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A method is derived for the reconstruction of a source term in a linear parabolic
equation, describing seabed evolution over fairly large time scales. The approach is
based upon inversion of the formal solution for the direct problem and assumes that
data are available on a regular grid at successive time steps. The method is applied
first to simulated data, both with and without additional random noise, and gives
close agreement with the exact solution. Itis then applied to measurements taken for
a group of sandbanks near the East Coast of the United Kingdom, and preliminary
results are presentedeg 2000 Academic Press

1. INTRODUCTION

In many coastal regions the seabed is composed of sediments that become mobile t
the action of moderate waves and tidal currents [1-4]. Changes in large-scale morpho
of the seabed, which take place over several decades, may have a profound effect o
defenses, navigation, and offshore exploration. One example is the group of sandb:
lying several kilometres offshore from the coast at Great Yarmouth in the United Kingdo
for which changes in alignment and extent since the mid-1800s have been documente
Robinson [2]; extensive historical data are now available for this region covering the per
from 1846 up to the present.

These sandbanks provide some protection to the nearby beaches from severe wave a
Changes in the sandbank configuration can also be potentially hazardous to ships navig
the coastal waters and may also be linked to beach erosion at the coast. Developmen
means of forecasting the future evolution of the seabed morphology is thus of signific
practical importance.

The numerical prediction of long-term seabed evolution is in its infancy, and few methc
have been proposed in the literature. (By contrast, methods of predicting sediment trans
over periods of up to a few days are well developed and have been used successful
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170 SPIVACK AND REEVE

predict the response of beaches over the duration of a storm [5].) This is due both to a |
of suitable measurements and to difficulties in incorporating empirical sediment transg
formulas into the governing equations in a dynamically consistent manner. The revi
article of de Vrienckt al. [3] provides a recent survey of the techniques in this area.

The aim of this paper is to develop an inverse technique that can be used to ana
historical seabed configurations. The governing equation takes the form of a linear evolu
equation relating the time and spatial derivatives of the depth vafigkley, t),

hy = ahyyx + ,Bhyy + G,

whereG(x, y, t) is an unknown “source” function, and the coefficients3 are known
empirically. G is assumed slowly varying in the sense that changes are small over e
time step between available data locations. (This is quantified more explicitly in Section
below.) Herex andy are long-shore and cross-shore coordinates, respectively, and subsc
X indicates differentiation with respect ¥y and so on. Reasonably well-defined measure
ments of deptim are available over many decades in several locations. The specific aim h
is to use such data measurements to reconstruct the fur@gtitnverse problems for this
and similar equations have been treated in numerous papers (notably [6, 7] for examj
but the problem here differs largely in the specification of the data.

The method proposed is an extension to two spatial dimensions of the approach in [8]
the 1-dimensional analogue. However, the solution here is more accurate, and the availal
of data allows us to ensure that the data requirements are realistic. The approach is b
on the formal solution of the direct problem, as described in the next section. Itis assur
that measurements of the dejtlare available on a regular grid of spatial poifts, y;)
say, at successive time steps. The solution is first obtained based on simulated data,
with and without additional “noise.” It is found that on this basis the source function
accurately reconstructed from noiseless data, and provided a simple smoothing algorith
applied it remains closely approximated when noise is added. In addition, some bathym
measurements from Gt Yarmouth are presented, and preliminary results are obtaine
applying the method to this data.

In Section 2, the problem is formulated and the method for reconstructing the sourc
described. In Section 3, the application to coastline evolution is explained and numer
results are given, applying the method both to simulated data and bathymetric measurem

2. FORMULATION AND SOLUTION OF INVERSION PROBLEM

In this section we briefly describe the underlying physical problem and formulate t
governing equation, and then we give the method by which this is to be inverted. Co
putational examples and a discussion of the derivation of these equations are given ir
following section.

2.1. Problem and Equations

For the purposes of this study we consider long-term changes in seabed morphology t
governed by an equation representing diffusion in two dimensions with sources and si
of sediment (Pelnard-Considere [9]). The derivation of this and similar forms of governi
equation are discussed in Section 3 below.
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Suppose that(x, y, t) is depth, wherex andy are the spatial coordinates ahi time.
It is assumed that obeys the differential equation [9]

ht Zahxx+ﬂhyy+G(Xs Y, t)v (1)

wherex andg are constants (which are known empirically) aa¢k, v, t) is a continuous
bounded source function, which we assume is slowly varying as discussed below.
the present application we assume that the constants and functions above are all
valued, although the method applies virtually unchanged to the complex-valued analc
of this equation, which arises in problems such as underwater acoustics and electromag
propagation through a turbulent atmosphere. For convenience it is also adsame®
have well-defined spatial Fourier transforms at each timend thatG = Df for some
function f, whereD is the Laplacian

D(f) = V2 = fyux + fyy.

In order to facilitate the treatment of the equation, we can rescakeandy so that
the coefficients of the spatial derivatives are equal. Accordingly we can introduce sce
variablesx, v,

and define, say,
hX.¥.t) =hx,y. 1), GX ¥.t) =G(x, y.1).

For convenience we will simply assume here that 8 =1. The governing equation (1)
then becomes

hi = Dh + G. (2

2.2. Solution of Direct Problem

We first consider the direct problem, i.e., the approximate solution of (2) tdfimden
the functionG is given. The treatment is equivalent to that in [8], but there the equation w
recast into the form of ah-dependent source term, applicable to underwater acoustics,
order to allow the use of the split-step method.

Itis easily verified that if we neglect time-variation Gfthe solution of Eq. (2) over any
time stepr can be written formally as

h(t + 7) = (exp(Dt) — 1)DG + exp(D7)h(t). ©)

(If his given by Eqg. (3) for alt, then setting = 0 and taking derivatives with respect#o
givesh, = exp(D7)(G + Dh(0)) = D(h+ D~1G) = Dh + G, as required.)

This approximationis accurate to second ordet imith an error proportional th 0G/at,
which is negligibly small provide® varies slowly in time and moderately slowlyxrandy.
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Expanding the first term on the right side of Eq. (3), we obtain

(exp(Dt) —1)D71G = (Dt + D?¢%/2+.-)D71G
t(l+ Dt/24+--)G

rexp(D1/2)G + O(z3). (4)

From Eg. (3) the change imover a time step therefore simplifies to
h(t+ 1) Erexp(tD/2)G + exp(r D)h(t). (5)

The right-hand side consists of diffraction-type terms, which can be expressed using t
dimensional Fourier transforms. Specifically, we have

exprD)h(x, y, t) = FL[er " +I] F(hx, y, t) (6)

and similarly for the other term, whefgis the 2D Fourier transform with respectt@nd
y, v andw are the corresponding transform variables, #&1d is the inverse transform.

2.3. Reconstruction of Source

We now consider the main problem of inverting Eq. (1) wiiis unknown. Suppose,
for simplicity, that we are given the valuestufx;, y;, tm) on a rectangular grigk;, yj) ata
series of time stepts,, where the points;, andy; are evenly spaced. Denote the time stef
tmi1 — tm = 7. We assume that the valuegoéire known at time steps which are sufficiently
close for Eq. (3) to be valid and that the spatial resolutioh isfenough to ensure that the
Fourier transform is well represented by its fast Fourier transform (FFT).

The inverse of the diffraction term egpD/2) in Eq. (5) is know exactly and is given
simply by exg—t D/2). (This represents “backward-propagation’tinWe can therefore
rearrange Eq. (5) and multiply through by this term to bring the exponentials over to ¢
side of the equation:

1
Gx,y) = ;[eXIO(—T D/2)h(tm+1) — exp(t D/2)N(tm)]. ()

Given the data for the functidmat stept,, we can evaluate the partial diffraction terms on
the right side of Eq. (7) using Eg. (6). Accordingly we denote these terms

H; = exp(z D/2)(h(tm)) (8)
Hz = exp(—7 D/2)(h(tm+1)) 9)

and we have an explicit expression for the unknown source term

1
GX, ¥, tm+7/2) = ;(Hz— Hy). (10)

This is the solution which is sought. We cannot resolve the detais wfore finely than
the points at whicth is known, although ifG changes smoothly then we can interpolate
with reasonable confidence to approxim@at intervening times. Note that the effect of
measurement error can also be examined directly from Eq. (10).
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3. COMPUTATIONAL EXAMPLES AND APPLICATION

3.1. Application to Coastline Evolution

Before giving numerical results, we first describe some of the background to the us
Eq. (1). Diffusion equations have been used in the coastal engineering literature to desc
individually, long-shore and cross-shore sediment movement. The diffusion equation g
erning the long-shore transport of sand on a beach was derived by Pelnard-Consider
on the basis of theoretical considerations and physical model experiments. In its simg
form the position of a chosen depth contdutx, t), from a datum line is predicted by

oh _ i

ot ax2
where the parameté is treated as a constant. This equation predicts changes in the posit
of the depth contour arising from wave-driven transport of material along the shoreline a
with suitable choice of boundary conditions, it may be used to predict accretion and eros
near groynes. Reeve and Fleming [13] have used Eq. (11) with an additional source ter
simulate changes in beach position over a regional scale over periods of several dec
Larsonet al.[14] derived an extension of Eq. (11), valid in the case where the long-shc
transport rate and wave angle vary along the shoreline (i.e., as a functpndfich takes

the form
oh 9 ah 3(aK)
(K(X)&) _deK) (12)

(11)

ﬁzﬁ X

where the second term on the right-hand side represents contributions due to spatial v
tions in wave angleay, and the diffusion coefficienk .

An equation of similar form has been proposed for predicting long-term cross-she
changes in beach profiles by Stigeal. [15]. Writing h=h(y, t) their equation takes the
form

oh ad oh
—=—(Ky)— . 13
ot 8y< (y)ay) + S(y) (13)

The obvious extension to two dimensions through a combination of Egs. (12) and (

to describe 2D bathymetry changes is

oh 9 ah 9 ah
- 2 X(y) Il y
o = % (K (X)3X> + oy (K (y)ay> + (X, Y, 1), (14)

where X is a source term. By writing the diffusion coefficients as the sum of a consta
reference value and a spatially varying component, Eqg. (14) may be recast in the form

dh 3%h 3%h

— =K*— + KY— + G(x, Y, 1), 15

at axe TH gy TEXYD (15)
whereK* andKY are the reference values of the diffusion coefficients in the long-sho
and cross-shore directions, respectively. The additional terms involving the spatially vary
components of the diffusion coefficients have been incorporated into the modified sot
term,G(X, y, t). Note that in this fornh depends also o h. In the intended application it
is expected that this dependence is weak, i.e. Kiat> K*, K*hyx > K*hy, and similarly
for y-components.



174 SPIVACK AND REEVE

One s also led to a governing equation of the form of (15) by taking as a starting point:
continuity equation for sediment in two dimensions, (see e.g., Soulsby [1]), and setting
sediment transport rates in thandy directions proportional to the gradients in bathymetry.
Thisis physically reasonable in that wave and tidal action is effective at smoothing or erod
high relief features, (i.e., sediment transportis more easily transported downhill than uph
However, there are some features such as sandbanks that are maintained by a combir
of waves and tides. The inclusion of a general source/sink term provides a mechanisr
the equation to maintain seabed gradients without including these processes in the equ
explicitly. A similar approach was used by Niedoraosteal. [4] to model long-term beach
profile changes.

3.2. Numerical Results

In this section, we first present some simulations in order to illustrate the feasibility
the method and to check self-consistency. Results are then shown from application of
method to actual data measured off the East Anglian coast.

Simulations. The simulations were carried out by implementing the direct solutiol
described above, as in Eq. (3). This appears to require evaluatibm'as, whereD is
the Laplacian. To circumvent this we generated a fundBosay, and seB = D(G). The
terms of the form ex¢D)h etc were calculated using Eqg. (6), with the Fourier transform
replaced by FFTs. For the purpose of this paper, a source funGtissas chosen to be
constant irt, and the reconstruction done for a single time step.

In the first example the reconstruction took as the input function the “exact” solutio
for H; and H,, obtained as described above. The source function which is sought
shown in Fig. 1. The reconstructed function, given in Fig. 2, agrees closely, with a relat
mean-square error of less than 0.4%. (If we denot&liye exact solution an® the re-
construction, then the relative error was calculatefi$s R||/||R|| in the L, norm.) The
grid in these and the following figures was defined orx@¥ points, with a step size of
0.1 in each direction.

Original source function

-4y

FIG. 1. Source function appearing in original equation.
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Fieconstruction from exact data

FIG. 2. Reconstruction of source function.

The next step was to introduce “noise.” A smoothly varying random funatiany)
was added to the datsty) at the first step. This function was scaled so that its norm we
5% of that ofh. This was generated by a standard spectral or moving average metl
(e.g., [16]). One can characterize the typical features of either the source or the additi
noise function in terms of its autocorrelation function. In this case we chose a function wh
was statistically independent but had the same autocorrelation function and in partic
the same length scales. In some respects this is the worst case: since length scales
noise are the same as the original function, the spurious part cannot be removed by filte
On the other hand, this presents no particular difficulties for the inversion routine itse
Figure 3 shows the reconstructed function in this case. The funhtarthe initial time
step and the applied perturbation are shown in Fig. 4. The error here is roughly 6%, sir
to the relative magnitude of the noise function itsgif|| /|| h||.

Reconstruction from naisy data; smooth perturbation

FIG.3. Reconstruction of source function obtained when a smoothly varying “noise” function has been ad
to the data.
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Exact data hit )

-4 —4
FIG. 4. (a) Initial datah(tp) and (b) the noise(x, y) added before reconstruction of the source.

Feconstruction from noisy data” white noise

4

FIG. 5. Reconstruction of source function obtained when white “noise” has been added to the data.



Feconstruction from noisy data” white noise

-4
FIG. 6. Reconstruction (Fig. 5) after smoothing has been applied.

Depth profile: 1982

12 s kilometres

FIG. 7. (a) Plot of bathymetry taken at Gt Yarmouth in 1982, over an area 35 by 12 kilometers. The verti
scale is in meters. The shore is visible as the flat section. (b) Plot of bathymetry in same location as Fig. 8(
1987.

177
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Finally, the procedure above was repeated, this time adding white noise to tltgata

In some respects this is a more realistic form of noise. This presented greater difficult
since the noise is delta-correlated and therefore gives discontinuities in the derivati
everywhere. A much smaller amount of noise than the previous case was added, arc
1%. The reconstructed function is shown in Fig. 5 and has an error of around 2%. The ef
of the noise is most noticeable where the sought function is closest to zero. (The appa
smoothness here is an artifact of the plotting routine used.) It is clear that the routine
relatively sensitive to white noise of this type. However, since the error in the reconstruc
function is statistically similar to that of the noise, we can in this case filter the result by sol
simple smoothing algorithm, to recover very accurately the original source. The resull
doing so is shown in Fig. 6, where the error has been reduced to 0.4%. In this case the
used was a convolution with a rectangular function of width 3. (This is equivalent simp
to replacing each value by a weighted average of the point with its immediate neighb
A more sensitive frequency filter can be applied, but this was found to be unnecessary.
is expected from Eq. (10), these results are found to be stable when the noise is incree
i.e., the sensitivity to noise does not worsen.

Measured data. Finally, we show an example of seabed depth measured in the intenc
application and give preliminary results obtained by applying the algorithm to this da
Figure 7a shows an area 35 kilometers (parallel to the coast) by 13 kilometers, from
surements taken at Gt Yarmouth in the United Kingdom in 1982. The vertical scale h
is in meters, and the horizontal scales are in kilometers. Measurements at the same |
in 1987 are shown in Fig. 7b. Applying the above treatment to these two data sets allo\

b Solution 1982-1987

Solution 13821987

kilfometres

10X 3 Kiometres 2 4 6 8 10 12
0 kilometres

FIG. 8. (a) Results of application of method to the data of Fig. 7. The vertical scale is again in meters, &
the horizontal scales are in kilometers. (b) A contour plot of the same solution. The contours lines here are
equally spaced values.
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Solution 1987 -1892

n
[=]

@
5
£
2
=

15

10 S 5 Kiometres 2 4 6 8 10 12
0 kilometres

FIG.9. (a) Results of application of method to the period 1987 to 1992. The vertical scale is again in mett
and the horizontal scales are in kilometers. (b) The same solution shown as a contour plot, with contour line
19 equally spaced values.

the unknown source function to be reconstructed. Some sharp peaks resulted, particL
along the shoreline, but the function was otherwise reasonably smooth. A simple smootl
algorithm was applied to remove the sharp spikes, and the resulting function is show
Fig. 8a. A contour plot of this solution is given in Fig. 8b. The corresponding solution fc
the period 1987-1992 is given in Figs. 9a and 9b.

In these figures, the horizontal scales are again kilometers, and the vertical scale
meters. It is clear from Figs. 8 and 9 that the source fundBdras relatively slow spatial
variation. The differences between these two solutions is largely due to the time-depend
of G, although gross features persist. This behavior appears typical for this set of data
suggests that the time-dependence error in approximation (3) is small. This is discu:
further below.

4. CONCLUSIONS

We have derived and implemented a method for reconstruction of a sourd@ tgrmy, t)

in a three-dimensional linear equation governing seabed evolution, where time variatio
slow. The main aim of this paper has been to establish the feasibility of the approach
the available data. Data measurements are required on a regular grid of points at succe
time steps. Although these data requirements are fairly demanding, such measuremen
available in regions of interest to coastal engineers. Numerical stability and robustnes
the method in the presence of noise have been examined using simulations, and prelim
results from application to measured data demonstrate the feasibility.
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One of the eventual aims, using the reconstruction of the source term over an appreci
time scale, is to allow prediction of coastal change over some period. By examining
source ternG over a significant time scale, long-term trends may be identified (in additic
to abrupt changes which may be related to known meteorological events or activities s
as dredging). This may be used either directly in Eq. (1), or in an averaged form, in ori
to forecast changes in the depthas discussed below.

Two further questions concern the variationGnwith time. As noted in Section 2, the
approximation of neglecting time-dependenceGbver each time step introduces an
error proportional tdddG/at, which is very small provide varies slowly in space and
time. This indeed appears to be satisfied for the data given here. A secondary ques
however, is whethe@ varies sufficiently slowly with respect to the data intervals to allow
prediction of the evolution by direct substitution in Eq. (1) as mentioned above. If this
not the case then more frequent measurements would be needed. However, the prelim
results indicate tha does show clear trends, which will allow an averaged form of th
evolution equation to be formulated.

We summarize briefly two possible approaches. First, we can consider the source func
G as the sum of a time-averaged component plus a time-varying “perturbation term,” s

G(t) = Go(X, y) + G(X, y, 1),

where Gy is the meanGy = (G(x, vy, t)), and angled brackets denote average over time
Similarly the depth can be written

h=ho+h,

wherehg is the solution of Eq. (1) witle replaced by the meda,. It is reasonably straight-
forward to formulate an equation in the perturbation térend so examine its dependence
on G. In a similar way, each reconstructed source functh) can be written as the sum
of a time-average and a time-varying perturbation,Gdy) = Go + G;, where these terms
are now obtained numerically by reconstruction®fThe termsGy andh(t) can be sub-
stituted into the evolution equation as source term and initial conditions, respectively,
predict the evolution ofi over a further time step.

The second approach is to seek to identify long-term trends, isuch as periodicity
of some of its spatial Fourier components. In this way the behavi@ a$elf could be
extrapolated by a further time step, and the result again used as the source term in evol
equation (1). Both of these approaches require analysis of the complete set of data, w
is beyond the scope of this paper.
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