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Numerical simulation of wave propagation in random media is used principally to obtain the statistical moments of
the wave field. It has been shown [J. Computat. Appl. Math. 27, 349 (1989)] that both local and cumulative
accuracy of the second moment, as calculated from the solution, are greater than for the wave field itself. The
purpose of this Communication is to extend these results to the higher moments and to demonstrate them
computationally. The error is expressed as a function of operators acting on the wave field, and this permits the
accuracy of the moments to be examined in terms of the error and its autocorrelation function. A model in which
the random medium may be represented in arbitrarily fine detail is used to obtain the computational results.

1. INTRODUCTION

Numerical simulation is now widely used in the study of
wave propagation in random media. A parabolic approxi-
mation to the wave equation is normally used and, in the
solution, is approximated analytically by the split-step
method!? in which the medium is represented by a series of
independent phase screens.

The main interest lies in finding the statistical moments of
the wave field u and their relationship with those of the
medium. (The problem of solving the moment equations
directly has received much attention: see, for example,
Refs. 3-5.) It is therefore essential to quantify the effect on
these moments of numerical errors in the underlying wave
field. InRef. 6 it is shown that the accuracy produced in the
second moment is of higher order than that of the field itself.
This relationship holds both for local and cumulative accu-
racy. The purpose of this Communication is to show how
this relationship extends to the higher moments and to dem-
onstrate the results numerically. Inour approach the errore
is expressed explicitly as a function of the operators acting
on u, whose properties we can examine. ¢ is a continuous
function that varies randomly in all directions. The error
induced in the moments of the wave field can be expressed in
terms of the correlation of ¢ with itself and with u. The
generation of correlated sets of random phase screens en-
ables us to represent a medium in arbitrarily fine detail, and
this representation is used to demonstrate the results com-
putationally.

In Section 2 the results from Ref. 6 are explained and
extended, giving the local and global errors for the moments
of the wave field. The computational scheme and numerical
results are described in Section 3.
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2. MATHEMATICAL FORMULATION AND
ACCURACY OF THE SOLUTION

We consider a monochromatic plane-wave incident on a half
plane (x, z > 0) with a randomly varying refractive index n.
The wavelength X is assumed to be significantly shorter than
the typical scale size of irregularities so that scattering takes
place mainly in a forward z direction. The full elliptic wave
equation can then be approximated by a parabolic form in
which z becomes a timelike direction of propagation. In
two-dimensional Cartesian coordinates (x, z), this equation
is

ety ke
u, o U ;2(n Du, (1)

where u is the complex wave field k = 27/, and the subscript
denotes differentiation. We can write the refractive index
asn =1+ ny(x, z) + uWi(x, z), where ng is a deterministic
departure from 1 and uW varies randomly with zero mean
and standard deviation u. Here W is assumed to have
Gaussian statistics but an arbitrary correlation function,
with correlation lengths ! and [, transverse to and parallel to
the direction of propagation, respectively. (Time depen-
dence has been excluded since the wave speed is typically
very fast relative to changes in n.) We employ the usual
scaling and set X = x/l, Z = z/kl2, and Lz = I,/kI2. Since we
assume n4 and u to be small, Eq. (1) can be written, in terms
of operators, as
ou

oz = (4 + B)u, (2

where A = —i/2 32/0X? and B = —ik2L2(ny + uW) are the
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distance and scattering operators, respectively. The formal
solution of Eq. (2) over a distance AZ is then approximately

Z+AZ
w(Z + AZ) ~ exp[ f (A +B) dZ]u(Z). @)
Z

This approximation is shown in Ref. 6 to have a stepwise
error that is of order (AZ)3 and is, to this order, a multiple of
the commutator [A, B] = AB — BA of A and B. The split-
step approximation, which was introduced to this problem
by Tappert and Hardin! and applied by Macaskill and
Ewart? to random media, is

. Z+AZ Z+AZ
u(Z+ AZ) ~ exp(j A dZ) exp ([ B dZ)u(Z). 4)
z z

This iteratively applied solution has a stepwise error of order
(AZ)2. [This error is sometimes improved to (AZ)? with a
slight modification of relation (4), but the cumulative accu-
racy is not affected.]

Now, (222 A dZ = —iAZ/2 6%/0X? = A’,say. If AZ is
sufficiently small so that B is almost constant in Z over that
distance, say B ~ B(X), then 442 BdZ ~ AZ - B = B/, say.
Consider the error e(u) = [exp(A’ + B’) — exp(4’) exp(B')]u
between relations (3) and (4). To first order, e(u) is equal to
€1(1)/2, where ¢; is the commutator [A’, B’] (e.g., Iserles and
Sheng?).

Local Errors

Since the computed wave field is used principally to find
statistical quantities, it is essential to find how these are
corrupted by the statistics of the numerical error. We are
mostly interested in the second moment (autocorrelation
function) p(¢, Z) = (u(X, Z)u*(X + £, Z)) and the fourth
moment, where angle brackets denote the ensemble average.
Write e = ¢1(u), so that e = —i(AZ)2[Bxxu + 2Bxux], and put
¢ = (AZ)2e. Note that u and B become independent, and
(u) and (B) are zero. The derivatives 3"B/dX" also have
zero mean, so the mean stepwise error (e) is zero. All these
quantities are, by assumption, stationary and invariant un-
der reflections about any point X.

Second Moment

We sketch the analysis given in Ref. 6. Let p.(£) be the
correlation function (ejes*) of the error, where e; denotes
e(X;) and £ = X; — Xo. Then,if U =u + e and py(§) =
(U1U*),

0,(8) = p(&) + p (&) + (eguy*) + (uye5*).

Since B is independent of u, the first cross term (ejuo*) is
given by

—i(AZ)[(Byxx)p(8) + 2 (Byx) (uyxus™)],

which vanishes since the derivatives of B have mean zero.
The second cross term (ujes*) similarly disappears, so the
stepwise error in the correlation function is exactly pe(£).
We now have (p.(£)) = (AZ)*{¢1¢2*), and the error is there-
fore of order (AZ)%. The fact that this is more accurate than
the wave field is due to the disappearance of the cross corre-
lation of e with u.
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Fourth and Higher Moments

Now consider the fourth moment m = {ujus*usus*), where
u; denotes u(X;), and let my be the fourth moment of U.
Then

my = {(u; + e)(ug + el)*(ug + exd(uy + e)*), (5)

so that m — my involves terms of first, second, third, and
fourth orders in the error e. Now the terms in the expansion
of Eq. (5) in which e appears once are of the form
{uiuo*uses*) or similar, and these terms all disappear as
they do in the second moment. The terms of second order in
e are again of order (AZ)%. The remaining terms depend on
higher powers of AZ so the error in the fourth moment is
again O[(AZ)4]. The reasoning for the higher moments is
identical, so the stepwise error in all cases is of this order.

Cumulative Errors

Cumulative Error in the Wave Field

We will here sketch the results for the field itself and show
how those for its autocorrelation function extend to the
higher moments. Suppose the total range of propagation is
divided into n steps, so that n is of order (AZ)~1. Let Uy be
the numerical solution of u(Z;). Denote by S;, the operator,
which represents propagation from Z; to Z4;, as deter-
mined by relation (3), and let S;’ be the composition of Sk,
Si41s. -+, Sn1. Define the kth stepwise error by e;, = Si(ux)
~ upy1. Then we can write U, = u, + e,—1 + Sp-1'en—2
+...+ Syeq. Now, put ¢, = (AZ) 2, and yYr = Sp'pp—1. If
we define ¥ = ¢, + Y,,—1 +...+ {1 (where Y1 = ¢n—1), then
U,, can be written U, = u, + (AZ)2¥. Thus the cumulative
error is (AZ)2¥, where ¥ consists of n terms. It can be
shown that, for each realization, AZ¥ is approximately equal
to the integral with respect to Z of a fixed continuous func-
tion ¢, which is independent of step size, over the range (Z;,
Z,). Thus the cumulative error in the wave field is approxi- -
mately AZ [ ydZ, which is of order AZ.

Cumulative Error in the Moments
As with the stepwise error, we can show that the moments
are of higher accuracy than the field itself. Now, U, =u, +
AZ { ydZ. By analogy with the analysis® for the second
moment, let my be the fourth moment of U,,. Then we can
express the error m — my as a sum of terms of first, second,
third, and fourth orders in AZ f ¢dZ. Just as in the case of
the stepwise error, the first-order terms, such as
{uiuo*uses™ ), vanish identically, although the calculation is
now more complicated. Denote by G, the set of functions of
the form

g =B (Z)h[B(Zy.1), ..., B(Z,), u],
where the superscript denotes an X derivative of some de-
gree, and h is any function. Let G5 denote the set of series
(or sums) of elements of G,. Then it is easy to show that G5
is invariant under the operator S; = exp(AZA) exp(AZB)),
for I > k. Thus, since each ey, is in G35, it follows that ¢,—;
and each function y, is also in G4S. Now, for each of the
functions g, B'(Z;) is independent of i by our assumption
that AZ = Lz and since B and u are independent. It follows
that



792 J.0Opt. Soc. Am A/Vol. 7, No. 4/April 1990

(gu*ugug*) = (B(Z,)) (hu*uqus*) = 0.

Therefore every term in the expansion of {u *usus*yy) is
zero, and the cross correlations (ujus*u3¥*) and
(u1*uqug™¥) vanish as required.

Now the remaining terms, which are of second order or
greaterin AZ f ydZ, are all O[(AZ)?]. This also holds for the
higher moments, so that the cumulative error for all the
moments is of order (AZ)?, which is compared with an error
of O(AZ) for the wave field itself. Note that although the
first-order-error terms disappear when averages are taken,
they may still be present in individual realizations.

These results indicate that the moments of the wave field
can be calculated very reliably from their numerical approxi-
mations, even when the scattering strength is large.

Other methods for solving relation (3) are in use (e.g., Lee
and Papadakis®), and these methods are not discussed here.
However, a crucial element of the split-step scheme applied
to random media is the use of step size at least as large as L.
The generation of the random medium is at least as expen-
sive computationally as the solution of relation (4), requiring
2n one-dimensional fast Fourier transforms, where n is the
number of steps. Any reduction in AZ introduces correla-
tions between the phase screens and immediately entails the
use of two-dimensional fast Fourier transforms, which great-
ly increase the order of computation.

3. COMPUTATIONAL SCHEME AND RESULTS

The implementation of the split-step scheme? and the gen-
eration of the random medium have been fully described
elsewhere (see Refs. 2 and 6), and we will not give the details
here. However, we will briefly outline the method of in-
creasingly fine subdivision of the medium. Given the two-
dimensional correlation function p of the medium W, we
wish to construct a phase screen #(X) to represent the cu-
mulative effect of W in the strip of medium (Z, Z + AZ).
The transverse correlation function p; of ® will be given by

Z+AZ
pi(k, AZ) = [ [Z ot Z, — Zy) dZ, 42,

=
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Fig. 1. Intensity pattern for one realization as a function of range,
which increases vertically, Z, with ¢2 = 8.0, Lz = 0.16, and transverse

distance X.
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Fig. 2. Real parts of wave field at maximum range Z = 1.28 com-

pared for step size 27K, as K is varied from 5 (bottom curve) to 0 (top
curve), for same parameters as in Fig. 1.
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Fig. 3. Logarithmic plot of error ey, in the fourth moment of wave
field as function of step size for ¢2 = 2.0, Lz = 0.08.
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Fig.4. Fourth moment (average of intensity squared) as a function
of range Z for one realization, for ¢2 = 0.4 and Lz = 0.08.
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Using this correlation function, we can generate a series of
phase screens at a distance AZ apart, and each screen can be
given the appropriate variance k2u?p;(0, AZ). We denote by
$2 the mean-square fluctuation k2u2p;(0, Lz) that is imposed
by each irregularity. When AZ = Lz the phase screens may
be modeled independently, but if AZ becomes less than a
correlation length, the appropriate degree of correlation be-
tween the screens must be introduced. By using this proce-
dure we can build up sets of random phase screens that
represent the medium in arbitrarily fine detail, and we can
propagate the wave numerically, in effect keeping the medi-
um fixed while varying the step size between the screens.

In the results that we show here, the step size was succes-
sively halved until the solution had effectively converged.
Several realizations were run, and the results were averaged
over these. Thus, for example, for each realization, we ob-
tained the error produced by a given step size and then
averaged the results over a number of realizations. More
precisely, denote by A the smallest step size used. Let a be
the exact solution (for whatever quantity is being calculat-
ed), and let a; be the approximate solution obtained with
step size 2¢Ao. We measure the errors e;, relative to ao, since
a is unknown, so that e, = ar —apfork =1,2,.... The
order of the error should then be reflected in the ratios rp =
ert1/ex. If we assume that the solution is of order e, then a;
~ a + M2FAg)®, where A is some constant that will vary with
realizations. Thus e, ~ M29% — 1)A¢?, and so for k greater
than 0 (and a = 1), r, = 22. However for first-order error rg
~ 3, and ro ~ 5 when the error is of second order.

The scattering strength and maximum step size in the
results shown here were much greater than the usual limits,
in order to illustrate the behavior of the accuracy of the
moments when errors for the wave field itself are large.
Figure 1 shows the intensity pattern for one realization as a
function of range, up to Z, = 1.28. Here, the scattering per
irregularity is ¢2 = 8.0, and the correlation length is Lz =
0.16. The real parts of the functions u at Z, as the step size
is successively reduced are compared in Fig. 2. The detailed
features that arise when the maximum step size AZ = Lz is
used are very different from those that arise at the lower
limit, AZ = 275L.

The error lex] in the fourth moment my (intensity
squared) was measured as described above for ¢? = 2.0, Lz =
0.08, and Z = 1.28 and averaged over 16 realizations. In Fig.
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3 the logarithmic plot of this quantity as a function of AZ
shows the second-order dependence on step size. Note that
the curve starts to tail off as the maximum step size is
approached. This is probably due to the fact that, in the
limit of large step size, the numerical solution becomes com-
pletely uncorrelated with the exact solution, and the error is
then determined by the variance of the ensemble of the
functions (ujus™*ugus®).

In Fig. 4 the fourth moment is shown as a function of range
for a single realization with ¢2 = 0.4 and Lz = 0.08. The
finest subdivision is represented by the solid curve and
coarser subdivisions by the dotted curves. The order in
which these subdivisions occur is obvious from the figure; in
this case the dependence on AZ is of first order as would be
expected in a single realization.
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