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scattering at grazing incidence
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Abstract. The paper considers the inverse scattering problem for a scalar wavefield
incident at grazing angles on a one-dimensional rough surface. The problem is formulated
first as a pair of coupled inlegral equations in two unknown functions, knowledge of
which immediately yields the surface. A method is described for the direct approximate
solution of this system. Preliminary results are presented in groups of complicated rough
surfaces which are closely recaptured in all details except for scale.

1. Introduction

A major aim of the study of surface scattering is the solution of inverse problems,
and specifically that of recapturing the surface explicitly from scattered data. There
are numerous potential applications, from radar to underwater acoustics. Despite
this motivation, in many problems little progress seems to have been achieved for
complicated surfaces, and in practice treatment is largely limited to iterative methods
(see, for example, {1-3]). For scalar wavefields at arbitrary angles of incidence the
scattered field is described by the Helmholtz integral formula [4], which consists of an
integral equation and a scattering integral. When the field is incident at small angles
to the surface, forward-scattering predominates, and the Helmholtz equations may be
replaced by the parabolic equation method [5, 6]. Despite the simplifications offered
by the parabolic regime multiple scattering occurs even for very slight roughness, and
the dependence of the scattered field upon the surface remains highly nonlinear.

In this paper the inverse problem for a grazing incidence, on a one-dimensional
pressure release surface, is formulated as a pair of coupled integral equations, and an
approximate method for the direct solution of this system is given. This solution is
required to yield the two functions 3% /92 and exp(ikh) where h(z) is the surface,
8V /8= is the transverse derivative of the field aiong h, and k is the wavenumber.
The form of the surface follows immediately from knowiedge of exp(ikh), or for
moderate surface variation by a simple transformation of 8¥ /9z.

This system is obtained by approximating the Green function, in which exp(ikh)
appears, and treating the scattering inteprals as integral equations. It is assumed
that the incident wavefield is known, together with scattered data along two lines
parallel to the mean surface level. The system is nonlinear and ill conditioned, and
its treatment presents difficulties which have yet to be fully overcome. However the
proposed solution is implemented numerically, and preliminary results are presented
in that a complicated, rapidly varying surface is reconstructed from the derivative
oW /8z, with errors of scale, but correct in all other details. This is done for
moderately rough surfaces, when 8 /92 is almost linear in A(x).
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In section 2 the integral equation description of surface scattering is given. The
formulation of the inverse problem in terms of integral equations is given in section
3, and the numerical solution is outlined, together with the computational results.

2. Mathematical formulation

We consider the problem of a scalar (acoustic) time-harmonic waveficld p scattered
from a one-dimensional rough surface. The field is at grazing incidence and the
Dirichlet boundary condition is assumed. The coordinate axes are z and z, where x
is the horizontal = > 0, and =z the vertical. For convenience it will be assumed that
the mean surface level is at 2 = 0. The source is centred at about r = (0, z,,), with
wavenumber k. The rough surface itself is denoted h(z), so that k has mean zero.
In the numerical examples, h is drawn from an ensemble of nomally distributed
and statistically stationary processes, with RMS surface height denoted by ¢. (This
statistical description is used for convenience, but the stochastic nature of the surface
is not relevant to the treatment here.) :

Since the waveficld propagates predommantly in one direction, it has a slowly-
varying part ¥ defined by

U(z,z) = p(a,2)e k=,

Incident and scattered components W, and W, are defined similarly, s0 that ¥ =
V. .+ V.. It will be assumed that ¥, (=, h(:c)) = 0 for z £ 0, so that the area of
surface Mllumination is restricted, as for example when the ﬁeld is a Gaussian beam
{see below). Provided angles of incidence and scattering are fairly small, the forward-
scattering assumption holds and propagation is we]] described by the parabolic wave
equation (e.g. [7])
2
3\11 + 21k:(§; \I; =0.

The parabolic form G of the Green function may be found by solving the parabolic
equation with a source term [5] (or by direct approximation of the full free-space
form), and is given by

1 i ik(z - 2)?
G(z,z;2', z)_—\/m p[w] 2.1

when =’ < z, and G = 0 otherwise. The parabolic equation method [5] is then
obtained by straightforward analogy with the derivation of the Helmholtz integral
formula (for example, [9, 10]), by combining equations for ¥ and G, taking a volume
integration, and imposing the boundary conditions. The governing equations [3, 6, 8]
are then

c(r) = - : rr Mdm' 2.2
¥ioolr) = = [ Glrin) @.2)
where both r = (z, h(x)), ' = (', h(z')) lic on the surface; and

W (r) f G(r; ‘N(T’) 2.3)
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where r’ is again on the surface and r is now an arbitrary point in the medium.
(The restricted area of illumination enables us to make the lower limits of integration
finite.)

Since 8Y /3=~ is considered only at points along the surface, it may be treated
here as a function just of x, and denoted ¥'. et o = % V1/2rk. The incident
ficld used in the examples later is a Gaussian beam of initial width w, assumed for
simplicity to be travelling horizontally, ie. at zero grazing angle:

__w (2 = z9)?
Vinc(z, 2) = \7;}?4_—2’1—:8/106}(13 [_1112—-{-21%27};] . (2.4)

This ficld impinges on the surface as it spreads; the pattern of illumination along a
fla: surface is shown in figure 1, for k = 1 and w = 8. Similar results are obtained
for incidence at angles up to around 15° or 20° [5], above which propagation is no
longer described accurately by the parabolic wave equation.
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3. Inverse problem and solution

3.1. Formulation

Consider the form of the Green function appearing in (2.3), into which A enters once,
via ', Provided z is large compared with the surface variation, the exponent can be
approximated (see [11])

ik[z — h(z")])* o 22— 2zh(2")
20 —x') k 2z —x') G0

(The error is the factor explikh? /2(z — =)]; although this exponent becomes large
as ' approaches z, the phase variation in G is nevertheless dominated by the
approximate exponent (3.1). This may be verified by comparing simulations of W ; for
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a piven rough surface using the full form of G in (2.3) its approximation.) Define
the function

E(z) = exp[—-ikh(x)]. 3.2)

Suppose now that the scattered field is known at two depths z,, z, in some
interval (0, X). The approximation allows us to write the integral (2.3) as

rT / r Hy 4 1 I \ ot PR
)= ke B - 1yzif(z-a") C¥LE) s
¥, (z,2;) "’jo (exp lg(m - w,)J /ﬁ a:’) E(z") S da' (33)

for j = 1,2, where the surface-dependent functions E and 8V /8z appearing here
are independent of the distance z;. Thus equation (3.3) for j = 1,2 represents
a pair of coupled integral equations, in which the left-hand side is known, and the
two unknown functions (including E which forms part of the kernel) appear under
the integral sign. To avoid numerical instability (see section 3.2) it will be assumed
that z; — z, is not too small. (In solving this system we treat the functions E and
0¥ /0z as independent, at this stage ignoring their mutual dependence upon the
surface. The system would otherwise be overspecified. Similarly, knowledge of ¥, at
any distance z, is formally sufficient, via the wave equation, to define ¥, at z,. In
practice however it iS a non-trivial task to extend W, in this way from scattered data
on a finite interval.)

From (3.3) a direct solution of the inverse problem will be obtained. If we write
these equations as

{¥,,¥,} = A{E, 8V /0z}

where W, represents the vector ¥ (z,z2;), then we must specify the nonlinear op-
erator A~l. An approximate solution for A~! is described later. Once E is known
with sufficient accuracy the surface may be found immediately (to within a constant);
alternatively, when the surface is moderately rough, W /8= varies approximately
linearly with h, and we can write

where L is a simple linear transformation which depends upon the source. Explicitly,
for small h the incident field (2.4) along the surface can be written as

2z4h(2)

w? + 2z fk G4)

\I’inc(a:‘!h(w)) = \I’inc(m’o) [1 +

and in equation (2.2) the variation in G (i.e. the exponent) can be neglected [11] to
give

Vo2, h(2)) = —a | —===T'(2)da’ (3.5)

| 7=
where ¥/ = 8¥ /9z. Thus from (3.4) and (3.5) we can approximate

h(x) = (U: _ﬁ%w'(y) d:z'/‘llinc(r,ﬂ)) - 1) (9-1—"—;-;2;'-"’—@) .68

This is an accurate approximation even for fairly rough surfaces. For numerical
evaluation the integral in (3.6) is easily discretized, as described later.
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4. Numerical solution

In order to illustrate the treatment of a coupled system such as (3.3), and thus carry
out a direct solution of the inverse problem, a simple numerical method is now
described. Further refinement is needed, but excellent results have nevertheless been
obtained.

The principal difficulty presented by (3.3) is that, although 8V /8~ and E them-
selves vary boundedly, E has an exponent which becomes singular. The interval
{(0,z) is first discretized by evenly spaced points {x,_}, say, where r = 0,..., N.
For j = 1,2 the integrals (3.3) are written as sums of subintegrals over the corre-
sponding small intervals (x,_,,z,). Making the naive assumption that both 8¥ /52
and E*/(===") vary slowly over each subinterval compared with the deterministic
variation, these functions can be taken outside the integrals and for j = 1,2 the
cquations may be written as

U (z,,2;) =Y EHC—XN ()8, (z) (3.7

r=1

where X, is the mid-point (z_ + z,.,,)/2, E, = E(z,), and

funlzy=a [ (p[ _?,)J /m) dc

for 57 = 1,2. The coefficients [, which depend only on » — r, may be found
exactly in terms of Fresnel integrals by the change of variable y = z;\/k/n(x —
')~ 1/2, followed by an integration by parts. (This type of discretization and ‘product
integration’ rule are widely used in surface scattering, e.g. [5, 6].) We then have a
pair of matrix equations, with lower-triangular matrices 3(z;), which may be solved
s:multaneously from the left as follows: Suppose E;, W/ (z,) have been obtained for
i=1,...,n— 1. Then

n—1
V(20 2;) = 3 By (3, ) B/ =200 (2,) 2 8, (2 ) EP/ X0 (),
r=1

3.8)

Dividing through by 3, ,(z;), and then dividing each side of the equation for 5 = 1
by that for j = 2, the term ¥'(z,) drops out and we obtain an expression for

E’(’AZI—ZQ)/(In-Xn). (3.9)

The approximation for E, may be obtained from this, and this is then substituted
‘back into (3.8) (cither for = 1 or j = 2) to find ¥’'(z,,). This yields approximations
for the required functions throughout the interval (0, z); the surface itself is then
obtained immediately from E, or as the function LW’ where L is the transformation
(3.6). Note that as z, approaches z,, the exponent in (3.9) tends to zero and the
inversion of this expression becomes numerically unstable,

A similar, but more complicated, treatment may be envisaged using more satis-
factory approximations, obtained by treating the subintegrals analytically without first
assuming F to be slowly varying.
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4.1. Preliminary results

This procedure was followed to obtain approximate solutions for £ = exp(ikh) and
W', where the surface and scattered wavefield had been produced by simulations using
the full form of the parabolic equation method. (Details of this and the generation
of random surfaces are given in [6].) In these initial results it was found that E was
less well represented than W', and it therefore proved more accurate to reconstruct
the surface from ¥', using (3.6}, than from E.
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Figure 2. Intensity of scattered components along
lines at distances 0.6 (full curve) and 1.2 (broken
x curve) from the mean surface level.

In the first example a surface was generated with ¢ = 0.23, and scattering
calculated for an incident field due to a source with wavenumber & = 1, initial width
w = 8, located at a distance z, = 22.4. The random surface was fairly jagged, with
an autocorrelation function of the form

(h(z)h(x + &)} = (1 + [£]/1) exp(—[E}/1)

where ! is roughly a wavelength. For this surface figure 2 shows the intensity of
the scattered fields at z; = 0.6 and z, = 1.2, which represent the given data.
(These values of z; were chosen close to the surface for computational convenience.)
In figure 3(a) the surface h itself is compared with its solution h, say, from the
approximation of 8W¥ /dz. The solution recaptures all the features of h(z) in detail,
although it differs in scale. This scaling error becomes clear when h plotted against
h is rescaled by dividing by a factor 1.8 (figure 3(b)). The source of these systematic
errors of scale iS not yet apparent; more numerical work s needed to explain and
correct them. Another (unscaled) example is given in figure 4, this time for smoother
surface, with a Gaussian autocorrelation function, (h{z)h{(x + £}) = exp(—£*/1?).
The agreement is again excellent.

Although our aim is the direct solution of the inverse problem, it should be noted
that once the surface approximation has been obtained it may be used with the data
in several obvious iterative methods.

5. Conclusions

The inverse problem for scattering at grazing incidence by one-dimensional surfaces h
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Figure 3. (z) Comparison between the surface h (broken curve) and its reconstruction
h (full curve); (b) comparison after rescaling k by division by a factor of 18,
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Figure 4. Comparison as in figure 3(2) for a
smoother surface.

has been reformulated as a pair of coupled integral equations, relating the unknown
surface derivative and the function exp(ikh) to the known value of the scattered
field at two lines in the medium. This is based on a simple approximation of the
parabolic form of the Green’s function in the governing integrals. A direct solution
has been given based on additional approximations, and a preliminary numerical
scheme. Despite the naive nature of these approximations, a complicated highly
varying rough surface is recaptured in all its detail except for scale. The results
are based on comparison with simulated data. It is clear that refinement of the
numerical scheme is needed, and may be expected to lead to correct scaling. This
formulation has natural extensions to scattering at arbitrary angles of incidence, and
from two-dimensional surfaces.
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