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A method is presented for the numerical calculation of a scalar wave propagating along a
two-dimensional rough-sided or irregular waveguide. In this situation the wave becomes multiply
scattered, with simultaneous interaction at the two boundaries. The field can be expressed in terms
of a pair of coupled integral equations; these are derived and solved in an approach based on the
parabolic integral equation method, which assumes that all energy is carried in a forward direction.
An extended formulation encompassing backscatter is also derived, and a method given for its
treatment. This paper serves in part to explain the computational results presented in B. J. Uscinski,
‘‘High-frequency propagation in shallow water,’’ J. Acoust. Soc. Am.98, 2702–2707~1995!.
© 1997 Acoustical Society of America.@S0001-4966~97!03703-X#
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INTRODUCTION

In many acoustic and electromagnetic applicatio
waves propagate along irregular or rough-sid
waveguides,1–5 becoming scattered progressively as they i
pinge upon the boundaries. This is an important mechan
for example, for sound propagation in shallow water and
or electromagnetic waves in ducts and dielectric layers.
surfaces often vary randomly on a scale comparable wi
wavelength; this gives rise to a high degree of multiple sc
tering, which is enhanced by the low angles of inciden
The field can be expressed exactly in terms of boundary
tegrals; these give rise to a pair of coupled integral equat
whose treatment is difficult both numerically and analy
cally.

In the simpler case of a single boundary~i.e., a rough
half-space! the analogous low grazing angle problem h
been treated successfully using parabolic integral equa
method.6–8 Under the approximation that all energy is fo
ward scattered, the full wave equation is replaced by
parabolic equation, an appropriate Green’s function deriv
and the exact boundary integral formulation replaced by
parabolic integral equations.~These equations allow fo
waves traveling only in the direction away from the sour
but an extended description taking into account multi
backscatter has been derived.9!

The same approach can be applied to the pre
problem,4 giving rise to a set of coupled equations, aga
within the approximation that forward scatter predominat
The first purpose of this note is to explain the treatment
the coupled system, and to show how the parabolic fo
allows fast and efficient solution. The method is imp
mented here for the case in which both surfaces have p
sure release boundary conditions. The system is first
cretized with respect to range, giving a pair of coupl
matrix equations in the unknown vertical derivatives of t
field along the two surfaces. The ‘‘one-way’’ form of th
equations allows the system to be solved progressively f
the left, say. This requires onlyO(N2) operations, whereN
is the number of points used in the discretization. The adv
1250 J. Acoust. Soc. Am. 101 (3), March 1997 0001-4966/97/101
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tages can be seen when the pair of matrix equations are
written formally in terms of a single ‘‘matrix operator’’M,
whose entries are themselves 232 matrices; this matrix op-
erator is lower triangular, and can therefore be inverted e
ciently. Computational examples are given below for
Gaussian beam traveling at various angles with respect to
horizontal.

One drawback is that backscatter, the relevant quan
in applications such as detection and imaging, is preclu
by this description as it stands. The second aim of the pa
is to extend the method to include direct and indirect ba
scatter components. The one-way Green’s function is
placed by an analogous two-way form; the resulting eq
tions thereby include components of the field scattered b
toward the source. In this form the equations do not direc
yield a lower triangular system, so that the computatio
advantage is initially lost, but the solution can be expres
as a series in which each term is again lower triangular. I
explained below how this system may be treated in a w
similar to that above.

The problem is formulated in Sec. I, and the impleme
tation of the numerical solution given in Sec. II, with com
putational examples. In Sec. III an extended form of t
equations is derived taking backscatter into account, and
explained how these equations may be treated similarly.

I. FORMULATION OF PROBLEM

Consider a two-dimensional waveguide with boundar
varying irregularly about the horizontal direction, as show
schematically in Fig. 1. We will as far as possible follow th
conventions of previous papers.6,8 The derivation of equa-
tions is similar to that for the case of a single surface~irregu-
lar half-space!6,7 and details will be kept to a minimum here
Let x be the horizontal andz the vertical axis, and denote th
upper and lower surfaces byh1(x), h2(x) respectively. We
consider time-harmonic solutionsp of the wave equation
(¹21k2)p50, with wave numberk. Thenp can be consid-
ered as the sum
1250(3)/1250/6/$10.00 © 1997 Acoustical Society of America
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of an incident fieldpinc and a scattered componentps due to
the presence of the surfaces. It will be assumed that angle
propagation and scatter are small with respect to the horiz
tal, so the field has a rapidly varying phase compon
exp(ikx). This can be factored out, and the reduced wavc
introduced,

c5p exp~2 ikx!.

Thenc obeys the parabolic or one-way wave equation

cx12ikczz50, ~1!

and we can write

c5c inc1cs , ~2!

where the reduced formscinc , cs of the incident and scat
tered fields are defined similarly. Now the parabolic form
the Green’s function can be derived for wave equation~1!.
This is given by

Gp~x,z;x8,z8!

5H 1

2
Ai /2pkA 1

x2x8
expF ik~z2z8!2

2~x2x8! G for x8,x

0, otherwise .
~3!

By analogy with the Helmholtz equations, and as
previous applications of the parabolic integral equat
method to a rough half-space, the field at a pointr inside the
waveguide can be expressed as an integral across the bo
ing surfaces:

cs~r !5c inc1E
S
FG~r ;r 8!

]c

]z
~r 8!

2
]G

]z
~r ;r 8!c~r 8!Gdx8, ~4!

wherer 85„x8,S(x8)…, andS is the union of the surfacesh1
andh2.

For convenience we will henceforth specialize to t
case of pressure release surfaces. The method is equall
plicable when either or both surfaces obey Neumann bou
ary conditions.~See concluding remarks for discussion
more general cases.! In this case Eq.~4! becomes

cs~r !5E
h11h2

G~r ;r 8!
]c

]z
~r 8!dx8. ~5!

FIG. 1. Schematic view of the scattering geometry.
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Taking limits asr tends, respectively, to the upper and to t
lower surfaces, and applying the boundary conditions,
obtain two coupled integral equations for the unknown v
ues of the quantity]c/]z along each of the two surfaces. It
convenient to regard these as separate functions of the s
coordinatex, and accordingly we define

c1~x!5
]c

]z
„x,h1~x!…,

c2~x!5
]c

]z
„x,h2~x!….

~6!

The coupled integral equations forc1, c2 can then be written

c inc~r2!5E
0

x

@G~r2 ;r28!c2~x8!2G~r2 ;r18!c1~x8!#dx8,

c inc~r1!5E
0

x

@G~r1 ;r28!c2~x8!2G~r1 ;r18!c1~x8!#dx8,

~7!

where

r15„x,h1~x!…, r185„x8,h1~x8!…,

r25„x,h2~x!…, r285„x8,h2~x8!….
~8!

The main task is to invert this set of coupled equations
find the field derivativesc1, c2 along the surfaces. Thes
may then be substituted into Eq.~5! to yield the value of the
field in the waveguide.

For computational purposes we will take as a sourc
Gaussian beam, centered at a point~0,z0!, say, whose prin-
cipal direction is at some small angleu to the horizontal.
This gives rise to an incident field

Einc~x,z!5
w

Aw212ix/k
expF2

2z21 ikSw2~Sx2z!

2~w212ix/k! G ,
~9!

whereS5sin~u!, andw is the width of the beam.

II. SOLUTION

In this section the numerical solution of the integr
equations will be explained, and computational examp
given.

A. Numerical implementation

The numerical treatment is similar in many respects
that of the corresponding rough half-space problem~de-
scribed elsewhere6!, so we concentrate here on the addition
complications introduced by the coupling of the equatio
Some care is required in treating the integrands, which c
tain weak~i.e., integrable! singularities.

Following previous treatments we discretize Eqs.~7!
with respect to rangex introducing, say,N equally spaced
points$xn%, n51,...,N. The first of Eqs.~7!, for example, is
written as a sum of subintervals

c inc~r2!5 (
j51

n21 E
xj

xj11
@G~r2 ;r28!c2~x8!

2G~r2 ;r18!c1~x8!#dx8, ~10!
1251Mark Spivack: Sound in a rough waveguide
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where r25„xn ,h2(xn)…, r185„x8,h1(x8)…, and r28
5 „x8,h2(x8)…. We may assume that the unknown functio
c1, c2 vary sufficiently slowly to be treated as constant ov
each of the subintervals (xj ,xj11), and can therefore be
taken outside the integral. WritingXn5(xn111xn)/2, we
then replacec1, c2, and the incident field along the surfac
by vectors:

an5c inc†xn ,h1~xn!‡,

bn5c inc†xn ,h2~xn!‡,

cn5c1~Xn!, dn5c2~Xn!.

~11!

Equations~7! then become

an5 (
j51

n21

@Sj ,ncj1Tj ,ndj #,

bn5 (
j51

n21

@Sj ,n8 cj1Tj ,n8 dj #,

~12!

where

Sj ,n5E
xj21

xj
~r1 ;r18!dx8,

Tj ,n52E
xj21

xj
G~r1 ;r28!dx8,

Sj ,n8 5E
xj21

xj
G~r2 ;r18!dx8,

Tj ,n8 52E
xj21

xj
G~r2 ;r28!dx8,

~13!

and

r15„xn ,h1~xn!…, r185„x8,h1~x8!…,

r25„xn ,h2~xn!…, r285„x8,h2~x8!….
~14!

Note that, by expanding the integrand in each interval ab
the endpointxj , the integrals~13! can be carried out analyti
cally and expressed in terms of Fresnel integrals. This
comes particularly important when thex values of the argu-

FIG. 2. Amplitude of the wave due to a horizontally traveling Gauss
beam, in a regular flat-sided waveguide.
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ments of the Green’s function are close~especially at large
vertical separation!, becauseG(x,z;x8,z8) has a weak singu-
larity asx8→x. Further details can be found in Ref. 6.

The equations are now in a form which can be solved
induction, or progressively from the left. At each stage t
calculation reduces to a pair of simultaneous linear equat
for the values ofcn ,dn at a single range stepxn , say.
Step 1:

For n51, Eqs.~12! give:

a15S11c11T11d1 ,

b15S118 c11T118 d1 .

~15!

Multiplying the first byS118 , the second byS11, and subtract-
ing, this gives the solutions for the field derivative at t
initial range step

d15
S11b12S118 a1
S11T118 2S118 T11

,

c15~a12T11d1!/S11.

~16!

Step 2:
Assume thatcj ,dj are known for j51,...,n21. Then

Eqs.~12! can be written in the form

an2 (
j51

n21

@Sjncj1Tjndj #5Snncn1Tnndn ,

bn2 (
j51

n21

@Sjn8 cj1Tjn8 dj #5Snn8 cn1Tnn8 dn .

~17!

This is solved to findcn ,dn , exactly as forn51: Write

Xn5an2 (
51

n21

@Sjncj1Tjndj #,

Yn5bn2 (
51

n21

@Sjn8 cj1Tjn8 d#.

~18!

Then we obtain

dn5
Sn,nYn2Sn,n8 Xn

SnnTnn8 2Snn8 Tnn
,

cn5
Xn2Tnndn

Snn

~19!

as required. This is carried out progressively up to the ma
mum rangexN .

B. Computational examples

The scheme described above can be applied both
regular and irregular waveguides. In the following exampl
the vertical scale is exaggerated, approximately by a facto
10, so that on a true scale the figures would be stretc
horizontally. Figure 2 shows the amplitude of the total fie
in a regular flat-sided waveguide, due to a Gaussian be
traveling horizontally i.e., with principal direction parallel t
the mean surface direction. The source is at the left, and
field vanishes on both surfaces.~This is visible at the lower
surface which corresponds to the lower edge of the plot;
1252Mark Spivack: Sound in a rough waveguide
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top of the graph extends up to slightly below the upper wa
guide surface.! An example is shown in Fig. 3 of the fiel
resulting when the surfaces are rough; here the scattering
largely destroyed the deterministic interference pattern.
surface correlation length,L, is about a quarter of a wave
length. Figure 4 shows a calculation for surfaces with
same rms height, but with scale sizesL about four times as
large, i.e., of the order of a wavelength.

Figures 5 and 6 show similar configurations, but here
beam is at a nonzero angleu to the horizontal. Again the
disruption of the flat waveguide pattern is clear.

The parabolic equation method which we apply requi
low angles of propagation and scatter, i.e., less than aro
15° to thex direction. It is difficult to translate this into a
precise limitation on the form of the rough surfaces, beca
a general solution for the scattered field is unavailable. Ho
ever, the method should yield reasonably accurate res
provided that the maximum average angles of slope rela
to the direction of incidence are less than 15°.

FIG. 3. Amplitude of the total~i.e., incident plus scattered! wave, for the
same incident field as in Fig. 2 where the surfaces are now rough.
horizontal scale sizeL of each surface is approximatelyl/4 wherel is the
wavelength.

FIG. 4. Similar plot to Fig. 3, buth with scale sizesL four times as large.
1253 J. Acoust. Soc. Am., Vol. 101, No. 3, March 1997
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III. MULTIPLE BACKSCATTER

In many circumstances, particularly in detection and i
aging, the principal quantity required is power scattered b
towards the source, and the above purely forward sca
calculation is not sufficient. In this section we formulate
method which takes account of backscatter, although
merical implementation will not be carried out here.

The above discretized solution is first expressed in m
formal terms, in order to simplify the eventual backscat
calculation.

Define vectors A5(A1 ,...,AN), C5(C1 ,...,CN) of
lengthN, whose elements are themselves two-dimensio
vectors,

An5~an ,bn!, Cn5~cn ,dn!, ~20!

wherean , bn , cn , dn are given by~11!. Thus, in effectA,
C are functions ofx. Define the 232 matricesM jk by

M jk5S Sjk Tjk

Sjk8 Tjk8
D . ~21!

Then Eq.~15! becomes

A15M11Cn ,

Eq. ~17! is

An2 (
j51

n21

@M jnCj #5MnnCn ,

he

FIG. 5. Amplitude of the wave in a flat-sided waveguide, due to a Gaus
beam traveling at an angleu50.2.

FIG. 6. Amplitude of the wave in a rough-sided waveguide, due to a Ga
ian beam traveling at an angleu50.2.
1253Mark Spivack: Sound in a rough waveguide
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and so on. As is easily checked, we thus obtain the ma
operator equation

A5MC, ~22!

whereM is a lower-triangular matrix operator whose entri
are themselves the 232 matricesM jk , for j<k. This is sim-
ply a convenient way of writing the coupled system of Eq
~12!.

The solution of~22! can formally be written

C5M21A. ~23!

This expresses the discretized forms of the unknown fu
tions c1, c2 in terms of the known incident field, and Eq
~12!–~19! show how the inversion ofM may be carried out
in practice.

The next step is to derive extended governing equatio
making use of thetwo-wayparabolic form of the Green’s
functionG , given by9

G ~x,z;x8,z8!

55
1

2
A i

2pk
A 1

x2x8
expF ik~z2z8!2

2~x2x8! G , x8,x

1

2
A i

2pk
A 1

x82x
expF ik~z2z8!2

2~x82x! G
3exp@2ik~x82x!#, x>x.

The factor exp[2ik(x82x)] arises forx8>x because we are
solving for the reduced wavec. Using the new Green’s func
tion we can then derive extended forms of Eqs.~4! and ~7!:

c~r !5E
S
FG ~r ;r 8!

]c

]z
~r 8!2

]G

]z
~r ;r 8!c~r 8!Gdx8,

~24!

where againr 85[x8,S(x8)], andS is the union of the sur-
facesh1 andh2. Taking the limit asr approaches the surfac
gives rise as before to coupled integral equations:

c inc~r2!5E
0

`

@G ~r2 ;r28!c2~x8!2G ~r2 ;r18!c1~x8!#dx8,

~25!

c inc~r1!5E
0

`

@G ~r1 ;r28!c2~x8!2G ~r1 ;r18!c1~x8!#dx8.

The key difference in these equations is that, sinceG no
longer vanishes forx8.x, integration is across the whol
surface and therefore allows for left-traveling wave comp
nents. These equations may be discretized exactly as be
Omitting the details, this eventually results in a matrix o
erator equation, analogous to~22!:

A5PC, ~26!

with formal solution

C5P21A, ~27!

whereP is now a full matrix, whose entries are 232 matri-
ces, which is simply the sum ofM with an upper-triangular
partQ :

P5M1Q . ~28!
1254 J. Acoust. Soc. Am., Vol. 101, No. 3, March 1997
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It can be shown that, in the regime here in which most
ergy is scattered to the right,Q has the effect of a smal
perturbation. The inverse ofP can thus be expanded in
series aboutM21:

P215@12M21Q1~M21Q !22•••#M21 ~29!

and solution~27! can be approximated by truncating this a
substituting in~27!:

C>@12M21Q #M21A. ~30!

This expresses the solution of the extended system as
forward-going result~27! plus a correction accounting fo
backscatter via the action of the operatorQ . HereQ simply
acts by matrix multiplication, and so~30! requires the inver-
sion only of the same ‘‘lower-triangular’’ coupled syste
represented byM, which has been described earlier.

IV. DISCUSSION

The paper has described the efficient solution for a s
lar wave propagating along a rough-sided waveguide, a p
lem requiring the evaluation of a pair of coupled integ
equations. Results have been presented for the purely
ward scattered component, and the extension to backsc
of the governing equations and their numerical treatm
have been explained.

This approach is computationally convenient and ma
possible the numerical investigation of other questions wh
have not been discussed here, such as field statistics w
the surfaces are randomly rough~see Refs. 5 and 11!. One
such question concerns the mean scattered field^cs&: It can
be shown that the effect of surface roughness upon the m
field is equivalent to the solution for aflat waveguide, in
which the reflection coefficient of each surface is replaced
an effective one,Re say, depending on the surface statist
and the depthd of the waveguide. However,Re in general is
not known, and some studies approximate it by the coe
cient for the isolated rough surface, as in the rough hal
space solution. It can be argued10 that this holds in the limit
of larged ~specifically whend@kL2, due to the evolution of
the wave on propagation across the waveguide!. This is clear
from Eq. ~7!; when d becomes large the cross term
G(r2 ;r18), G(r1 ;r28) oscillate rapidly, and the two equation
approximately decouple. This issue is also discussed
Voronovich11 in terms of the ‘‘skip distance,’’ which de-
pends upon the horizontal wavenumber and is in some s
a more refined estimate. It appears that these two measur
fact reflect separate mechanisms for decorrelation.

The method can be extended in principle to wavegui
with penetrable surfaces, where the boundary conditions
no longer be expressed in terms of reflection coefficie
independent of frequency. In the related vector wave ca
for example in an elastic layer adjoining a fluid half-spac
additional mechanisms come into play such as mode con
sion ~P2S, etc.! at the interfaces, and leakage of ener
outside the layer. Such complications are less easy to t
with this approach because the angles of scattering du
wave conversion may easily exceed the limits imposed
the parabolic wave equation.
1254Mark Spivack: Sound in a rough waveguide
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