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The inverse-scattering problem for a scalar wave field incident at grazing angles upon a one-dimensional mod-
erately rough surface is considered. The problem is solved directly by treating the scattering integral as an
integral equation in the unknown field derivative at the surface and coupling this to a simple equation relating
the derivative to the surface itself. An algorithm is described for the solution of this system, and results in
which complicated rough surfaces are accurately reconstructed are presented.

1. INTRODUCTION

In the study of rough surface scattering the solution of
inverse problems, and in particular of the reconstruction
of surfaces from scattered data, has many potential appli-
cations and is one of the main aims. Treatment is usually
by iterative methods, and their success in many problems
for complicated scattering surfaces seems to have been
limited (see, e.g., Refs. 1-5). For scalar wave fields at ar-
bitrary angles of incidence the scattered field is described
by the Helmholtz integral formula.6'7 When the field is
incident at small angles to the surface, forward scattering
predominates, and the Helmholtz equations may be re-
placed by the parabolic equation method.8'9 This consists
of an integral equation in the transverse derivative P/az
of the field at the surface and a scattering integral. De-
spite the simplifications offered by the parabolic regime,
multiple scattering occurs even for slight roughness, and
the dependence of the scattered field on the surface re-
mains highly nonlinear.

In this paper the inverse problem for grazing incidence
upon a one-dimensional pressure-release surface h(x) is
formulated as an integral equation in aP/Oz. This is
coupled to a simple expression relating h to aP/Oz, and the
system is solved directly by numerical inversion. The
second equation is valid for moderate rms surface varia-
tion and is needed because the kernel depends on the
initially unknown surface. The Volterra form of the inte-
gral equation allows us to find the surface progressively
and to substitute the values back into the kernel. Thus
although the method may be regarded as a direct solution
it cannot be extended as such to the full Helmholtz for-
mula. It is assumed that the incident wave field is
known, together with scattered data along a line parallel
to the mean surface level; these data permit the scatter-
ing integral to be treated as an integral equation. (A pre-
vious method' for this regime requires twice this amount
of data, and the corresponding simultaneous inversion of
two integral equations, and presents numerical difficulties
that have not yet been fully overcome. A recent paper"
also presents a successful direct solution, for nongrazing
incidence, based on the Kirchhoff approximation.) The

solution is implemented numerically, and results in which
rapidly varying surfaces are accurately reconstructed are
presented.

In Section 2 the parabolic equation method for surface
scattering is given. The equations for the inverse prob-
lem are formulated in Section 3, and the numerical solu-
tion is described, together with the computational results.

2. MATHEMATICAL FORMULATION
We consider the problem of a scalar time-harmonic wave
field p scattered from a one-dimensional rough surface.
The field is at grazing incidence. The Dirichlet boundary
condition is assumed, i.e., s or TE polarization and perfect
conductivity. (The scalar treatment is applicable provided
that we restrict attention to surfaces of one-dimensional
variation so that polarization does not change under scat-
tering.) The coordinate axes are x and z, where x is the
horizontal x 0 and z is the vertical. For convenience it
is assumed that the mean surface level is at z = 0. The
source is centered about r = (0, z), with wave number k.
The rough surface itself is denoted h(x), so that h has
mean zero. In the numerical examples h is drawn from
an ensemble of normally distributed and statistically sta-
tionary processes, with rms surface height denoted by .
(This statistical description is used for convenience, but
the stochastic nature of the surface is not central to the
treatment here.)

Since the wave field propagates predominantly in one
direction, it has a slowly varying part P defined by

T(x, z) = p(x, z)exp(-ikx).

Incident and scattered components I'ine and I, are de-
fined similarly, so that T = ic + P8 . It is assumed that
I'inc [x, h(x)] = 0 for x 0, so that the area of surface il-

lumination is restricted as, for example, when the field is
a Gaussian beam (see below). The governing equations
for the parabolic equation method8 9 are then

Pjnr(r) = --fxG(r;r') aq(r') dx', (2.1)
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where both r = [x,h(x)], r' = [x',h(x')] lie on the sur-
face and

,P8 r) = I G(r;r az dx', (2.2)

is not too large), aT/Oz varies approximately linearly with
Pinjx, h(x)], which is in turn almost linear in h. Explic-
itly, for small h the incident field [Eq. (2.4)] along the sur-
face can be written as

where r' is again on the surface and r is now an arbitrary
point in the medium. Here G is the parabolic form of the
Green's function given by

G(x, z; x', Z) = [2rk(x - X)] exp [2(x - x')]

(2.3)

when x' < x and G = 0 otherwise. [This gives rise to the
finite upper limit of integration in Eqs. (2.1) and (2.2).]
This Green's function is derived under the assumption of
forward scattering, i.e., that the field obeys the parabolic
wave equation

Px + 2ikP 8x = 0,

which holds provided that the angles of incidence and scat-
tering are fairly small. The accuracy has been examined
by Thorsos.8 These results are of course inapplicable to
situations in which backscattering is measured.

Since aP/Oz is considered only at points along the sur-

face, it may be considered here as a function just of x and
denoted P'. Let a = '/2(i/2irk)' 1 2 . The incident field
used in the examples below is a Gaussian beam of initial
width w, assumed for simplicity to be traveling horizon-
tally:

Tine(X, Z) = (w' + exp[ + -zx)k](W2 +2ix/)112 w2 + 2ix/k (2.4)

This field impinges upon the surface as it spreads; the
pattern of illumination along a flat surface rises from zero
to a peak and decays with 1/VIx. We refer to this field as
being at zero grazing angle, although it is composed of a

spectrum of angles; results similar to those shown here
may be obtained for incidence at small nonzero angles.

3. SOLUTION OF INVERSE PROBLEM
AND RESULTS

A. Formulation and Numerical Solution

Suppose that the scattered field is known along an interval
[0, X] at some distance z from the surface. Once the ker-
nel G is known, Eq. (2.2) can be regarded as a Volterra in-

tegral equation in aP/az. Although the surface is initially
unknown, it has the simple integral relationship (3.3)
(below) to aP/Oz. Thus, since G is here a function of h,

Eq. (2.2) and relation (3.3) can be treated as coupled equa-
tions. Now because scattering is mainly around one di-
rection, these equations can be solved from the left to yield
values at successive points along the interval; as the so-
lution for aP/Oz progresses, surface values can be found
simultaneously and substituted back into the equation.
This is only a slight modification of the standard proce-
dure for inverting such integral equations by discretiza-
tion and Gaussian elimination.

We first express the surface in terms of aP/Oz: When
the surface is moderately rough (i.e., the rms variation 4

Fx h -2zoh(x) 1
PinJx, h(x)1 = inc~X 0)[1 + w 2 + 2ix/k (3.1)

and in Eq. (2.1) the exponent can be neglected" so that

(3.2)

where P' = aP/Oz. From relations (3.1) and (3.2) we obtain

h |x a (X - X)/24I(xt)dxt

h (x) | 'in (X, °)
- 1(W2 + 2ix/k"

2zo
(3.3)

We can denote this linear transformation by L, that is, h-
LP'. The integral here is easy to evaluate numerically.
Approximation (3.3) (which includes multiple-scattering
effects via the integral) remains accurate for kit up to -1,
which represents a fairly rough surface especially at graz-
ing incidence. Note that more accurate, nonlinear, ex-
pressions can be used in place of relation (3.1).

The numerical solution is implemented as follows: The
interval [0, X] is discretized by evenly spaced points {xr},

say, where r = 0,.. ., N and the intervals Ax = Xr - Xr-1

are small. It is supposed that scattered data are available
at the points Xr. For x,, E [0, X] the integral [Eq. (2.2)] is
written as a sum of subintegrals over the corresponding
intervals:

n o
'P(X., z) = 2 J G[xn, z; x', h(x')]T'(x')dx'.

The function aP/Oz varies slowly compared with G and
may be treated as constant over each subinterval, and the
equations may therefore be written as

(3.4)
r=1

where

ynr(z) = af G[x., z; x', h(x')]dx'. (3.5)

When h is known the coefficients 'yn, may be approxi-
mated as follows: For X' E [Xr,-, Xr], take the Taylor ex-
pansion of h about Xr,-,

h(x') h(Xr-) + (x' - Xr )dh(x)
dx

y can then be written in terms of Fresnel integrals after
a change of variable followed by integration by parts. 9

(This analytical treatment is necessary to deal with the
singularity as x' --' x,.)

Therefore if h has been obtained up to xn then all the
coefficients yn, r can be found. From relation (3.4) we
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0.4 - I I I - insensitive to this single guess; this is essentially because
the field is not illuminated around x = 0.)

This procedure yields values for I' and the surface h
0.2 - itself throughout the interval [0, X]. The assumption that

the scattering is predominantly about one direction per-
mits the solution to be progressively substituted back into

0.0 - the scheme. Consequently this method could be extended
to the full Helmholtz formula only as an iterative solution.

d)

z -0.2 - B. Results
a The above procedure was followed to obtain a solution for

P' when the surface and the scattered wave field had been
-0.4 ' produced by simulations using the full form of the para-

bolic equation method. (Details of this and the genera-
tion of random surfaces are given in Ref. 9.)

-0.6 - In the first example a surface was generated with
= 0.3, and scattering was calculated for an incident

field that is due to a source with wave number k = 1 and
-0.8- .. initial width w = 8 and located at a distance z0 = 22.4.

0 50 100 150 200 250 300 The random surface was fairly jagged, with a subfractal
X autocorrelation function of the form

Fig. 1. Comparison between the surface h (dotted curve) and its
reconstruction h (solid curve). (hIxIhNxI' I exp

(h(x)h(x + a) = ~,1+ -yexp __

0.2 - where I = 8, slightly more than a wavelength. In Fig. 1
the surface h is compared with its solution h, say. The
solution recaptures the detailed features of h(x). Since

0.1 - h() = 0 whereas h(O) is in general nonzero, this also illus-
trates the relative lack of sensitivity of the solution to the
guess of the first surface height. (The solution in and
beyond a deep shadow zone would behave similarly; the

X~ 0.0- ., a - shadow zone itself could not of course be reconstructed.)
-n ,, \ . In the same way it was found that the results are almost

unaffected by an arbitrary error of phase in measurement
of the complex amplitude P. For this surface Fig. 2o 0.1 u -0.1- , k .. shows the real and the imaginary components of the
scattered field at z = 0.7, which represents the given
data. Another example is given in Fig. 3, this time for a

-0.2

0.4
0 50 100 150 200 250 300

xlA
Fig. 2. Real (solid curve) and imaginary (dotted curve) compo- 0.2-

nents of scattered data along a line at distance 0.7 from the mean
surface level. I!

-c 0 

then have U-0.2
n-1 

T(x) (Xn Z) T '(Xr)yn, 'ynn(z) (3.6)r-1 r'''J-0.4 

From this we obtain the surface height at the point xn l0,
-0.6

-0.8 - ,, ., I .,, | __,_._|___I_._|___._I_________I_______ _
where L is as defined above. To begin this solution an 0 50 100 150 200 250 300

initial value is required either for T'(0) or for h(O) (or yiji). x
We make the simplest assumption, that the surface around Fig. 3. Comparison as in Fig. 1 for a smoother surface between
x = 0 is flat, setting h(O) = 0. (The results overall are the h (dotted curve) and its reconstruction h (solid curve).
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smoother surface with a Gaussian autocorrelation func-
tion, (h(x)h(x + )) = exp(- 2 /l2). The two functions
again agree closely.

4. CONCLUSIONS

The inverse problem for scattering at grazing incidence by
one-dimensional surfaces h has been formulated as an in-
tegral equation, relating the unknown field derivative to
the known complex amplitude of the scattered field along
a line in the medium. The equation was solved directly
by being coupled to another equation relating the deriva-
tive to the surface, and results in which complicated rough
surfaces had been accurately recaptured were presented.
These results are based on a comparison with simulated
data and were found to be highly insensitive to errors in
the phase of the data. Nevertheless, the collection of such
data in practice would not be trivial. This formulation is
easily extended to the case of Neumann boundary condi-

tions, in which G in the governing equations is replaced by
its derivative and P' is replaced by the field itself, which
again depends almost linearly on the surface." However,
it exploits the parabolic equation method valid for grazing
incidence and cannot be extended to more general regimes.
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