Sound propagation in an irregular two-dimensional waveguide
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A method is presented for the numerical calculation of a scalar wave propagating along a
two-dimensional rough-sided or irregular waveguide. In this situation the wave becomes multiply
scattered, with simultaneous interaction at the two boundaries. The field can be expressed in terms
of a pair of coupled integral equations; these are derived and solved in an approach based on the
parabolic integral equation method, which assumes that all energy is carried in a forward direction.
An extended formulation encompassing backscatter is also derived, and a method given for its
treatment. This paper serves in part to explain the computational results presented in B. J. Uscinski,
“High-frequency propagation in shallow water,” J. Acoust. Soc. A88 2702—-2707(1995.
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INTRODUCTION tages can be seen when the pair of matrix equations are re-
written formally in terms of a single “matrix operator’’7,

In many acoustic and electromagnetic applicationswhose entries are themselves 2 matrices; this matrix op-
waves propagate along irregular or rough-sidederator is lower triangular, and can therefore be inverted effi-
waveguides; > becoming scattered progressively as they im-ciently. Computational examples are given below for a
pinge upon the boundaries. This is an important mechanisnGaussian beam traveling at various angles with respect to the
for example, for sound propagation in shallow water and icehorizontal.
or electromagnetic waves in ducts and dielectric layers. The  One drawback is that backscatter, the relevant quantity
surfaces often vary randomly on a scale comparable with & applications such as detection and imaging, is precluded
wavelength; this gives rise to a high degree of multiple scatpy this description as it stands. The second aim of the paper
tering, which is enhanced by the low angles of incidenceis to extend the method to include direct and indirect back-
The field can be expressed exactly in terms of boundary inscatter components. The one-way Green’s function is re-
tegrals; these give rise to a pair of coupled integral equationglaced by an analogous two-way form; the resulting equa-
whose treatment is difficult both numerically and analyti- tions thereby include components of the field scattered back
cally. toward the source. In this form the equations do not directly

In the simpler case of a single bounddie., a rough vyield a lower triangular system, so that the computational
half-spacg the analogous low grazing angle problem hasadvantage is initially lost, but the solution can be expressed
been treated successfully using parabolic integral equatioas a series in which each term is again lower triangular. It is
method®~8 Under the approximation that all energy is for- explained below how this system may be treated in a way
ward scattered, the full wave equation is replaced by th&imilar to that above.
parabolic equation, an appropriate Green’s function derived, The problem is formulated in Sec. I, and the implemen-
and the exact boundary integral formulation replaced by theation of the numerical solution given in Sec. Il, with com-
parabolic integral equationgThese equations allow for putational examples. In Sec. lll an extended form of the
waves traveling only in the direction away from the source equations is derived taking backscatter into account, and it is
but an extended description taking into account multipleexplained how these equations may be treated similarly.
backscatter has been derivdd.

The same approach can be applied to the present
problem? giving rise to a set of coupled equations, again| EFORMULATION OF PROBLEM
within the approximation that forward scatter predominates.

The first purpose of this note is to explain the treatment of  Consider a two-dimensional waveguide with boundaries
the coupled system, and to show how the parabolic fornvarying irregularly about the horizontal direction, as shown
allows fast and efficient solution. The method is imple-schematically in Fig. 1. We will as far as possible follow the
mented here for the case in which both surfaces have presonventions of previous papét&.The derivation of equa-
sure release boundary conditions. The system is first digions is similar to that for the case of a single surféoegu-
cretized with respect to range, giving a pair of coupledlar half-spac¥:’ and details will be kept to a minimum here.
matrix equations in the unknown vertical derivatives of thelLet x be the horizontal and the vertical axis, and denote the
field along the two surfaces. The “one-way” form of the upper and lower surfaces by (x), h,(x) respectively. We
equations allows the system to be solved progressively frormonsider time-harmonic solutiong of the wave equation
the left, say. This requires onl®(N?) operations, wheré\ (V2+k?)p=0, with wave numbek. Thenp can be consid-

is the number of points used in the discretization. The advarered as the sum
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Taking limits asr tends, respectively, to the upper and to the

source lower surfaces, and applying the boundary conditions, we
obtain two coupled integral equations for the unknown val-
ues of the quantityy/dz along each of the two surfaces. Itis
convenient to regard these as separate functions of the single

coordinatex, and accordingly we define

X
Iy
Liywy—= o~
2 U0 == (x, (),
FIG. 1. Schematic view of the scattering geometry. ) Iy ©)
VA0 =S (6,n5(0)).
P=Pinct Ps The coupled integral equations fgf, ¢ can then be written

of an incident fieldp,,. and a scattered compongunt due to x

the presence of the surfaces. It will be assumed that angles #finc(F2) = JO [G(ra;r)¢?(x') = G(rair)¢H(x)1dx’,
propagation and scatter are small with respect to the horizon- 7
tal, so the field has a rapidly varying phase component [ N N ,
exp(ikx). This can be factored out, and the reduced wave ¥inc(T1)= JO[G(rlJz)lP (X")=G(ry;r) ¢ (x")]dx’,
introduced,

o(— k) where
Yy=p exp —1kX). ,
: : r1=hy(x)), ry="hy(x")),
Then ¢ obeys the parabolic or one-way wave equation (8)
. r=(,hy(x)), ry=(x",hy(x")).
l//x+ 2|kl,bZZ= 0’ (1) 2 ( 2( )) 2 ( 2( ))

The main task is to invert this set of coupled equations to
find the field derivatives)!, ¢ along the surfaces. These
U= Yinet s, (20 may then be substituted into E) to yield the value of the
field in the waveguide.

For computational purposes we will take as a source a
Gaussian beam, centered at a pah,), say, whose prin-
cipal direction is at some small angketo the horizontal.
This gives rise to an incident field

and we can write

where the reduced formg;,., ¥ of the incident and scat-
tered fields are defined similarly. Now the parabolic form of
the Green’s function can be derived for wave equatibn
This is given by

Gp(x,z;x",2")

E (x2) w 272+ ikSW(Sx—2)
1. [1 ik(z—2')2 , e ik N 2(wE2ixik) |
_l3 Vil2wk —r ex;{ 2=x') for x'<x )
0, otherwise. whereS=sin(6), andw is the width of the beam.

()
By analogy with the Helmholtz equations, and as forll. SOLUTION
previous applications of the parabolic integral equation
method to a rough half-space, the field at a poimside the
waveguide can be expressed as an integral across the bou
ing surfaces:

In this section the numerical solution of the integral
rg(l%uations will be explained, and computational examples
en.

o A. Numerical implementation

G(rir’) ——(r') The numerical treatment is similar in many respects to
that of the corresponding rough half-space probléia-
scribed elsewhef® so we concentrate here on the additional

dx’, (4) complications introduced by the coupling of the equations.
Some care is required in treating the integrands, which con-

wherer’=(x",S(x")), andS is the union of the surfaces;  tain weak(i.e., integrablg singularities.

andh,. Following previous treatments we discretize EG#)

For convenience we will henceforth specialize to theyjth respect to range introducing, sayN equally spaced
case of pressure release surfaces. The method is equally asints{x,}, n=1,... N. The first of Eqs(7), for example, is
plicable when either or both surfaces obey Neumann boundgritten as a sum of subintervals
ary conditions.(See concluding remarks for discussion of
more general casegdn this case Eq(4) becomes

(1) = thinct L

9G et ’
_E(rlr )l/l(r)

n—-1 .
¢inc(r2):z f J [G(rz;ré)wz(xl)
p— ! alﬂ ! ! J:l Xj
l//S(r)_J’hlJrth(r,r ) E (I’ )dX . (5) —G(rz;ri)wl(x’)]dX’, (10)
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ments of the Green’s function are clogsspecially at large
vertical separation becausés(x,z;x’,z’) has a weak singu-
larity asx’ —x. Further details can be found in Ref. 6.

The equations are now in a form which can be solved by
induction, or progressively from the left. At each stage the
calculation reduces to a pair of simultaneous linear equations
for the values ot,,,d, at a single range stey,, say.

Step 1
Forn=1, Egs.(12) give:

a;=3S15C1+ T1ady, (15
bj_: Silcl'f‘ Tildl .
Multiplying the first byS;,, the second b, ;, and subtract-

ing, this gives the solutions for the field derivative at the

initial range step
FIG. 2. Amplitude of the wave due to a horizontally traveling Gaussian ,
beam, in a regular flat-sided waveguide. S1ib1—Sa,

! SllTil_ SilTlll (16)
where  r,=(X,,ha(x,), ri=x',hy(x’)), and r;
= (x,hy(x")). We may assume that the unknown functions €1~ (81~ T11d1)/Sy;.
, ¢; vary sufficiently slowly to be treated as constant overStep 2
each of the subintervalsx(,X;,,), and can therefore be Assume thatc; ,d; are known forj=1,...n—1. Then

taken outside the integral. Writin&,=(X,.1+Xp)/2, we  Egs.(12) can be written in the form
then replace)!, 42, and the incident field along the surfaces
by vectors:

n—-1
an— jzl [Sjncj +Tjndj]: SanCnt Trndn

an= YindXn ,h1(Xp) ], (17)
b= YindXn -2lX0)], @y S e et g1 e
d bn—jzl [S/,Ci+ T/ndj1=ShnCnt Tl
Ca= (X)), dp=yA(Xp). e . -y ,
Equations(7) then become This is solved to finc, ,d,,, exactly as fom=1: Write
n-1 X,= E:l SinCj+T;nd
an=21 [Sj.nCi+Tjndjl, n= e~ 24 [5Gt Tindh )
2 (12 n—1 (18)
- Y,=b,— S [S.c+T.d
bn:gl [SinCj+Tj adj], n=bn 1:1[ inCi+ Tind, 1.
Then we obtain
where
X d.= Sn,nYn_Srrm,an
Siv":J' (rysry)dx’, " ShnTan=ShnTnn’ (29
Xj*l
Tj,n=—fx G(ryirpdx’, " S,
j—1
N ] (13 as required. This is carried out progressively up to the maxi-
Sjl,n:fj G(ryir)dx, mum rangexy .
Xj,l
X B. Computational examples
T [ earpox, | |
' Xj-1 The scheme described above can be applied both to
and regular and irregular waveguides. In the following examples,
the vertical scale is exaggerated, approximately by a factor of
r1=Xy,h1(xy)), ri=(x",hy(x")), 10, so that on a true scale the figures would be stretched

(14) horizontally. Figure 2 shows the amplitude of the total field

F2= (Xn h2(Xn)), 15= (X, g(X7)). in a regular flat-sided waveguide, due to a Gaussian beam
Note that, by expanding the integrand in each interval aboutraveling horizontally i.e., with principal direction parallel to
the endpoink; , the integralg13) can be carried out analyti- the mean surface direction. The source is at the left, and the
cally and expressed in terms of Fresnel integrals. This befield vanishes on both surfaceghis is visible at the lower
comes patrticularly important when tkevalues of the argu- surface which corresponds to the lower edge of the plot; the
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FIG. 5. Amplitude of the wave in a flat-sided waveguide, due to a Gaussian
beam traveling at an anglg=0.2.

20 40 60 80 100 120

lll. MULTIPLE BACKSCATTER

FIG. 3. Amplitude of the totali.e., incident plus scattergavave, for the . . . . .
same incident field as in Fig. 2 where the surfaces are now rough, The  |N Many circumstances, particularly in detection and im-

horizontal scale sizé of each surface is approximately4 where\ is the  aging, the principal quantity required is power scattered back
wavelength. towards the source, and the above purely forward scatter
calculation is not sufficient. In this section we formulate a

top of the graph extends up to slightly below the upper wavemethod which takes account of backscatter, although nu-

guide surface.An example is shown in Fig. 3 of the field merical implemel_wtatio_n will not _be <_:ar_ried out here. .
resulting when the surfaces are rough; here the scattering has The above_ discretized S.OIUt.'On s first expressed in more
largely destroyed the deterministic interference pattern. Th ormal terms, in order to simplify the eventual backscatter
surface correlation length,, is about a quarter of a wave- calculat_lon. _ _
length. Figure 4 shows a calculation for surfaces with th% Define vectors A=(Ay,....A), C_(Cl""’C.N) Of.
same rms height, but with scale sizesabout four times as ength N, whose elements are themselves two-dimensional
large, i.e., of the order of a wavelength. vectors,

Figures 5 and 6 show similar configurations, but here the A =(a,,b,), C,=(c,.d,), (20

beam is at a nonzero angleto the horizontal. Again the wherea, , b, ¢, d, are given by(11). Thus, in effectA,

disruption of the_ . wayegmde pa“e”? Is clear. . C are functions of. Define the X2 matricesM;, by
The parabolic equation method which we apply requires !

low angles of propagation and scatter, i.e., less than around Sk Tik
15° to thex direction. It is difficult to translate this into a K= (21
precise limitation on the form of the rough surfaces, because

a general solution for the scattered field is unavailable. HowThen Eq.(15) becomes
ever, the method should yield reasonably accurate results A,=MyC,,,
provided that the maximum average angles of slope relative

to the direction of incidence are less than 15°. Eq.(17) is

! !

ik Tk

n—-1
An_jzl [Manj]:MnnCnv

20 40 60 80 100 120

FIG. 6. Amplitude of the wave in a rough-sided waveguide, due to a Gauss-
FIG. 4. Similar plot to Fig. 3, buth with scale sizksfour times as large.  ian beam traveling at an ang#=0.2.
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and so on. As is easily checked, we thus obtain the matrixt can be shown that, in the regime here in which most en-
operator equation ergy is scattered to the righty has the effect of a small
o perturbation. The inverse af’ can thus be expanded in a
A=.7C, (22 series about/z ™
where. 7 is a Iower-trlangul_ar matrix op_erator Who_se gntrles FPr=[1= o ()=t (29)
are themselves thex2 matricesM , , for j<k. This is sim- . . _ .
ply a convenient way of writing the coupled system of Egs.and solution27) can be approximated by truncating this and

(12. substituting in(27):
The solution 0f(22) can formally be written C=[1-.#" 0.7 'A. (30)
C=.7"'A. (23 This expresses the solution of the extended system as the

This expresses the discretized forms of the unknown funcforward-going result(27) plus a correction accounting for
tions ¢, ¢ in terms of the known incident field, and Eqs. Packscatter via the action of the operatarHereZ’ simply

(12)~(19) show how the inversion of% may be carried out acts by matrix multiplication, and S@0) requires the inver-
in practice. sion only of the same “lower-triangular” coupled system

The next step is to derive extended governing equationd€Presented by, which has been described earlier.

making use of theéwo-way parabolic form of the Green’s

function <, given by V. DISCUSSION

A,z x",2")

The paper has described the efficient solution for a sca-
lar wave propagating along a rough-sided waveguide, a prob-
lem requiring the evaluation of a pair of coupled integral
equations. Results have been presented for the purely for-

1 /i [ 1 ik(z—2")?
2 V2mk Vx—x' ex 2(x—=x") |’
ward scattered component, and the extension to backscatter

={ 1 [ [ 1 F{ik(z—z’)2
5 7 ex ’ . . . .
2 V2mk Vx'—x 2(xX"=x) of the governing equations and their numerical treatment

xexg 2ik(x’ —x)], x=x. have been explained.

This approach is computationally convenient and makes
possible the numerical investigation of other questions which
have not been discussed here, such as field statistics when
the surfaces are randomly rougbee Refs. 5 and 110ne
such question concerns the mean scattered §igld It can
dx’, be shown that the effect of surface roughness upon the mean

(24) field is equivalent to the solution for #lat waveguide, in

which the reflection coefficient of each surface is replaced by
where agairr’=[x",S(x")], and S is the union of the sur- an effective oneR, say, depending on the surface statistics
facesh, andh,. Taking the limit ag approaches the surface and the deptts of the waveguide. HoweveR, in general is
gives rise as before to coupled integral equations: not known, and some studies approximate it by the coeffi-
" cient for theisolated rough surface, as in the rough half-
'ﬁinc(fz):J [t ) A(X ) — S(rpir) h(x) ]dX, space solution. It can be argd@dhat this holds in the limit
0 of large & (specifically whens>kL?, due to the evolution of
- (25 the wave on propagation across the waveguidhis is clear
'//inc(rl):f [ ) (X)) — S(ryr)yt(x)]dx’.  from Eq. (7); when & becomes large the cross terms
0 G(ry;ry), G(rq;r,) oscillate rapidly, and the two equations
The key difference in these equations is that, sifiéo ~ @pproximately decouple. This issue is also discussed by
longer vanishes fox'>x, integration is across the whole Voronovicht" in terms of the “skip distance,” which de-
surface and therefore allows for left-traveling wave compo/?€nds upon the horizontal wavenumber and is in some sense
nents. These equations may be discretized exactly as befor@more refined estimate. It appears that these two measures in
Omitting the details, this eventually results in a matrix op-fact reflect separate mechanisms for decorrelation.

X' <x

The factor exp[2k(x’ —x)] arises forx’ =x because we are
solving for the reduced wawg. Using the new Green'’s func-
tion we can then derive extended forms of E@s.and (7):

(/)

7
9z

(rr)e(r’)

]
¢(r)=fs[5¢(r;r’) a—f(r’)—

erator equation, analogous (22): _ The method can be extended in principle to waygguides
i with penetrable surfaces, where the boundary conditions can
A=7TC, (26)  no longer be expressed in terms of reflection coefficients

independent of frequency. In the related vector wave case,
for example in an elastic layer adjoining a fluid half-space,
C=7""A, (27)  additional mechanisms come into play such as mode conver-
sion (P—S, etc) at the interfaces, and leakage of energy
outside the layer. Such complications are less easy to treat
with this approach because the angles of scattering due to
wave conversion may easily exceed the limits imposed by
P=MH+0. (28 the parabolic wave equation.

with formal solution

whereZ is now a full matrix, whose entries arex2 matri-
ces, which is simply the sum o# with an upper-triangular
part -
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