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A method is presented for reconstructing an unknown coefficient in a linear diffu-
sion equation from measured data. This equation arises in the description of coastline
evolution, and preliminary results are presented here. The unknown term may vary
with both space and time, although time variation is assumed to be slow. Inversion
is carried out by first expressing the solution of the direct problem formally in terms
of the governing operators and making explicit approximations to these expressions.
Using data at two time steps this then allows equations to be derived and solved to
give explicit expressions for the required function.c© 1999 Academic Press

1. INTRODUCTION

A central aim in many applications of wave propagation is to recover the scatterer or
source terms from measured data. Problems of this kind range from acoustic tomography
and medical imaging to coastline evolution, and the scattering function may for example
represent boundary or refractive index variations, or sediment supply (see, for example, [2, 8,
9, 13, 14]). Particular difficulties arise when additional functions in the governing equations
are unknown, and values of leading parameters or functions must often be estimated in order
to circumvent this problem.

In this paper a method is presented for the recovery of a variable coefficientK (x, t) in an
equation of the formyt = (K yx)x, where the functionK may vary both in space and time.
This is widely used to describe coastline movement, for which initial results are presented
based both on simulated and experimentally measured data. As in [8] it is assumed that data
are available at discrete time stepsti , and that the functionK (x, t) which is sought varies
sufficiently slowly to be treated as constant over two successive time intervals. This does
not necessarily imply thaty itself varies slowly witht .

The method for the recovery of the coefficient termK is described. The solution of the
direct problem over each time intervalτ is first obtained formally in terms of the governing
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differential operator. A second order approximation inτ is then applied, giving the evolu-
tion of y explicitly in terms ofK (x, z). This expression is easily inverted to recover the
function K .

Results are first obtained for simulated data, which can be chosen to be “exact.” However,
the envisaged application requires numerical differentiation of measured data. This proce-
dure is ill-posed, so that small measurement errors may give rise to large changes in the
derivative. This problem and regularization methods have been widely studied (for example,
see [1, 3, 5, 6]). For the data which we intend to analyze, the spatial autocorrelation function
is known to be “smooth,” and if necessary this can to some extent be used to regularize
the data. Preliminary results are given from application of the method to measurements
relating to the United Kingdom coast. These give satisfactory solutions which are relatively
insensitive to discretization lengths.

In Section 2 the governing equations are set out, and the solution of the direct problem by
operator splitting is described. Section 3 gives the solution for the recovery of the unknown
coefficient and presents numerical results. Here numerical noise is added in order to gain
some measure of the robustness of the procedure. The preliminary results from measured
data are then given in order to demonstrate the feasibility of the approach.

2. FORMULATION OF EQUATIONS AND SOLUTION FOR DIRECT PROBLEM

The paper will be concerned with the inversion of the equation

∂y

∂t
(x, t) = Ly, (1)

where

L = ∂

∂x

[
K
∂

∂x

]
(2)

andK (x, t) is unknown and will be assumed to vary slowly as a function of time. Boundary
conditions must be specified in order to ensure uniqueness of the solution. In any practical
application the solution will be carried out on a finite domain, and these may have to be
modified or replaced by empirical or statistical conditions. Equation (1) will be inverted to
obtain an approximation toK . (Note that the equation is sometimes modified to include a
source term. The solution of this problem is feasible but requires further approximations and
will not be tackled here.) We will refer toK as the coefficient. Denote byy0 the initial value

y0 = y(x, 0). (3)

We consider in this section the direct initial value problem, i.e., the approximate solution
for y from Eq. (1) when the termK is given.

The formal solution of (1) can be writtenapproximatelyas

y(x, t) ∼= exp

[∫ t

0
L dt′

]
y0, (4)

where for any operatorB, say, the exponential operator exp(B) is defined by the series

exp(B)= 1+ B+ B2

2!
+ · · · . (5)

Note that whenK is constant with respect tot , Eq. (4) is exact.
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By analogy with results elsewhere [10, 11] the error in writing Eq. (4) can be shown to
be a function of the quantity

t3

2

[
L ,
∂L

∂t

]
(6)

(where in general [A, B] denotes thecommutator AB− B A of operatorsA andB). Over
a small time stepτ , Eq. (4) gives

y(x, t + τ) ∼= exp

[∫ t+τ

t
L(x, t ′) dt′

]
(y(x, t)). (7)

By Eq. (6) this has an error which to leading order is

τ 3

2

[
L ,
∂L

∂t

]
. (8)

SinceK is assumed to vary slowly int , Eq. (7) is therefore a good approximation when
τ is reasonably small with respect to the scales of time variation. Consider now the term
exp(

∫
L dt′) in Eq. (7). AsK is slowly varying we will treatK as constant over the interval

[t, t + τ ], and replace this exponential by

exp

[∫
L dt′

]
∼= exp

[
τ L

(
x, t + τ

2

)]
. (9)

We now introduce arational approximationfor the operator exp(τ L),

exp(τ L) ∼=
(

1− τ L

2

)−1(
1+ τ L

2

)
. (10)

This is accurate to second order inτ L. (We could instead write exp(τ L) ∼= 1+ τ L + τ 2L2,
but (10) will be more convenient for us because explicitly it involves only second as op-
posed to fourth order derivatives inx.) The above will be applied below to the recovery of
coefficientK .

Substituting Eq. (9) into (7), using approximation (10), and applying the operator
(1− τ L/2) to both sides, we obtain(

1− τ L

2

)
y(x, t + τ) ∼=

(
1+ τ L

2

)
y(x, t). (11)

This gives an approximate analytical formula relating the evolution ofy to K over each
time-stepτ .

3. INVERSE PROBLEM

3.1. Recovery of Unknown Coefficient

We now consider the approximate recovery of the functionK (x, t) from Eq. (1). (The
extension to include a known, non-zero source term is possible but this will not be discussed
here.) Suppose we are given accurately measured values of the functiony at two time-steps
t1, t2, whereτ = t2− t1 is “small’ in the sense that the solution is well-approximated by
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Eq. (10). Denote

y(1)(x) = y(x, t1), (12)

y(2)(x) = y(x, t2). (13)

We further assume (here and throughout) thaty can be measured with sufficient spatial
resolution to recover the second derivative∂2y/∂x2. (This clearly imposes quite stringent
data requirements; however, it is reasonable for the intended applications.) From Eq. (11)
we obtain

y(2) − y(1)

τ/2
= ∂

∂x

[
K

(
∂y(1)

∂x
+ ∂y(2)

∂x

)]
, (14)

whereK is evaluated att + τ/2 in view of Eq. (9).
In this equation, both the left hand side and the term in round brackets on the right are

known or can be obtained sincey(1) andy(2) are given as data. It is possible to retrieveK
by expanding the right hand side, to get an equation in terms ofK andKx. However, it is
more convenient to treat Eq. (14) directly, as we now describe.

For convenience denote the known functiony(2)− y(1) and the spatial derivativey(2)x + y(1)x

by F andF ′, respectively. Assuming that data at consecutive times are given atn equally
spacedx-values,x1, . . . , xn say, we can regard these functions as vectors of lengthn, so that

Fj ≡ F(xj ) = y(2) − y(1), (15)

F ′j ≡ F ′(xj ) = ∂y(2)

∂x
+ ∂y(1)

∂x
. (16)

Numerical differentiation is unstable and can introduce significant errors and must be ap-
plied with caution. Many authors have considered the effect of perturbations of data and
examined regularization methods (in particular see [1, 3, 5]). In the case of coastline mea-
surements, empirical information may be available (in the form of a spatial autocorrelation
function) which allows smoothing to be applied to remove spurious high-frequency compo-
nents. As discussed below, however, this was not found to be necessary for the measurements
examined here.

Denote byξ the constant spacing inx. The coefficientK can similarly be replaced by
discretized form,K j = K (xj ) for j = 1, . . . ,n. The outer derivative in Eq. (14) can now be
approximated by a central finite difference, giving rise to a set of equations

2

τ
Fj = 1

2ξ
(K j+1F ′j+1− K j−1F ′j−1) (17)

for j = 2, . . . ,n− 1 and (using one-sided differences at the end values)

2

τ
F1 = 1

ξ
(K2F ′2− K1F ′1), (18)

2

τ
Fn = 1

ξ
(KnF ′n − Kn−1F ′n−1). (19)

(20)

Note that the difference scheme at the end-points is accurate only to first order inξ , and
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we therefore lose some of the advantage of using central differences elsewhere. (We can
improve upon this by specifying boundary conditionsy periodic on [x1, xn] and∂y/∂x= 0
at the edges of the domain, provided the second derivative ofy is non-vanishing. In that
case we can make use of fictitious data points outside the domain in order to formulate
second order conditions. For simplicity this is not done here.) This is equivalent to a matrix
equation forK

F = AK , (21)

whereA is the tridiagonal matrix with elements

Ai,i = 0,
(22)

Ai,i±1 = ± τ
4ξ

F ′i±1

for i = 2, . . . ,n− 1, and in the first and last rows

A1,1 = − τ
2ξ

F ′1, A1,2 = τ

2ξ
F ′2, (23)

An,n−1 = − τ
2ξ

F ′n−1, An,n = τ

2ξ
F ′n. (24)

This is easily and rapidly inverted by back-substitution.

3.2. Numerical Implementation

In order to illustrate the application of the method, results are first given based on a
numerical simulation of the system of equations (1), (2). The simulation was carried out
for various time steps. Figure 1 shows an input functiony(1)= y(x, t0) at an initial time
t = 0. (This was obtained by solving the underlying equation for a smoothly varying function
K (x, t)using the methods described in Section 3.) After a further small time-stepτ = 0.0155
this takes the formy(2). Figure 2 shows the differencey(2)− y(1). The coefficientK (x, t)was
taken as constant int over the interval [t0, t0+ τ ], with the form K (x) say. The solution,
which we can denotẽK , was calculated according to Eq. (21), and the two functions
are compared in Fig. 3. As can be seen the functions agree closely, apart from a small
difference which is constant across thex axis. When this is subtracted the curves become
indistinguishable. Instead of this, however, we can make the assumption that the mean of
the coefficient across a sufficiently large distance is zero. We therefore subtracted the spatial
average from the solution obtained and compared it with the original coefficient. As seen
in Fig. 4 this gives extremely close agreement.

In order to check the robustness of the approach, further simulations were carried out,
but with white noise added to the initial data. Figure 5 shows the difference function
y(2)− y(1) with white noise added. This is fairly severe in places and completely distorts the
difference function. The resulting solution exhibits similar delta-correlated noise, shown
in Fig. 6. This can be smoothed, however, using an simple algorithm which effectively
replaces each value by an average over a small window (in this case using 10 points). This
removes the spurious noise from the solution, as seen in Fig. 7. The original function and
solution with mean removed are compared directly in Fig. 8, and again show extremely
close agreement.
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FIG. 1. Graph of input data at initial time step.

FIG. 2. Difference between input functions at successive time steps.
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FIG. 3. Comparison between reconstructed function and exact solution (i.e., original coefficient).

FIG. 4. Comparison as in Fig. 3 after subtraction of the spatial mean of the reconstructed function.
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FIG. 5. Difference between functions at successive time steps, when white noise has been added.

FIG. 6. Reconstruction of function from noisy data shown in Fig. 4.
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FIG. 7. Reconstruction as in Fig. 6, with simple smoothing applied.

FIG. 8. Comparison between reconstructed function, with smoothing applied as in Fig. 7, and exact solution.
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FIG. 9. (a) Profile of a 25 kilometre stretch of the East Anglian coastline, measured in 1992. (b) Change in
coastline of (a) over the period from 1992 to 1994.
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FIG. 10. The solution obtained from the data shown in Fig. 9. The full line is obtained using a spatial resolu-
tion of 64.17 metres and the dotted line is obtained at half-resolution, i.e., a step-size of 128.34 metres.

The method was then applied to data measured along a stretch of the United Kingdom
coast in East Anglia. Measurements are available at various intervals since 1883, on a regular
grid. The data used here are along a 25 kilometre stretch, measured in steps of 64.17 metres,
in 1992 and 1994. The values represent perpendicular distances from a fixed line parallel to
the coast. Figure 9a shows the coastline itself, and Fig. 9b gives the change over this period.
Note that the change over time is around 100 metres, compared with variation along the
coast of many kilometres. The reconstruction itself (with no smoothing applied) is given
in Fig. 10 (full line). As a further rudimentary check the spatial resolution was halved, so
that mid-points were discarded. This resulted in almost no change in the solution, as can
be seen from this figure (in which the dotted line represents the lower resolution result).
This gives some confidence that the results are not significantly affected by the instability
arising from numerical differentiation.

4. CONCLUSIONS

A method has been described for the direct inversion of a diffusion equation describing
coastal evolution, in which a variable coefficient term is unknown. The approximate so-
lution of the forward problem described above forms the basis for the inversion scheme.
Measured data at two successive time steps was used to formulate and solve simultaneous
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equations for the unknown coefficient. The approximations which are used impose fairly
strong limitations on the behaviour of the solutions, and in particular the coefficient must
vary slowly compared with the time intervals between available data. Nevertheless the
method gives a prescription for the treatment of a difficult inverse problem, avoiding the
use of iterative schemes. It is expected that the method will be also applicable in under-
water acoustics in certain problems of image reconstruction and tomography. The prob-
lem for which this is immediately intended arises in the prediction of long term coastline
evolution [7], which can be formulated in terms of a diffusion equation whose source
term and diffusion coefficient may both vary. Using historical coastline position data this
equation can be inverted to provide valuable information on the gross effects of the un-
derlying physical processes responsible for coastal movement. Preliminary numerical re-
sults have been presented and have shown good agreement with the coefficient which is
sought.
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