
Journal of Computational Physics161,169–181 (2000)

doi:10.1006/jcph.2000.6496, available online at http://www.idealibrary.com on

Source Reconstruction in a Coastal
Evolution Equation

M. Spivack∗ and D. E. Reeve†
∗Department of Applied Mathematics and Theoretical Physics, The University of Cambridge CB3 9EW, United

Kingdom; †School of Civil Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
E-mail: m.spivack@damtp.cam.ac.uk

Received July 12, 1999; revised March 10, 2000

A method is derived for the reconstruction of a source term in a linear parabolic
equation, describing seabed evolution over fairly large time scales. The approach is
based upon inversion of the formal solution for the direct problem and assumes that
data are available on a regular grid at successive time steps. The method is applied
first to simulated data, both with and without additional random noise, and gives
close agreement with the exact solution. It is then applied to measurements taken for
a group of sandbanks near the East Coast of the United Kingdom, and preliminary
results are presented.c© 2000 Academic Press

1. INTRODUCTION

In many coastal regions the seabed is composed of sediments that become mobile under
the action of moderate waves and tidal currents [1–4]. Changes in large-scale morphology
of the seabed, which take place over several decades, may have a profound effect on sea
defenses, navigation, and offshore exploration. One example is the group of sandbanks
lying several kilometres offshore from the coast at Great Yarmouth in the United Kingdom,
for which changes in alignment and extent since the mid-1800s have been documented by
Robinson [2]; extensive historical data are now available for this region covering the period
from 1846 up to the present.

These sandbanks provide some protection to the nearby beaches from severe wave action.
Changes in the sandbank configuration can also be potentially hazardous to ships navigating
the coastal waters and may also be linked to beach erosion at the coast. Development of a
means of forecasting the future evolution of the seabed morphology is thus of significant
practical importance.

The numerical prediction of long-term seabed evolution is in its infancy, and few methods
have been proposed in the literature. (By contrast, methods of predicting sediment transport
over periods of up to a few days are well developed and have been used successfully to
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predict the response of beaches over the duration of a storm [5].) This is due both to a lack
of suitable measurements and to difficulties in incorporating empirical sediment transport
formulas into the governing equations in a dynamically consistent manner. The review
article of de Vriendet al. [3] provides a recent survey of the techniques in this area.

The aim of this paper is to develop an inverse technique that can be used to analyze
historical seabed configurations. The governing equation takes the form of a linear evolution
equation relating the time and spatial derivatives of the depth variableh(x, y, t),

ht = αhxx + βhyy+ G,

whereG(x, y, t) is an unknown “source” function, and the coefficientsα, β are known
empirically. G is assumed slowly varying in the sense that changes are small over each
time step between available data locations. (This is quantified more explicitly in Section 2.2
below.) Herex andy are long-shore and cross-shore coordinates, respectively, and subscript
x indicates differentiation with respect tox, and so on. Reasonably well-defined measure-
ments of depthh are available over many decades in several locations. The specific aim here
is to use such data measurements to reconstruct the functionG. Inverse problems for this
and similar equations have been treated in numerous papers (notably [6, 7] for example),
but the problem here differs largely in the specification of the data.

The method proposed is an extension to two spatial dimensions of the approach in [8] for
the 1-dimensional analogue. However, the solution here is more accurate, and the availability
of data allows us to ensure that the data requirements are realistic. The approach is based
on the formal solution of the direct problem, as described in the next section. It is assumed
that measurements of the depthh are available on a regular grid of spatial points(xi , yj )

say, at successive time steps. The solution is first obtained based on simulated data, both
with and without additional “noise.” It is found that on this basis the source function is
accurately reconstructed from noiseless data, and provided a simple smoothing algorithm is
applied it remains closely approximated when noise is added. In addition, some bathymetry
measurements from Gt Yarmouth are presented, and preliminary results are obtained by
applying the method to this data.

In Section 2, the problem is formulated and the method for reconstructing the source is
described. In Section 3, the application to coastline evolution is explained and numerical
results are given, applying the method both to simulated data and bathymetric measurements.

2. FORMULATION AND SOLUTION OF INVERSION PROBLEM

In this section we briefly describe the underlying physical problem and formulate the
governing equation, and then we give the method by which this is to be inverted. Com-
putational examples and a discussion of the derivation of these equations are given in the
following section.

2.1. Problem and Equations

For the purposes of this study we consider long-term changes in seabed morphology to be
governed by an equation representing diffusion in two dimensions with sources and sinks
of sediment (Pelnard-Considere [9]). The derivation of this and similar forms of governing
equation are discussed in Section 3 below.
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Suppose thath(x, y, t) is depth, wherex andy are the spatial coordinates andt is time.
It is assumed thath obeys the differential equation [9]

ht = αhxx + βhyy+ G(x, y, t), (1)

whereα andβ are constants (which are known empirically) andG(x, y, t) is a continuous
bounded source function, which we assume is slowly varying as discussed below. For
the present application we assume that the constants and functions above are all real-
valued, although the method applies virtually unchanged to the complex-valued analogue
of this equation, which arises in problems such as underwater acoustics and electromagnetic
propagation through a turbulent atmosphere. For convenience it is also assumedh andG
have well-defined spatial Fourier transforms at each timet , and thatG= D f for some
function f , whereD is the Laplacian

D( f ) ≡ ∇2 f = fxx + fyy.

In order to facilitate the treatment of the equation, we can rescale inx and y so that
the coefficients of the spatial derivatives are equal. Accordingly we can introduce scaled
variablesx̄, ȳ,

x̄ = x/
√
α

ȳ = y/
√
β

and define, say,

h̃(x̄, ȳ, t) = h(x, y, t), G̃(x̄, ȳ, t) = G(x, y, t).

For convenience we will simply assume here thatα=β = 1. The governing equation (1)
then becomes

ht = Dh+ G. (2)

2.2. Solution of Direct Problem

We first consider the direct problem, i.e., the approximate solution of (2) to findh when
the functionG is given. The treatment is equivalent to that in [8], but there the equation was
recast into the form of anh-dependent source term, applicable to underwater acoustics, in
order to allow the use of the split-step method.

It is easily verified that if we neglect time-variation ofG the solution of Eq. (2) over any
time stepτ can be written formally as

h(t + τ) ∼= (exp(Dτ)− 1)D−1G+ exp(Dτ)h(t). (3)

(If h is given by Eq. (3) for allτ , then settingt = 0 and taking derivatives with respect toτ
giveshτ = exp(Dτ)(G+ Dh(0))= D(h+ D−1G)= Dh+G, as required.)

This approximation is accurate to second order inτ , with an error proportional toD∂G/∂t ,
which is negligibly small providedG varies slowly in time and moderately slowly inx andy.
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Expanding the first term on the right side of Eq. (3), we obtain

(exp(Dτ)− 1)D−1G = (Dτ + D2τ 2/2+ · · ·)D−1G

= τ(1+ Dτ/2+ · · ·)G
= τ exp(Dτ/2)G+ O(τ 3). (4)

From Eq. (3) the change inh over a time stepτ therefore simplifies to

h(t + τ) ∼= τ exp(τD/2)G+ exp(τD)h(t). (5)

The right-hand side consists of diffraction-type terms, which can be expressed using two-
dimensional Fourier transforms. Specifically, we have

exp(τD)h(x, y, t) = F−1
[
eτ(ν

2+ω2)
]
F(h(x, y, t)) (6)

and similarly for the other term, whereF is the 2D Fourier transform with respect tox and
y, ν andω are the corresponding transform variables, andF−1 is the inverse transform.

2.3. Reconstruction of Source

We now consider the main problem of inverting Eq. (1) whenG is unknown. Suppose,
for simplicity, that we are given the values ofh(xi , yj , tm) on a rectangular grid(xi , yj ) at a
series of time stepstm, where the pointsxi , andyj are evenly spaced. Denote the time step
tm+1− tm= τ . We assume that the values ofh are known at time steps which are sufficiently
close for Eq. (3) to be valid and that the spatial resolution ofh is enough to ensure that the
Fourier transform is well represented by its fast Fourier transform (FFT).

The inverse of the diffraction term exp(τD/2) in Eq. (5) is know exactly and is given
simply by exp(−τD/2). (This represents “backward-propagation” int .) We can therefore
rearrange Eq. (5) and multiply through by this term to bring the exponentials over to one
side of the equation:

G(x, y) ∼= 1

τ
[exp(−τD/2)h(tm+1)− exp(τD/2)h(tm)]. (7)

Given the data for the functionh at steptm we can evaluate the partial diffraction terms on
the right side of Eq. (7) using Eq. (6). Accordingly we denote these terms

H1 = exp(τD/2)(h(tm)) (8)

H2 = exp(−τD/2)(h(tm+1)) (9)

and we have an explicit expression for the unknown source term

G(x, y, tm + τ/2) = 1

τ
(H2− H1). (10)

This is the solution which is sought. We cannot resolve the details ofG more finely than
the points at whichh is known, although ifG changes smoothly then we can interpolate
with reasonable confidence to approximateG at intervening times. Note that the effect of
measurement error can also be examined directly from Eq. (10).
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3. COMPUTATIONAL EXAMPLES AND APPLICATION

3.1. Application to Coastline Evolution

Before giving numerical results, we first describe some of the background to the use of
Eq. (1). Diffusion equations have been used in the coastal engineering literature to describe,
individually, long-shore and cross-shore sediment movement. The diffusion equation gov-
erning the long-shore transport of sand on a beach was derived by Pelnard-Considere [9]
on the basis of theoretical considerations and physical model experiments. In its simplest
form the position of a chosen depth contour,h(x, t), from a datum line is predicted by

∂h

∂t
= K

∂2h

∂x2
, (11)

where the parameterK is treated as a constant. This equation predicts changes in the position
of the depth contour arising from wave-driven transport of material along the shoreline and,
with suitable choice of boundary conditions, it may be used to predict accretion and erosion
near groynes. Reeve and Fleming [13] have used Eq. (11) with an additional source term to
simulate changes in beach position over a regional scale over periods of several decades.
Larsonet al. [14] derived an extension of Eq. (11), valid in the case where the long-shore
transport rate and wave angle vary along the shoreline (i.e., as a function ofx), which takes
the form

∂h

∂t
= ∂

∂x

(
K(x)

∂h

∂x

)
− ∂(αK )

∂x
, (12)

where the second term on the right-hand side represents contributions due to spatial varia-
tions in wave angle,α, and the diffusion coefficient,K .

An equation of similar form has been proposed for predicting long-term cross-shore
changes in beach profiles by Stiveet al. [15]. Writing h= h(y, t) their equation takes the
form

∂h

∂t
= ∂

∂y

(
K (y)

∂h

∂y

)
+ S(y). (13)

The obvious extension to two dimensions through a combination of Eqs. (12) and (13)
to describe 2D bathymetry changes is

∂h

∂t
= ∂

∂x

(
K x(x)

∂h

∂x

)
+ ∂

∂y

(
K y(y)

∂h

∂y

)
+6(x, y, t), (14)

where6 is a source term. By writing the diffusion coefficients as the sum of a constant
reference value and a spatially varying component, Eq. (14) may be recast in the form

∂h

∂t
= K x ∂

2h

∂x2
+ K y ∂

2h

∂y2
+ G(x, y, t), (15)

whereK x and K y are the reference values of the diffusion coefficients in the long-shore
and cross-shore directions, respectively. The additional terms involving the spatially varying
components of the diffusion coefficients have been incorporated into the modified source
term,G(x, y, t). Note that in this formh depends also on∇h. In the intended application it
is expected that this dependence is weak, i.e., thatK xÀ K̃ x, K xhxxÀ K̃ xhx, and similarly
for y-components.
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One is also led to a governing equation of the form of (15) by taking as a starting point the
continuity equation for sediment in two dimensions, (see e.g., Soulsby [1]), and setting the
sediment transport rates in thex andy directions proportional to the gradients in bathymetry.
This is physically reasonable in that wave and tidal action is effective at smoothing or eroding
high relief features, (i.e., sediment transport is more easily transported downhill than uphill).
However, there are some features such as sandbanks that are maintained by a combination
of waves and tides. The inclusion of a general source/sink term provides a mechanism in
the equation to maintain seabed gradients without including these processes in the equation
explicitly. A similar approach was used by Niedorodaet al. [4] to model long-term beach
profile changes.

3.2. Numerical Results

In this section, we first present some simulations in order to illustrate the feasibility of
the method and to check self-consistency. Results are then shown from application of the
method to actual data measured off the East Anglian coast.

Simulations. The simulations were carried out by implementing the direct solution
described above, as in Eq. (3). This appears to require evaluation ofD−1G, whereD is
the Laplacian. To circumvent this we generated a functionG̃, say, and setG= D(G̃). The
terms of the form exp(Dτ)h etc were calculated using Eq. (6), with the Fourier transforms
replaced by FFTs. For the purpose of this paper, a source functionG was chosen to be
constant int , and the reconstruction done for a single time step.

In the first example the reconstruction took as the input function the “exact” solutions
for H1 and H2, obtained as described above. The source function which is sought is
shown in Fig. 1. The reconstructed function, given in Fig. 2, agrees closely, with a relative
mean-square error of less than 0.4%. (If we denote byS the exact solution andR the re-
construction, then the relative error was calculated as‖S− R‖/‖R‖ in the L2 norm.) The
grid in these and the following figures was defined on 64× 64 points, with a step size of
0.1 in each direction.

FIG. 1. Source function appearing in original equation.
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FIG. 2. Reconstruction of source function.

The next step was to introduce “noise.” A smoothly varying random functionr (x, y)
was added to the datah(t0) at the first step. This function was scaled so that its norm was
5% of that ofh. This was generated by a standard spectral or moving average method
(e.g., [16]). One can characterize the typical features of either the source or the additional
noise function in terms of its autocorrelation function. In this case we chose a function which
was statistically independent but had the same autocorrelation function and in particular
the same length scales. In some respects this is the worst case: since length scales of the
noise are the same as the original function, the spurious part cannot be removed by filtering.
On the other hand, this presents no particular difficulties for the inversion routine itself.
Figure 3 shows the reconstructed function in this case. The functionh at the initial time
step and the applied perturbation are shown in Fig. 4. The error here is roughly 6%, similar
to the relative magnitude of the noise function itself,‖r ‖/‖h‖.

FIG. 3. Reconstruction of source function obtained when a smoothly varying “noise” function has been added
to the data.
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FIG. 4. (a) Initial datah(t0) and (b) the noiser (x, y) added before reconstruction of the source.

FIG. 5. Reconstruction of source function obtained when white “noise” has been added to the data.



FIG. 6. Reconstruction (Fig. 5) after smoothing has been applied.

FIG. 7. (a) Plot of bathymetry taken at Gt Yarmouth in 1982, over an area 35 by 12 kilometers. The vertical
scale is in meters. The shore is visible as the flat section. (b) Plot of bathymetry in same location as Fig. 8(a) in
1987.
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Finally, the procedure above was repeated, this time adding white noise to the datah(t0).
In some respects this is a more realistic form of noise. This presented greater difficulties,
since the noise is delta-correlated and therefore gives discontinuities in the derivatives
everywhere. A much smaller amount of noise than the previous case was added, around
1%. The reconstructed function is shown in Fig. 5 and has an error of around 2%. The effect
of the noise is most noticeable where the sought function is closest to zero. (The apparent
smoothness here is an artifact of the plotting routine used.) It is clear that the routine is
relatively sensitive to white noise of this type. However, since the error in the reconstructed
function is statistically similar to that of the noise, we can in this case filter the result by some
simple smoothing algorithm, to recover very accurately the original source. The result of
doing so is shown in Fig. 6, where the error has been reduced to 0.4%. In this case the filter
used was a convolution with a rectangular function of width 3. (This is equivalent simply
to replacing each value by a weighted average of the point with its immediate neighbors.
A more sensitive frequency filter can be applied, but this was found to be unnecessary.) As
is expected from Eq. (10), these results are found to be stable when the noise is increased;
i.e., the sensitivity to noise does not worsen.

Measured data. Finally, we show an example of seabed depth measured in the intended
application and give preliminary results obtained by applying the algorithm to this data.
Figure 7a shows an area 35 kilometers (parallel to the coast) by 13 kilometers, from mea-
surements taken at Gt Yarmouth in the United Kingdom in 1982. The vertical scale here
is in meters, and the horizontal scales are in kilometers. Measurements at the same place
in 1987 are shown in Fig. 7b. Applying the above treatment to these two data sets allowed

FIG. 8. (a) Results of application of method to the data of Fig. 7. The vertical scale is again in meters, and
the horizontal scales are in kilometers. (b) A contour plot of the same solution. The contours lines here are at 19
equally spaced values.



RECONSTRUCTION IN A COASTAL EVOLUTION EQUATION 179

FIG. 9. (a) Results of application of method to the period 1987 to 1992. The vertical scale is again in meters,
and the horizontal scales are in kilometers. (b) The same solution shown as a contour plot, with contour lines at
19 equally spaced values.

the unknown source function to be reconstructed. Some sharp peaks resulted, particularly
along the shoreline, but the function was otherwise reasonably smooth. A simple smoothing
algorithm was applied to remove the sharp spikes, and the resulting function is shown in
Fig. 8a. A contour plot of this solution is given in Fig. 8b. The corresponding solution for
the period 1987–1992 is given in Figs. 9a and 9b.

In these figures, the horizontal scales are again kilometers, and the vertical scale is in
meters. It is clear from Figs. 8 and 9 that the source functionG has relatively slow spatial
variation. The differences between these two solutions is largely due to the time-dependence
of G, although gross features persist. This behavior appears typical for this set of data and
suggests that the time-dependence error in approximation (3) is small. This is discussed
further below.

4. CONCLUSIONS

We have derived and implemented a method for reconstruction of a source termG(x, y, t)
in a three-dimensional linear equation governing seabed evolution, where time variation is
slow. The main aim of this paper has been to establish the feasibility of the approach for
the available data. Data measurements are required on a regular grid of points at successive
time steps. Although these data requirements are fairly demanding, such measurements are
available in regions of interest to coastal engineers. Numerical stability and robustness of
the method in the presence of noise have been examined using simulations, and preliminary
results from application to measured data demonstrate the feasibility.
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One of the eventual aims, using the reconstruction of the source term over an appreciable
time scale, is to allow prediction of coastal change over some period. By examining the
source termG over a significant time scale, long-term trends may be identified (in addition
to abrupt changes which may be related to known meteorological events or activities such
as dredging). This may be used either directly in Eq. (1), or in an averaged form, in order
to forecast changes in the depthh, as discussed below.

Two further questions concern the variation inG with time. As noted in Section 2, the
approximation of neglecting time-dependence ofG over each time stepτ introduces an
error proportional toD∂G/∂t , which is very small providedG varies slowly in space and
time. This indeed appears to be satisfied for the data given here. A secondary question,
however, is whetherG varies sufficiently slowly with respect to the data intervals to allow
prediction of the evolution by direct substitution in Eq. (1) as mentioned above. If this is
not the case then more frequent measurements would be needed. However, the preliminary
results indicate thatG does show clear trends, which will allow an averaged form of the
evolution equation to be formulated.

We summarize briefly two possible approaches. First, we can consider the source function
G as the sum of a time-averaged component plus a time-varying “perturbation term,” say

G(t) = G0(x, y)+ G̃(x, y, t),

whereG0 is the meanG0=〈G(x, y, t)〉, and angled brackets denote average over time.
Similarly the depthh can be written

h = h0+ h̃,

whereh0 is the solution of Eq. (1) withG replaced by the meanG0. It is reasonably straight-
forward to formulate an equation in the perturbation termh̃ and so examine its dependence
on G̃. In a similar way, each reconstructed source functionG(ti ) can be written as the sum
of a time-average and a time-varying perturbation, sayG(ti )=G0+ G̃i , where these terms
are now obtained numerically by reconstruction ofG. The termsG0 andh(t) can be sub-
stituted into the evolution equation as source term and initial conditions, respectively, to
predict the evolution ofh over a further time step.

The second approach is to seek to identify long-term trends inG, such as periodicity
of some of its spatial Fourier components. In this way the behavior ofG itself could be
extrapolated by a further time step, and the result again used as the source term in evolution
equation (1). Both of these approaches require analysis of the complete set of data, which
is beyond the scope of this paper.
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