
J. Phys. A: Math. Gen. 25 (1992) 3295-3302. Printed in the UK 

Direct solution of the inverse problem for rough surface 
scattering at grazing incidence 

Mark Spivack 
Department of Applied Mathematics and ?heoretical Physirs, University of Cambridge, 
Cambridge CB3 SEW, UK 

AbslracL The paper considen the invene scatlering problem for a xalar wavefield 
incident at grazing angles on a one-dimensional mugh surface. The problem is formulated 
fin1 as a pair of coupled integral equations in two unknown functions, knowledge of 
which immediately yields the surface. A method is described for the direct appmximate 
solution Df this system. Preliminary results PE presented in groups of complicated mugh 
surfaces which are dosely recaptured in all details mcept for scale. 

1. Introduction 

A major aim of the study of surface scattering is the solution of inverse problems, 
and specifically that of recapturing the surface explicitly from scattered data. There 
are numerous potential applications, from radar to underwater acoustics. Despite 
this motivation, in many problems little progress seems to have been achieved for 
complicated surfaces, and in practice treatment is largely limited to iterative methods 
(see, for example, [l-31). For scalar wavefields at arbitrary angles of incidence the 
scattered field is described by the Helmholtz integral formula [4], which consists of an 
integral equation and a scattering integral. When the field is incident at small angles 
to the surface, forward-scattering predominates, and the Helmholtz equations may be 
replaced by the parabolic equation method [5, 61. Despite the simplifications offered 
by the parabolic regime multiple scattering occurs even for very slight roughness, and 
the dependence of the scattered field upon the surface remains highly nonlinear. 

In this paper the inverse problem for a grazing incidence, on a one-dimensional 
pressure release surface, is formulated as a pair of coupled integral equations, and an 
approximate method for the direct solution of this system is given. This solution is 
required to yield the two functions arIr/az and exp(ikh)  where h ( z )  is the surface, 
arIr/az is the transverse derivative of the field along h, and k is the wavenumber. 
The form of the surface follows immediately from knowledge of exp(ikh), or for 
moderate surface variation by a simple transformation of arIr/az. 

This system is obtained by approximating the Green function, in which exp(ikh) 
appears, and treating the scattering integrals as integral equations. It is assumed 
that the incident wavefield is known, together with scattered data along two lines 
parallel to the mean surface level. The system is nonlinear and ill conditioned, and 
its treatment presents difficulties which have yet to be fully overcome. However the 
proposed solution is implemented numerically, and preliminary results are presented 
in that a complicated, rapidly varying surface is reconstructed from the derivative 
arY/az, with errors of scale, hut correct in all other details. This is done for 
moderately rough surfaces, when a\lr/az is almost linear in h ( z ) .  
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In section 2 the integral equation description of surface scattering is given. The 
formulation of the inverse problem in terms of integral equations is given in section 
3, and the numerical solution is outlined, together with the computational results. 

2. Mathematical formulation 

We consider the problem of a scalar (acoustic) time-harmonic wavefield p scattered 
from a one-dimensional rough surface. The field is at grazing incidence and the 
Dirichlet boundary condition is assumed. The coordinate axes are z and z ,  where I 
is the horizontal z 3 0, and z the vertical. For convenience it will be assumed that 
the mean surface level is at z = 0. The source is centred at about T = (O,zo) ,  with 
wavenumher IC. The rough surface itself is denoted h ( z ) ,  so that h has mean zero. 
In the numerical examples, h is drawn from an ensemble of normally distributed 
and statistically stationary processes, with RMS surface height denoted by 4. (This 
statistical description is used for convenience, but the stochastic nature of the surface 
is not relevant to the treatment here.) 

Since the wavefield propagates predominantly in one direction, it has a slowly- 
varying part * defined by 

*(z,z) = p ( z , z ) e - ' k 5  

Incident and scattered components Q,nc and Q s  are defined similarly, so that Q = 
C',nc + Q8. It will be assumed that Q,nc(z, h ( z ) )  = 0 for z < 0, so that the area of 
surface illumination is restricted, as for example when the field is a Gaussian beam 
(see below). Provided angles of incidence and scattering are fairly small, the forward- 
scattering assumption holds and propagation is well described by the parabolic wave 
equation (e.g. [7]) 

= 0. - + 2ik- 
a* a2Q 
ax az2 

The parabolic form G of the Green function may be found by solving the parabolic 
equation with a source term [5] (or by direct approximation of the full free-space 
form), and is given by 

when z' < z, and G = 0 otherwise. The parabolic equation method [SI is then 
obtained by straightforward analogy with the derivation of the Helmholtz integral 
formula (for example, [9, lo]), by combining equations for * and G, taking a volume 
integration, and imposing the boundary conditions. The governing equations [5, 6, 81 
are then 

where both r = ( z , h ( z ) ) ,  T ' =  ( z ' , h ( z ' ) )  lie on the surface; and 
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where r' is again on the surface and r is now an arbitrary point in the medium. 
(Tne restricted area of illumination enables us to  make the lower limits of integration 
finite.) 

Since a*/& is considered only at points along the surface, it may be treated 
here as a function just of x, and denoted W .  Let O( = f m. The incident 
field used in the examples later is a Gaussian beam of initial width w, assumed for 
simplicity to be travelling horizontally, Le. at zero grazing angle: 

This field impinges on the surface as it spreads; the pattern of illumination along a 
flat surface is shown in figure 1, for k = 1 and w = 8. Similar results are obtained 
for incidence at angles up to around 1 5 O  or 20° [SI, above which propagation is no 
longer described accurately by the parabolic wave equation. 

3. Inverse problem and solution 

-. 3 . 1. . . Formuklinn -. . . ... ... . . . . . 

Consider the form of the Green function appearing in (2.3), into which h enters once, 
via 7'.  Provided z is large compared with the surface variation, the exponent can be 
approximated (see [ll]) 

i +  - Wx')l2 I ik  z 2  - 2 t h ( 2 ' )  
2(x - 2 ' )  2 ( 2 -  x') ' 

(The error is the factor exp[ikh2/2(z  - z')]; although this exponent becomes large 
as x' approaches x, the phase variation in C is nevertheless dominated by the 
approximate exponent (3.1). This may be verified by comparing simulations of V, for 
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a given rough surface using the full form of G in (2.3) its approximation.) Define 
the function 

E ( z )  = exp[-ikh(x)]. (3.2) 
Suppose now that the scattered field is known at two depths r l ,  z2 in some 

interval ( 0 , X ) .  The approximation allows us to write the integral (2.3) as 

for j = 1,2, where the surface-dependent functions E and appearing here 
are independent of the distance z j .  Thus equation (3.3) for j = 1,2 represents 
a pair of coupled integral equations, in which the left-hand side is known, and the 
two unknown functions (including E which forms part of the kernel) appear under 
the integral sign. .Ib avoid numerical instability (see section 3.2) it will he assumed 
that z1 - z2 is not too small. (In solving this system we treat the functions E and 
aQ/az  as independent, at this stage ignoring their mutual dependence upon the 
surface. The system would otherwise he overspecified. Similarly, knowledge of Q s  at 
any distance z1 is formally sufficient, via the wave equation, to define Qs at z2.  In 
practice however it is a non-trivial task to extend Qs in this way from scattered data 
on a finite interval.) 

From (3.3) a direct solution of the inverse problem will he obtained. If we write 
these equations as 

{Q1,q2) Z A { E , t W / a r }  

where Vj represents the vector q S ( x ,  z j ) ,  then we must specify the nonlinear op- 
erator A-l .  An approximate solution for A-' is described later. Once E is known 
with sufficient accuracy the surface may be found immediately (to within a constant); 
alternatively, when the surface is moderately rough, a V / d r  varies approximately 
Linearly with h, and we can write 

a* h = L -  
a z  

where L is a simple linear transformation which depends upon the source. Explicitly, 
for small h the incident field (2.4) along the surface can be written as 

(3.4) 

and in equation (2.2) the variation in G (i.e. the exponent) can be neglected [ll] to 
give 

5 1  
Vinc (x ,h (x ) )  E -a/ 7q'(x')dx' 

0 x - x  (3.5) 

where V' = aQ/az .  Thus from (3.4) and (3.5) we can approximate 

This is an accurate approximation even for fairly rough surfaces. For numerical 
evaluation the integral in (3.6) is easily discretized, as described later. 
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4. Numerical solution 

In order to illustrate the treatment of a coupled system such as (3.3), and thus carry 
out a direct solution of the inverse problem, a simple numerical method is now 
described. Further refinement is needed, but excellent results have nevertheless been 
obtained. 

The principal difficulty presented by (3.3) is that, although aq/az and E them- 
selves vmy boundedly, E has an exponent which becomes singular. The interval 
(0, x) is first discretized by evenly spaced points {z?), say, where P = 0 , .  . . , N .  
For j = 1 , 2  the integrals (3.3) are written as sums of subintegrals over the corre- 
sponding small intervals ( ~ ~ - ~ , x ~ ) .  Making the naive assumption that both aq /az  
and vary slowly over each subinterval compared with the deterministic 
variation, these functions can be taken outside the integrals and for j = 1 , 2  the 
equations may be written as 

n 

q s ( x n ,  z j )  E E:j/(.--X ‘ q ’ (~JPJZj) (3.7) 
P = l  

where X ,  is the mid-point (z, + z7+*)/2, E, = E(z,) ,  and 

for j = 1,2. The coefficients p, which depend only on n - T,  may be found 
exactly in terms of Fresnel integrals by the change of variable y = z j m ( z  - 
z‘)-’/’, followed by an integration by parts. (This type of discretization and ‘product 
integration’ rule are widely used in surface scattering, e.g. [S, 61.) We then have a 
pair of matrix equations, with lower-triangular matrices p ( r j ) ,  which may be solved 
simultaneously from the left as follows: Suppose E,, Q ’ ( x < )  have been obtained for 
i = 1, ..., n - 1. Then 

q8(xn, zj) - 
n-1 

p n , ~ ( z j ) E ~ / ( ~ ~ - X ’ ) q ’ ( ~ ~ )  % ~ n , ~ ( z j ) E ~ / ( = ~ - ~ ~ ) q ’ ( x ~ ) .  
T=l 

(3.8) 

Dividing through by pn+(zj), and then dividing each side of the equation for j = 1 
by that for j = 2, the term Q’(x, , )  drops out and we obtain an expression for 

Ep-zM=”-xd ,  (3.9) 

The approximation for E, may be obtained from this, and this is then substituted 
back into (3.8) (either for j = 1 or j = 2) to find Q ’ ( x , , ) .  This yields approximations 
for the required functions throughout the interval (0 , s ) ;  the surface itself is then 
obtained immediately from E, or as the function LQ’ where L is the transformation 
(3.6). Note that as z ,  approaches z2, the exponent in (3.9) tends to zero and the 
inversion of this expression becomes numerically unstable. 

A similar, but more complicated, treatment may be envisaged using more satis- 
factory approximations, obtained by treating the subintegrals analytically without first 
assuming E to be slowly varying. 
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4.1. Preliminaty results 
This procedure was followed to obtain approximate solutions for E = exp(ikh)  and 
W, where the surface and scattered wavefield had been produced by simulations using 
the full form of the parabolic equation method. (Details of this and the generation 
of random surfaces are given in [6].)  In these initial results it was found that E was 
less well represented than W, and it therefore proved more accurate to reconstruct 
the surface from Q', using (3.6), than from E.  

Figure 2 Intensity of raltered mmponenls along 

curve) from fhe mean surface level. 
B 58 I B ~  158 188 ZSB 18s lines at distances 0.6 (full curve) and 1 .2  (broken 

B 88 

In the first example a surface was generated with = 0.23, and scattering 
calculated for an incident field due to a source with wavenumber k = 1, initial width 
w = 8, located at a distance zo = 22.4. The random surface was fairly jagged, with 
an autocorrelation function of the form 

( h ( z ) h ( z  + 0)  = (1 + l C I / l )  exp(-IFI/O 
where 1 is roughly a wavelength. For this surface figure 2 shows the intensity of 
the scattered fields at z1 = 0.6 and z2 = 1.2, which represent the given data. 
(These values of z j  were chosen close to the surface for computational convenience.) 
In figure 3(a) the surface h itself is compared with its solution L, say, from the 
approximation of aQ/az. The solution recaptures all the features of h ( z )  in detail, 
although it differs in scale. This scaling error becomes clear when h plotted against 
h is rescaled by dividing by a factor 1.8 (figure 3(b)).  The source of these systematic 
errors of scale is not yet apparent; more numerical work is needed to explain and 
correct them. Another (unscaled) example is given in figure 4, this time for smoother 
surface, with a Gaussian autocorrelation function, ( h ( z ) h ( z  + [)) = exp(- t2/ l2) .  
The agreement is again excellent. 

Although our aim is the direct solution of the inverse problem, it should be noted 
that once the surface approximation has been obtained it may be used with the data 
in several obvious iterative methods. 

5. Conclusions 

The inverse problem for scattering at grazing incidence by one-dimensional surfaces h 
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Figmm 3. (a) Camparison k tween  the sulrace h (broken curve) and its reconstruclion 
h (full "e); (b) comparison after rescaling h by division by a factor of 1.8. 
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Figure 4 Comparison as in figure X a )  for a 
smoother surface. 

has been reformulated as a pair of coupled integral equations, relating the unknown 
surface derivative and the function exp(ilch) to the h o w n  value of the scattered 
field at two lines in the medium. This is based on a simple approximation of the 
parabolic form of the Green's function in the governing integrals. A direct solution 
has been given based on additional approximations, and a preliminary numerical 
scheme. Despite the naive nature of these approximations, a complicated highly 
varying rough surface is recaptured in all its detail except for scale. The results 
are based on comparison with simulated data. It is clear that refinement of the 
numerical scheme is needed, and may be expected to lead to correct scaling. This 
formulation has natural extensions to scattering at arbitrary angles of incidence, and 
from two-dimensional surfaces. 
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