and so any remaining 
terms which contain z• are either linear in h and thus vanish 
on averaging, or deterministic. The latter components are 
those due to reflection from a flat surface and are therefore 

valid at all Zl•>0. 

A. Truncation of binomial expansions 

In order to form the higher moments of the wave field 
we will take powers and polynomials of expressions such as 
[l+ae(x)+be2(x)], where ß is a small random function, 
and then average, and truncate at second order. This proce- 
dure is divergent for polynomials of high order, and we need 
to quantify the accuracy for given order in terms of e. Con- 
sider for simplicity the expression 

Pn=(l+[ßl-'[-ß2]) n, (15) 

where •./is of order e / for j = 1,2. We will suppose that ß./is 
random and that all odd-order terms (e.g., •1 and ß1ß2) have 
mean zero. The binomial expansion of (15) is 

P,,= 1 +n(ß• + •2) + C,•,2(• + ß2) 2+''' + (•1 + •2) n, 
(16) 

where 

n• 

C",s-.j!(n-j) ! ' 
Expanding further and averaging this yields 

(Pn)=:l+rt(ß2) +Cn,2(ßl 2) q-Z Cn,j((ß, +ß2) '/) 
./=4 

+ [Cry,,2 + Cn,3]B4, (17) 

where B 4 is a term of order O(e4). If we truncate (17) at 
second order in ._-, we retain only the first three terms. The 
error thus incurred clearly diverges for large n since the co- 
efficients C,,j grow exponentially with n. We may restrict 
attention to the sum since the coefficient of B 4 is small com- 
pared with the coefficient C,,,4 of the O(• 4) term in the sum. 
Now Cn, j is at 
sum is at most 

most of order 

proximated by 

n2 •4 •--• 1. 

most of order n j/2 in n. Thus each term in the 
proportional to n J/2ß j. The sum is therefore at 
O(rt2ß4), and so Eq. (17) is reasonably ap- 
the first three terms provided 

(18) 

B. Moments at mean surface plane 

Consider now the terms in Eq. (14). We are interested in 
the asymptotic forms of 1 o and D o with respect to x as dis- 
cussed in Sec. I. At large x the term in D o has the behavior •2 

h(x) 
-- D o(X) •h (x)f( 8)e il•sx, (19) 

'iT 

where 

f(O) = .- 2ik x/2- 2 s:in 8. (20) 

We will also require the mean (h dl o/dx), which was ob- 
tained in Reß. 12. We brielty sketch the derivation: The chain 
rule is applied, to write 

(h dlol-[d(hlø)l dh 
In each term on the right, h appears, or can be brought, 
inside the integral 1 o [Eq. (13)], and the upper limit of inte- 
gration is then allowed to go to infinity. We thus obtain 

-- h ==-r0e ikSx, ß - dx / (21) 
where the coefficient T O is given by 

r0=.cos0 t,(Os ] 
(22) 

The coefficient T o can be written explicitly in closed form 
for several surface correlation functions of interest. Three 

cases are given in the Appendix. (T o is related to the effec- 
tive admittance obtained in various regimes in Reß. 1.) 

Using (19) we write 114) 

h(x) dl o 
½ø(x,O)•-,øi•sx+h(x)f(O)ei•Sx+ -- --. (23) ' rr dx 
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The terms on the right are respectively zero, first and second 
order in surface height rr. We will therefore write 

IpO(x,O)•ao + al + a2, 
where 

ao( O,x ) = -- e iksx, 

al(O,x) =h(x)f( O)e iksx, (24) 

h(x) dI o 
a2(O,x) = -- . ß r dx 

We have the following 

ao=a 1, la01=l, 

(a l(0,x)a l( O',x')) = p(x-x')f( O)f( O')ao( Ox)ao( O',x'), 

and (25) 

(a2(O,x)) = T oa 0 . 

Note that in these expressions [see (20)] 

f( O)f(0') = - 8k 2 S•', (26) 
where as before S=sin(0)-l, and S'=sin(O')-1. 

Now, from (23) and (24), for any r, s the cross product 
½r,s at z=0 [Eq. (6)] can be expressed as 

r r+s 

I-[ [I 
j=l k=r+ l 

+al(0k,x0 + a2(0k,x0]. (27) 

It is straightforward to evaluate this to second order in h, 
and thus obtain any of the moments at z=0. We will do this 
explicitly only for the most important cases. From (20), (21), 
(24), and (25) we can treat the terms a 1 and a 2 as first and 
second order in the small parameter e=krr. Therefore by 
(18) all moments up to the nth, obtained by truncating and 
averaging (27), will be accurate provided n2<•l/k4o '4. For 
example, if kcr= 1/4, second-order truncation will yield mo- 
ments up to the eighth with reasonable accuracy. In addition 
the terms (a• 2) and (a2) depend on another small parameter, 
the grazing angle /•= rr/2-0, and they vanish in the limit 
/.v•0. This will be discussed below. 

Consider first the one-point moments M n (9) and inten- 
sity moments Mr, r (10), i.e., the moments of the field at a 
point due to a single incident plane wave. Expanding (27) 
and retaining terms to order o 2 , and averaging so that the 
linear terms vanish, we use (17) and write 

Mn(0,x;0) = ((½ø(x,0))n) = ag + nag-i(a2) 

n(n-1) __ n-2 2 
+ 2 aø (al)' 

From Eqs. (24) and (25) this becomes 

Mn( O,x;,O ) = ( - 1 )ne ilmsx 

n(n- 1) tr2/2(0)}, (28) X l+nT o- -• 

where f is given by (26). The intensity moments M,,• be- 
come, after some simple manipulation, 

mn,n( O,x;O ) = la012•+ n[ (a:)laol 2 
+<a2)aolaol 2•-23 

n(n- 1) [(a•)•202[a012n_ 4 + 2 
• 2 2n-4 +(al)ao[aol ]+n2(lall2)la• • 21 . 

(29) 

By (24) and (25) this reduces to 

n(n-1) 
M•n(O,x;O)=l+2n Re(To)+ 2 

+f2( 0))+ n 2o'2 If(0) 12. 

-- O'20e2(0) 

(30) 

We also consider the two-point moments. The most use- 
ful of these are the second and fourth. To second order in 
the second moment (i.e., the cross correlation between com- 
ponents due to two plane waves as a function of spatial sepa- 
ration) at z = 0 is 

m•,l( O,O ,x,x ;O)•aoao +[ao(a2)+ (a2)ao] 

+(alal), 

where the prime denotes that the arguments of the function 
are 0', x'. From (24)-(26) this can be written 

m 1,1 ( O, O' ,X,X'; 0 ) • e ik(Sx -S'x' )[ 1 + T o + T o, 
- s5], (31) 

where •=x-x' and again S'=sin(ff)-l. At 0=0' this re- 
duces to the correlation function of the scattered component 
due to a plane wave 

ml,l(O,O,x,x';O)•eikS(•-x')[1 +2 Re(To) 
- 8p(•)k2S]. (32) 

Before impinging on the surface the reduced plane wave 
has deterministic autocorrelation function given by the phase 
term exp[ikS(x-x')]; this becomes modified by the auto- 
correlation function of the surface as described by Eq. (32). 
As the grazing angle approaches zero this modification be- 
comes vanishingly small, i.e., the rough surface appears as a 
perfect reflector, as is expected from other considerations 
(e.g., Refs. 2, 13). We will quantify this more precisely in the 
next section, where the diffuse component is shown to vanish 
more rapidly than the specular term 2 Re(To). 

For the case of a single angle 0 the cross correlation of 
intensity (fourth moment of the field) can similarly be writ- 
ten 
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rn2•2( O ..... O,x,x',x,x' ;O ) 

;(laol21a•12 +[a2a-•la•]2 +- t2 ,• 2 a2ao[aol + a2aolao] 

+a21aol ao]+[la[2la12 + aaaoao + aaaoao 

+aa'aoa6+aa'aoaD+ laxl21aol2]). (33) 

All the exponents in ao, a• cancel, and from (24) and (33) 
we obtain 

tn2,2( 0 ..... O,x,x',x,x';O) = 1 + 4 Re(To) + 2o-21fl 2 

+p(sc)(2 Re[f2+ Ill2]), 
(34) 

where f(O) is again given by (20). 
The relationship between these and the moments else- 

where in the medium will be discussed in the following sec- 
tions. It should be remembered that these results pertain to 
the reduced (slowly varying) field ½(x,z)=exp(-ikx) 
Xp(x,z) say; the moments of the full field contain additional 
phase factors exp(ikx). 

III. AUTOCORRELATION OF FIELD AND INTENSITY 

We now consider the moments in the medium. The most 

useful of these are perhaps m• • and m22 which give mean 
intensity (I) and mean-square 'intensity '(I2), as well as the 
cross correlation of the field on horizontal planes. We will 
consider here only rn •,•. 

We show first that the second moment of any scattered 
field •x,z) does not change under propagation away from a 
fixed plane, if evanescent components of the field there are 
neglected. This is well known for three-dimensional electro- 
magnetic propagation, TM and is easily shown for propagation 
under the parabolic wave equation (where the principal di- 
rection of propagation is normal to the surface). The author 
is not aware of references for the present case, so a proof is 
given here. This does not rely explicitly on the Green's func- 
tion and is easily generalized to electromagnetic and elastic 
waves. 

Define the Fourier transform • of ½(x,0) 

•,(v) = • O(x,O)e -i"x dx, (35a) 
so that 

½(x,O)= f_•o•(v)e ivx de. (35b) 
Then the field at z is 

½(X,Z) = l•(12)eiVXe isz de, (36) 

where s = .j•2_ v2. We will exclude evanescent contribu- 
tions to the field at z =0, and so we may assume that s is real. 
Consider the second moment rn•,•(x,x', O, O;z) of the field at 
z for a single incident plane wave at angle 0, which we may 
denote rnL•(x-x';z). From (36) this can be written 

m•,•(x-x2;z) 

= (½( v)½(v ;,)e '(p'• •' X2)e (s s ). dv dr', 

(37) 

where s' = k•.- v' 2. Now by (35a) and the definition (9) 
the second moment of • ils given by 

<OJ(v)b(v'))= • m•,,(x-x';O) 
Xe -ivx+iv'x' dx dx'. 

If we introduce the new variables 

•=(x-- x')/2, X=(x + x')/2, 

Eq. (38) becomes. 

(•(v)•(v'))= •-• _•rn•,•(2f;O)e •("+"')• 

(38) 

Xe-i(,, )x dX d•. (39) 

Carrying out the integration with respect to X we obtain a 
delta function and (39) can be written 

(•,(v)3(v'))= •-•2 . 2rrb(v- 
Xml,l(2Sc;0)e i(•'+ P')t d• c. (40) 

When this is substituted in (37) the delta function removes 
the contributions from v•v', so that the exponential 
ei(S-S')z can be set to uifity. Thus the dependence upon z 
vanishes, i.e., the second •noment for a single incident plane 
wave does not evolve with height above the surface and thus 
by Eq. (32) 

•rl 1,1 ( 0, O,X,Xt;Z) •ei•S(x-x')[ l + 2 Re(To) 
- 

We remark [hat in general, if the field is given on the 
plane z=0, the field elsewhere may be obtained from it in 
either of two equivalent ways: One is to invoke the 
Helmholtz-Kirchhoff equations using the free-space Green's 
function; the second is to Fourier transform the field to find 
the spatial Fourier components, include the relevant propa- 
gation factor for each, and transform back. In this way any of 
the moments at a given z plane can be found as a multiple 
integral in terms of the corresponding moment at z =0. An- 
other approach to the problem is to seek linear differential 
equations for the moments and solve these directly. An ad- 
vantage of this approach is that such equations can be 
formed even when the medium itself has a randomly varying 
refractive index. 

We can now consider the angular distribution of the 
scattered intensity. For this we remove the specular compo- 
nent 1+2 Re(To), and replace the rapidly varying phase fac- 
tors exp(ikx), to obtain the second moment m a for the 1,1 

diffuse component of the full field 

m e (O,O,x,x';O)• --8e 2i1• sin O•p(•)k2S. (42) 1,1 
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(b) 58 0 -50 

FIG. 2. Angular distribution of the diffuse component for/x=15 ø with (a) 
L =10 and (b) L =5, where L is the correlation length of the surface rough- 
ness. The angle 0 is shown in degrees, measured from the normal. The 
distribution is shown for fractal {full line) and Gaussian (dashed line) auto- 
correlation functions. 

By analogy with (40), we then define the angular distribution 
as 

re(v)= • •m•a.t(2•;0)e ai"g d•. (43) 

The above argument shows that this, as we would expect, 
also remains constant with distance from the surface. The 

quantity (42) is equivalent to that studied in Ref. 15, and is 
appropriate when the incident' field is a plane wave. (The 
bistatic cross section, more commonly studied for incident 
beams which have a finite area of illumination, is not appli- 
cable here.) 

0.15 

0.00 

50 0 -50 

FIG. 3. Angular distribution as in Fig. 2, for/x=7.5 ø and L =10. 

Figure 2(a) shows the angular distribution (43) due to a 
wave incident at a grazing angle of 15 ø, i.e., 0=75 ø, for 
surfaces with correlation length L = 10. The full line corre- 
sponds to a surface with "fractal" autocorrelation function 
exp(-•/L), and the dashed line corresponds to a Gaussian 
autocorrelation function. The vertical scale on all figures 
here has been normalized by k2o a. Figure 2(b) shows the 
same quantities for L =5. As would be expected the peak 
around the specular direction becomes broader as the corre- 
lation length decreases. A very small amount of backscat- 
tered energy (i.e., at negative angles) is visible in Fig. 2(b), 
but no backscatter enhancement can be observed because, as 
discussed above, the formulation does not take account of 

reversible paths. Note that in each case the small scale struc- 
ture in the fractal surface leads to greater scatter away from 
the specular direction compared with that of a Gaussian sur- 
face. Finally Fig. 3 shows the angular spectrum for a grazing 
angle of 7.5 ø , i.e., half that of Fig. 2, again with correlation 
length L=10 and other parameters as in Fig. 2(a). 

The change in incident angle has little effect on the 
breadth of the peak, but as the grazing angle approaches zero 
the energy in the diffuse component rapidly decreases. This 
is in accord with the fact that the rough surface acts as a 
"perfect reflector" in the limit as /x•0. 2'•3 From (42) and 
(43) the diffuse component vanishes with the square /x 2 of 
the grazing angle, since 

S=cos/z- 1 = -- •2/2+ O(/.t,4). (44) 

The specular component I+2Re(T o) (32) also approaches 
unity, but does so more slowly. From (22) this is linear in 
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1 +2 Re(To)= 1 +2/• -- Re p(•)S 

1 dp(•)ld•]+O(/23). (45) 
We note that these expressions hold independently of the 
form of the surface autocorrelation function. 

IV. VOLUME MOMENTS IN THE SMALL ANGLE LIMIT 

Although we cannot easily obtain the general volume 
moments from those at the surface, the problem turns out to 
be trivial if the grazing angle is sufficiently small that its 
square can be neglected. In this limit the dependence of the 
moments upon distance from the surface is given purely by 
deterministic phase terms. 

Consider the scattered field in the medium in relation to 

its value at z=0 (23). The evolution of each of the three 
terms ai [Eq. (24)] is governed by the wave equation and by 
the radiation condition at infinity. We denote by L z the linear 
evolution operator acting on functions of x, under which 
each function propagates outwards through a distance z, so 
that Lz[ •p(x,z0] = qb(x,z• +z). Thus 

½(x,z) = Lz{a0(O,x) + a •( O,x) + a 2( O,x)}. (46) 

As we have seen earlier, when the moments are formed the 
term a 2 appears only to first order and a 1 only to second 
order. Now, if we again denote by/2 the grazing angle 

T/' 

then we have 

x/2-2 sin 0= x/2-2 cos/2=/2+O(/• 3) 
and 

cos 0=sin/•=/2+O(/23). 

Thus from (24) and (20) 

a• = - 2ikh(x)/2 + 0(/23) (47) 

and similarly from (13) and (24), 

a2=/2 7 d-• ikh(x') a• dx' +O(/.•3). 
(48) 

Therefore at small /2, a 2 varies linearly with /2 while the 
quadratic terms in a • vary like/22 and we will neglect them. 
This approximation may be considered valid for grazing 
angles from zero up to about 5 ø . With this restriction the 
scattered field becomes 

•b(x,z) mL z{a 0 + a 2}. (49) 
Consider now the moments of the field based on this 

reduced equation. Reasoning as before, by the binomial ex- 
pansion (16) the one-point nth moment is 

0 n n n 1 
Mn(O,x;z)--([qb (x,z)])•(Lzao) +na o- (Lza2). 

(50) 

From the wave equation, 

Lzao( O,x) = L e it•sx-- --e ilt{$•-z cos 0) (51) 

and by (25), since L is deterministic, 

(Lza2( O,x)) :=Lz(a2(,9,x)) = toL•ao( O,x) (52) 

so that from (24) and (50)-(52) 

M ,( O,x;z) = -e i•"•s•-• co• o•( ! + n To). (53) 

Thus to first order in/2 the one-point moments can be written 
[see (28)1 

M,( O,x;z) = e •"• •o• •M,( 0,x;0 ). 

In a similar way, the symmetric moments M,,,, [Eq. (10)] can 
be written 

M...( O,x;z)== lLaol 2"+nlLaol2"-2[(Lza2)Lao 

+ (Lza 2)Lzao] (54) 

and by (30), (51), and (52) this gives 

M,,,,,(O,x;z)=(I +n[ To+ To])=Mn,,,(O,x;O). (55) 

Thus the intensity moments are unchanged to first order in 
the grazing angle as the f.eld is scattered into the medium. 
It is easy to see that these results generalize to all lhe mo- 
ments, which in this limit depend on distance from the sur- 
face only through some deterministic propagation factors 
exp(iknz cos 0). 

A. Probability density 

We briefly discuss the question of obtaining the prob- 
ability density function (p.d.f.) of the scattered field. All sta- 
tistics of the scattered wave field can be found from this 

function and it is therefore one of the ultimate goals of such 
work (see DeSanto and Brown3). If, for example, we are 
given the density function f(X) of the wave field O(x,z) 
(which will depend upon z), the mean of any function G is 
given by 

(a(½)) = dX. (56) 

One way to calculate the probability density function is in 
terms of the moments, via the moment theorem (see 
Papoulis •6) or characteristic function. The characteristic 
function is defined as the Fourier transform of the p.d.L: 

ao( to )= f L ei"'a f( fl )d12. (57) 
Expanding the exponential and using (56) this can be written 

]=1 

If we have "enough" of the moments it is thus in principle a 
simple matter to form an approximation to the characteristic 
function: 
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j=l J! j=o 
(58) 

where the moments Mj are given by (53) and the upper limit 
n=n(o.) is determined according to Eq. (18) with kcr=•. 
Therefore in the limit of low' angle (i.e., to first order in the 
angle and to second order in surface height) we may take the 
inverse transform of (58), by (57), to obtain an approxima- 
tion to the probability density function as required. 

The above argument, which applies to the one-point sta- 
tistics, can be extended trivially to the two-point and higher- 
order statistics. If we drop the restriction to first order in the 
grazing angle, the same calculation holds for the statistics at 
the mean surface using the results of Sec. II, but in general 
no simple method exists to obtain from these the moments in 
the medium. 

V. CONCLUSIONS 

We have considered the scattering of a plane-wave inci- 
dent upon a slightly rough surface at a low grazing angle g. 
The second moment and angular distribution of intensity 
have been found to second order in surface height, and their 
dependence upon incident angle and the surface autocorrela- 
tion function has been shown. It has been found that as •0 
the diffuse component vanishes with /.,2, an d the specular 
part approaches unity linearly in /.,. The higher moments 
have been found at the mean surface, and to first order in/• 
these yield the corresponding quantities everywhere in the 
medium. 

These results do not exhibit enhancement of backscatter- 

ing in the antispecular direction; this effect 15'i8-2ø is largely 
due to coherent addition of reversible ray paths, which are 
precluded by the restriction to forward scattering at the sur- 
face. Any backscatter enhancement would probably be very 
small in this case. It is nevertheless important to quantify 
this, and the above results raise the question of whether 
backscatter enhancement vanishes at the same rate as the 

diffuse or the specular component. Another important effect 
which we have not considered here is that of depolarization 
due to scattering of electromagnetic waves, about which few 
theoretical results are known for this r6gime. 
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APPENDIX: EFFECTIVE REFLECTION COEFFICIENTS 

The integral in coefficient T o [Eq. (22)] is a Laplace 
transform. In several cases of interest we can express this 
integral in closed form, or in terms of standard functions. We 

give three examples, taken from Ref. 12. In each case the 
parameter L determines the correlation length of the irregular 
surface. 

(1) Consider the "fractal" autocorrelation function 

p(•) = o '2 exp( - f/L). 
Then 

p( ik 
The coefficient T o takes the value •7 

k 2 (1)e To= cos 0 if2 S+ i• • d• 
k 2 S + 1/ikL 

- •a •2 cos 0 •ikS+l/L' (A1) 
(2) The "subfractal" autocorrelation function is 

p(•) = if2( 1 + •/L)exp( - •/L). 
In this case 

[(s 1)] 1 dp(•) =•2 exp(-•/L) S+• [+ i• 
•e coefficient is given by •7 

k 2 IS+ 1/2ikL ] 

(3) Finally, consider a Gaussian autocorrelation hnc- 
tion, 

p(•) = •2 exp( - •2/L2). 

In this case we can express the coefficients exactly in terms 
of standard hnctions. Here 

1 dp(•)_•2 exp - S+ 
The integral in T o is the sum of •o Laplace transfores, and 
can be written (see p. 146 of Ref. 17) 

k 2 
To=• •2 cos 0 exp(-(kLS)2/8) 

1]' 
Here F is the Gamma function, K is the modified Bessel 
function of the third kind, and D is the parabolic cylinder 
hnction. 
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