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Approximate expressions for the fourth order moment of a wave propagating in a 
random medium are derived by using the path integral formulation. These solutions allow 
the spectrum of intensity fluctuations of a multiply scattered wave to be found, and they 
are valid at all distances in the medium. The results obtained by path integral methods 
turn out to be the same as those obtained previously by solving the parabolic partial 
differential equation for the fourth moment. The spatial frequency spectra of intensity 
fluctuations are evaluated for a medium in which the irregularities have a single scale and 
also for one in which there is a range of scale sizes. 

1. INTRODUCTION 

In recent years there has been an increasing interest in the use of functional integration 
and Feynman path integral methods to treat problems in various branches of physics. 
The method was first developed by Wiener in 1922 for the study of Brownian motion 
and above all by Feynman and Hibbs [l] in quantum mechanics and electrodynamics. 
Functional integration and path integrals are now among the methods used to treat the 
problem of propagation in irregular media. The application to electromagnetic wave 
propagation seems to have been first suggested by Eichmann [2] and was used by Furutsu 
[3] to find the irradiance distribution function in an extended random medium. Hannay 
[4] gave a treatment of the path integral method as applied to random media, while Eve 
[5] used path integral techniques to study light propagation in irregular optical fibres. 
Zavorotnyi et al. [6], Zavorotnyi [7] and Dashen [S] have used path integral techniques 
to discuss the propagation of waves in an irregular medium. 

An advantage of path integral methods in treating problems of propagation in random 
media is that they often give valuable physical insight and act as a supplement to the 
more conventional methods. Path integrals, however, can prove difficult to evaluate, and 
in some cases considerable insight is required to decide which constraints may be applied 
to the random paths to produce a meaningful answer. 

When treating the propagation of a wave field in a random medium the quantities most 
frequently studied are ensemble average moments of the random field. The first moment 
gives the mean field, sometimes called the “coherent” or unscattered part of the wave 
field. The second moment, or product of the field with its complex conjugate at another 
point in the medium gives the spatial correlation of complex amplitude, and this is 
frequently used in coherence experiments. The fourth moment yields the square of the 
wave intensity and is thus used to describe intensity fluctuations due to scattering by 
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giving the time-space spectrum and the variance of the fluctuations. Because many 
measuring instruments are based on square-law detection the fourth moment is of great 
interest in the theory of random wave propagation and has important implications in 
practical engineering. The wave field moment have been much studied by using the partial 
differential equations describing them. Solutions for the fourth moment have been 
found by this traditional method. However, the increasing interest in functional integration 
and path integral methods prompts one to ask whether or not this approach can yield 
new information about the wave moments. 

The appropriate path integrals for the first and second moments can be evaluated 
without too much difficulty. However, the path integral expression for the fourth moment 
has proved difficult to treat except in the limiting cases where the intensity fluctuations 
are small, or where the wave has propagated to such large distances that the statistics of 
the scattered field are approaching the Gaussian limit. Zavorotnyi et al. [6], Zavorotnyi 
[7] and Dashen [8] have used path integral methods to derive an expression for the fourth 
moment of the wave field as this large distance limit is approached. 

In the present paper it is shown how the path integral expression for the fourth moment 
of the field propagating in a random medium can be evaluated for any distance of 
propagation in the medium. The results are found explicitly in some particular cases and 
are shown to agree with similar results obtained by quite different methods. The discussion 
is conducted with reference to an acoustic wave, since the propagation of sound in a 
randomly varying ocean poses important problems in the theory of intensity fluctuations. 
However, the results are applicable to electromagnetic propagaton also. 

2. PATH INTEGRAL FOR THE FOURTH MOMENT OF THE WAVE FIELD 

Let x, y, z be a Cartesian set of axes in a space filled with medium whose acoustic 
refractive index 

n = 1 + nb = 1 + no(x, y, z)+pnr(x, y, z, t) (1) 

contains weak random irregularities with a spatial scale L. Here 1+ no is the ensemble 
average value of n, and no(x, y, z) is assumed to vary smoothly on a scale that is large 
compared with L. Thus no(x, y, z) constitutes the mean refractive index profile of the 
medium. The small scale irregularities are characterized by n,, a randomly varying quantity 
with a mean value zero and standard deviation unity, while p, the rms value of the random 
fluctuations, is assumed to be very small. Let a monochromatic wave of radian frequency 
w be emitted from a source at x0, y, in the plane z = 0. The wavelength corresponding 
to this frequency is A (k = 27r/h) when n = 1. If 

P(X, Y, z, t) = Re Mx, Y, z, t) exp [i(kz - wt)ll (2) 

is the pressure field at (x, y, z, t) in the medium then A is the complex amplitude of the 
field associated with p but without the rapidly varying harmonic dependence on z and 
t. The residual time dependence of A is due to the time variations of refractive index, 
which are assumed to be very slow compared with w-l. 

The instantaneous intensity of the acoustic wave in the medium varies rapidly like 
exp {i( kz - of)} with a slowly varying envelope I. From equation (2) this envelope intensity 
is 

Ii = A(xiy yip ziv ti)A*(x, Yis Zi, ti>- (3) 
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In investigations of intensity fluctuations the fourth moment of A at some distance z in 
the medium is used: 

rn= (A& Y,, z, ri)A*(x~, Y2, z, t2Mx3, Y3, z, t3)A*(x4, Y4, z, t4)). (4) 

When 

(x4, Y4, 5 f4) = (Xl, Yl, 5 a (x3, Y3, z, t3) = (x2, Y2, 5 f2), (5) 

the fourth moment (4) reduces to (I,Iz), the space-time correlation of the intensity. Further, 
when points 1 and 2 coincide the fourth moment reduces to (12), the variance of the 
intensity fluctuations. 

The importance of calculating the fourth moment (4) is thus clear, since it 
to evaluate not only the intensity correlation 

Pr = (1112) 

but also the other quantity most frequency used in this area, the normalized 

s: = (U2) - (1)2)/(~>2, 

sometimes referred to as the scintillation index. 

2.1. PATH INTEGRALS 

allows one 

(6) 

variance 

(7) 

The fourth moment (4) can be evaluated as follows by using path integral methods. It 
is assumed here that the scale size of the irregularities L is large compared with the 
wavelength of the wave A : i.e., kL >> 1 so that the angles of scatter are very small. In this 
case the propagation of A is well described by the parabolic wave equation 

dA(x,y, z, t)/~z=(i/2k)(~3~A/~x~+~~A/13y”)+ikn~, (8) 

with the boundary condition 

Ao= (47rz))l exp {ik[(x-x,,)*+(y-y,J2]/2z}, (9) 

corresponding to a point source at (x0, yo, 0). Feynman and Hibbs [l] showed that the 
solution of equation (8) with the boundary condition (9) is given by the limit of the 
multi-dimensional integral 

+ nb(rj, zj, t) II dri . . . dr, . . . dr,-,. (10) 
Here rj is the vector from the z axis to the point (Xj, yj) in the zj plane. The points (rj, zj) 
lie on a path from the source to the observer and expression (10) can be represented as 
an integral over paths. In the limit as 1 approaches infinity expression (10) becomes 

A(r,z~~)=~I...~exp{ikI:r[~(~~+~(r(z),z,r)]dz}d(paths), (11) 

where the integration is now over all paths connecting (To, 0) and (r, z). In what follows 
the time dependence will be suppressed. The physical meaning underlying expressions 
(10) and (11) becomes clear when one considers Figure 1 in which one of the paths is 
shown. The position vector of the path r(z) follows an irregular trajectory from (r(O), 0) 
to the observation point (r(zf), z,-). On traversing this path a point on a wave front 
experiences a phase shift, relative to the phase reference eikz, that is due to two causes. 
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Y 

Figure 1. Illustrating a typical path and the co-ordinates used in writing out the path integral (10) and (11). 

The first is the extra geometrical distance covered because of curvature of the path. This 
is expressed by the first term under the integral sign in the exponent of (11). The second 
is due to the varying value of the refractive index n over the path and this is taken into 
account by the other term in the exponent of expression (11). Only one such path is 
illustrated in Figure 1. The actual value of A observed at (r(z,), z,) is the result of the 
field traversing all possible paths between source and observer. This is allowed for by 
adding together the A’s resulting from all possible irregular paths between source and 
observer, each of which would be a different irregular trajectory in Figure 1. This is the 
meaning of the integral over paths, d(paths). 

Note that expression (11) is the limit of the discrete form (10) in which the medium 
is divided into layers of thickness zj - zj-,. This fact will be used when defining the 
meaning of a delta function introduced later in the paper. Finally, although the above 
discussion has been for a point source situated at (r(O), 0) the case of a plane wave can 
easily be dealt with as well since this is equivalent to point sources of equal intensity 
situated uniformly over all elements of the z = 0 plane. Thus the plane wave result can 
be obtained from the point source case by appropriate integration. Similarly, the case of 
an extended source can be treated since it is a set of point sources with a spatial distribution 
of intensities in the z = 0 plane. 

The required expression for the fourth moment (4) is now written down by using 
expression (11): 

(WI, zf)E*(rz, zf)E(r3, zf)E*(r,, zf)) = m(r, zf) 

[(r;)’ dz, -(r;)’ dz,+ (r;)* dz, - (rk)” dz,] 

n,(r,, .4 dz, - nl(r2, ~2) dz2+ n1(r3, 4 dz, - nl(r4, 4 dza 

x 4rJ 4r21 d[r31 44. (12) 
The prime is used to denote differentiation with respect to the argument: e.g., rj = rj(z), 
and rj = drj(z)/dz. 

Here the four-fold integral over paths has been written formally by using the notation 
d[r,] d[r2] d[r,] d[r4]. The normalizing factor No arises because of the inclusion of 
(ikl/2rz) from expression (10) in the element in path space when passing to the continuous 
representation (11). The manner in which No is evaluated is best explained in terms of 
a concrete example later in the paper. 
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Clearly, the ensemble average affects only the randomly varying components which 
have been gathered together in the last exponential of expression (12). The fact that the 
magnitude of these random components is very small compared with unity, or alternatively 
that they obey Gaussian statistics, allows one to write the ensemble average in the form 
appearing in expression (12). 

2.2. NEW CO-ORDINATE SYSTEM 

The following change of variables [9] is now made to facilitate further calculations 

vl=t[(rl+r4)-(r2+r3)1, v2 = Z[(r, + r2) - (r3 + dl, 
u, =j(r,+r,+r,+r,)-S, u*=(r,--r4)+(r3-r2). (13) 

Here S(z) is defined as the path of a ray in the absence of random irregularities of 
refractive index, i.e., when p = 0, and satisfies the ray equation 

,,,( z) = Vn,(S( z); z). (14) 

The physical meaning of the new variables is clear if one considers Figure 2. u1 gives the 
position of the centre of mass of the points rl, r2, 3, r r,, on four paths, relative to the 
deterministic ray path S. v, gives the separation between the centre of r,, rj, taken as a 
pair, and r2, r3, also taken as a pair. v2 fulfils the same function for the pairs r,, r2 and 
r3, rd. Finally u2 is a measure of the symmetry of arrangement of the above pairs of points. 
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Figure 2. Illustrating the physical meaning of the variables (13) used to simplify the path integral for the 
fourth moment. 

The four variables v,, vz, II,, uz are functions of z. The first exponent of expression (12) 
then becomes, in terms of the new variables, exp {ik Iz [S’ . ui+ui . u;+v; * vi] dz}. The 
second exponent of expression (12) can be simplified by expanding n, about the ray path 
S(z). It can be assumed that the presence of random irregularities leads to small deviations 
of the paths from the deterministic ray S(z) and so one introduces 

wj=rj-S, j=1,2,3,4. (15) 

The small deviations wj are also shown in Figure 2 and can be expressed in terms of v,, 
v2, u,, u2 by using equation (13). Let wXj, wYj be the projections of wj on the x and Y axes 
and introduce the operator 

v = ( WXj a/ax + WYj d/dy). (16) 
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Then the Taylor expansion of n, in the variables (15) is 

(17) 

If terms up to and including quadratic are retained in equation (17) the second exponent 
of expression (12) becomes exp {ik 52 [Vn, * u2+ulQu~+vIQv~] dz}, where Q is the 
matrix 

Q = [ a:;;;;F.;s 
a2nolax aAs 
a2nolay21S 1 (18) 

The new expressions for the first and second exponents of expression (12) can be 
combined, rearranged, and integrated by parts to give the following expression for the 
fourth moment: 

exp {ik[S’ * u2+v; - v1 +I$ . u$j} 

(v; -vzQ) . v1 dz+ (II;-u2Q) - u1 dz II xexp { - Wu2, vl, v2; z>I d[u,l 4u21 d[v,l d[v21. (19) 

Here 

[D($lz+Vl; Zip Zj)+D($l2-V1; Zip Zj)+D(Vz-$l2; Zi, Zj) 

+D(v~+$I~; zi, zj)-D(v,+v,; zi, zj)-D(v,-v,; zi, zj)] dzi dzj, (20) 

Qj =([ndri, zi) - n,(rj, zj)12> (21) 

is the structure function of the random part of the refractive index. The fact that S obeys 
the ray equation (14) has been used in obtaining equation (19), while the integrals over 
paths are now in terms of the new variables u, v. It should be noted that the variables v1 
and v2 appear symmetrically in all the expressions leading up to equation (19) and so 
could be interchanged without affecting the result. 

In those cases when the autocorrelation function R(r, rj; zi, zj) = (nr(ri, zi)nr(rj, zj)), 
associated with the structure function Dii, exists H can be simplified. If the spatial scale 
of the irregularities L is much smaller than the scale on which either no or p vary in the 
z direction then we can introduce the variables z = f( zi + zj), 5 = zi - zj, and integrate with 
respect to 5. This gives rise to a new correlation function which can be thought of as the 
projection of R on a plane transverse to the direction of propagation, 

and X becomes 

I 
co 

Pij = R(ri, rj; Z, 5) d5, (22) 
--CD 

X= 
I 

=’ H(v,(z), vz(z); z) ds 
0 

~=k=~~~~2~o+~(~~+~~)+~(~~-~,)-~(~u~-v,)-~(~uZ:+v~)-~(v~-~u~)-p(v~+~u~)I. 

(23) 
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3. EVALUATION OF THE PATH INTEGRAL FOR THE FOURTH MOMENT 

3.1. POINT SOURCE 

Using the boundary condition (9) corresponding to a point source situated at S(0) = 
(x0, yo, 0) one finds that 

u,(O) = u*(O) = v,(O) = v2(0) = 0. (24) 

What follows is concerned, not with the general fourth moment at zr but rather with 
quantities involving intensities at two points I,, I,. One sees, from equations (5) and (13 ) 
that this implies that u2( z,) can be set equal to zero in the solution. If one turns to equation 
(19) one sees that u1 in the first exponential is evaluated only at the fixed values it assumes 
at the initial and final points 0, zr and so is not a variable in the path integral d[u,]. This 
path integral involves only the u,[z] in the second exponent of equation (19) which can 
now be carried out to yield the delta functional 6[u,” - uzQ]. The path integral with respect 
to us is then carried out and u2, in view of the delta functional, is given by the solution 
of the equation 

Since u2(zf) is zero, then u2(z), 
so that equation (19) becomes 

m=N, *’ I 

u;=u2Q (25) 

the solution of equation (25), is identically zero for all z 

I { I =/ . exp ik[v;(z) . v,(z)]; -ik (vi 
0 

H(vl, ~2; z) dz 4v,l d[d t-26) 

where 

~=2~2~22[~0-~P(V~)-P(V*)+~P(V2+V,)+tP(V2-V,)l (27) 

since p is an even function of its argument. It is further assumed that p2 can be a slowly 
varying function of z and also that p can depend on z otherwise than through its argument 
v(z). 

3.2. THE APPROXIMATION OF SMALL DEVIATIONS 

Some approximations must be made in order to evaluate expression (26). The path 
integrals with respect to vl, v2 cannot easily be carried out since the presence of v,(z) in 
H(vi, v2, z’) does not permit one to obtain a delta-functional by integrating the second 
term of the exponent of expression (26) with respect to vl. However, progress can be 
made if one assumes that the presence of the random scattering component distorts the 
deterministic rays by very small amounts. This enables one to derive an approximate 
form for v,(z) which can later be used to assist in the evaluation of the required path 
integral expressions. The approximate form of v,(z) is denoted by v,,,(z) and defined to 
be the variable vlo(z) in the absence of random scattering but in the presence of the 
deterministic profile of the refractive index. This corresponds to setting H equal to zero 
in (26). 

In order to determine the form of v,~(z) one can note that since v,(z), v2(z) appear 
symmetrically in all expressions leading to expression (26) one can interchange them to 
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obtain, for H = 0, 

m(V,(Zf); VZ(Zf)) = NJ ik[v;(z) * v2(z)]5, 

-ik 
I 

=‘(V:‘-V,Q) . v2 dz d[v,] d[vJ. 
0 

(28) 

The path integral with respect to v2 can now be carried out to yield a delta-functional, 
as before, and subsequent integration with respect to vr means that it is constrained to 
obey the equation 

v;(z) = v,(z)0 (29) 

with the condition that 

VI(O) = 0, (30) 

and also v,(zj) is the value of v1 in the plane z = zr; i.e., the separation of the two points 

(rl, zf) = (rq, zf), (r2, zf) = (r3, zf), (31) 

at which the intensities I,, 1, are observed. The solution of equation (29) subject to 
condition (30) gives vl(z) in the absence of random scattering: i.e., the required vro(z). 
The physical significance of vro( z) is illustrated in Figure 3. The fourth moment m involves 

Figure 3. Illustrating the small deviation approximation for Y,(Z) given by the geometrical rays. 

four paths from the source point to the two observation points (31) above. These four 
paths are indicated by the broken lines. From its definition (13) and Figure 2 one sees 
that vi(z) is the separation of the mid-points of the two pairs of paths traversed by r,(z), 
r4(z) and r2(z), r3(z). In the absence of the random component of refractive index the 
two ray paths from source to the two observation points are the geometrical rays indicated 
by the heavy lines. They are given by the solutions of the ray equation (14) passing 
through the source and the two observation points. The solution of equation (29) for the 
same conditions gives an approximate expression for the separation of these deterministic 
rays: i.e., vro(z). One can now proceed on the assumption that the presence of refractive 
index irregularities causes the rays to deviate by only small amounts from the deterministic 
paths and so v,(z) can be replaced by vro(z) in the slowly varying term of expression 
(26): i.e., in H. The other exponent of expression (26) is a rapidly varying term, and here 
vi(z) is not replaced by its approximate form. 

3.3. THE FOURIER TRANSFORM OF ??l(V,,V,) 

The path integral expressions discussed above stem from the discrete representation 
expression (10). The path integrals with respect to v,(z) and v2( z) are carried out in slabs, 
transverse to the z axis. A typical slab lying between Zj_1 and zj can be seen in Figure 1. 
In the continuous limit these slabs become infinitesimally thin. Now the path integral 
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with respect to vi(z) in expression (26) cannot be carried out in the last of these slabs 
bordering on zr since here vl(z) has been fixed by the boundary conditions expression 
(31) and is equal to v,(zf). This difficulty is overcome by taking the Fourier transform of 
m with respect to vr(z) at the entrance to this last slab. This integration allows vl(z) to 
take all values in the last slab and frees the end points of the paths in Figure 3 so that 
the d[ v,(z)] path integral can be carried out. If zf-r is the z coordinate at the entrance 
to the last slab then the required Fourier transform is 

WV,)=& 
i 

m(v,(z/); vJz/)) eiu’v~CZ~-~’ dv,(z,_l) 

NO =- 
(2V)2 II 

7 
exp {ik[vi(z) * v,(z)]$} exp 

{I 
- H(v,(z), v,(z); z) dz 

0 I 

1 I 

=r 

xexp -ik [v;(z)-vZ(z)Q-uk-r8(z-zZf_,)]v,(z)dz 
0 I 

x d[v,(z)l 4dz)l dv,(+,). (32) 
One replaces vi(z) in H of expression (32) by vlo(z) for the reasons outlined above. One 
also notes that the presence of the Dirac delta function 6(z - z/-r) in the last exponent 
of expression (32) implies a discontinuity in v;(z) at z,-,. This can be seen more clearly 
from the equation for vZ(z) given below. For this reason the first exponential on the 
right-hand side of expression (32) must be evaluated as 

exp {ik([vXz) . vI(z)l~~~+[vXz) . v,(z)lZp;)I (33) 

where z$L\, zz\ are respectively the values of z immediately before and after zr-, where 
the discontinuity in v;(z) occurs. The quantities v,(z), v2( z), however, remain continuous 
at this point. Keeping this in mind, and using equation (30), one obtains the approximate 
form 

No 
Mo(v, v2) = (2rr)z j j exp {ik[v;(z$1’,) -v;(zr_),)] v,(+l)+ikvXzf) . v,(+)ll 

H(vro(z), v,(s); z) dz 

x exp_ 1 I -ik =‘[v;(z)-vJz)Q-K’S(z-zf-,)I * v,(z) dz 
0 

x d [v,(z)1 4dz)l dv,(z/-,) (34) 

The path integral with respect to d[v,(x)] can now be done in equation (34) since the 
v,~(z) in H is tied to the deterministic rays and does not vary with the path integration. 
This leads to the following delta functional 

s@;(z)-v,(z)Q-uk-%(z-z,_,)) (35) 

which, when the path integral with respect to d[v2(z)] is carried out, gives 

Mo(v, v2) = {Nol(27r)‘] exp {ikv:(zf) * v~(zJ)) 

H(v,o(z), v,(z); z) dz } 
xexp {ik[v;(z>:‘,) -v:(z:f_),)] - v,(zf_,)} dv,(z,_,) (36) 
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with the following equation for vZ(z), 

V;(Z)=v*(Z)Q+Vk-l~(Z-zZf-,). (37) 

The expression (36) is a first approximation to the Fourier transform of the fourth 
moment (26) with vz(z) specified by equation (37) and v&z) defined by equation (29). 
These equations, together with equations (18) and (14), complete the first step in evaluating 
the intensity fluctuation spectrum by path integral methods. 

4. EXPLICIT FORMS OF M,,(v,v,) FOR SPECIFIC CASES 

To illustrate how the formal solution (36) can be applied explicit forms will now be 
found in two specific cases. 

4.1. UNIFORM REFRACTIVE INDEX PROFILE 

The first case is that of a randomly inhomogeneous medium in which no, the mean 
refractive index is constant in both space and time. The source is constant in both space 
and time. The source is situated at the co-ordinate origin while the observing points are 
at (ix+ 0, zr), ( -ixfi 0, zf). The deterministic ray path to the first point is, from equation 
(14) 

S(z) = XfZ/2Zf. (38) 

Now Q, in equation (18), is zero since no is a constant, so equation (29) becomes v;‘(z) = 0, 
and vIo(z), which is its solution with initial condition from equation (30) is 

v,o(z) =v,(zf)z/zf. (39) 

Similarly 

V;(Z)=Vk-lS(Z-zZf-l), (40) 

which has the solution 

v2( z) = AZ + B (O< zs z$T’,), (414 

vZ(z)=Cz+D (zK’1 c z s Zf). (4lb) 

One sees from expression (40) that there is a discontinuity of magnitude vk-’ in v;(z) 
at z = z~_~, as mentioned above. Matching v2( z) in the plane z = zr-, and using the boundary 
condtiion at z = zf we obtain 

~~(z)=(C-uk-~)(z-z~_,)-C(z~-z~_~)+v~(z~) (O<zszpJ, (424 

vz(z)=c(z--f)+b(zf) <z:+_: s z =s Zf). (42b) 

We determine C by setting H = 0 in (36) and carrying out the integral, remembering that 
the discontinuity in v; is equal to vk-‘. When the inverse Fourier transform is applied 
to the result we have an expression for m(vI( zf); v2( z,)) in the absence of random scatter. 
This can then be compared with the corresponding expression that follows directly from 
expressions (4), (9) and (13), 

to give 

m(vl(z); vZ(z)) = (47r~)-~exp {ikv,(z) * v*(z)/z} 

No = (4VzJ-4 

C=v*(z/)/zf. (43) 
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Using expressions (42a), (43) in (36) and letting zr_r approach zr one obtains, denoting 
v,( z, _,) by 5 in this limit, 

M,(v, v2) = {1/(4~z)%1/(2#} exp Wvz(z,) . vl(zf)/4 

x~_~w{ -5:’ H(~z/z,,v2(z,)z/zf-vk-‘(z-z,); z) dz 
1 

x exp{ - iv - 5) d& (44) 

The calculation of the fundamental approximation in the case of a medium with a uniform 
mean refractive index is now complete. The corresponding expression for m,(v,( zr), v2( z,)) 
is obtained by taking the Fourier transform of expression (44). To compare the result 
with expressions for m,,(v,(z,), vZ(zf)) derived by other methods it is convenient to 
introduce the new variable 

v’ = v - kv,( Zf)/ zp 

Noting that H is a symmetric function of each of its first two arguments one finally obtains 

~Av,(z,)v,(z~)) = {1/(4~z)%1/(2#} [ 1 exp 

{ I =/ - H(~z/z,,~~(z)+u'k-'(z,-z); z) dz 
0 I 

x exp { -i[kv,(z,) . ~/z~+v’(S+~~(z~))l) dS dv’. (45) 

In this form expression (45) agrees with the results of Uscinski et al. [IO] and Macaskill 

r111. 

4.2. LINEAR REFRACTIVE INDEX PROFILE 

The second case is a medium in which the mean component no is a linear function of 
the co-ordinate transverse to the direction of propagation. Take 

n,=a,+ax. (46) 

The ray path in this case is 

S(z’)=az2/2+(xf/zf-aq/2)z (47) 

with the observer situated at the point (xf, 0, zf) on the ray. Now Q is zero in the case of 
the linear profile expression (46) and so the equations for v*(z) and vro(z) remain the 
same as in the case of the uniform profile just considered. The solution for M,(u, v2(zf)) 
is thus the same as for the uniform profile and is given by expression (45). 

These results show that within the framework of the present approximation the profile 
n, must be at least a quadratic function to give a non-zero Q and affect the form of 
Mo(u, vz(zf)) directly. The fourth moment for a linear profile would differ from that for 
a uniform profile if it were to be calculated for a non-zero value of u2. 

4.3. INTENSITY FLUCTUATIONS 

One is now in a position to calculate the intensity correlation (6). It is, from expressions 
(4) and (5) P 

pr(rf) = 
J 

Mo(u, 0) e-‘““1 du, (48) 
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where M,,(v, 0) is given by expression (45) in the cases being considered. The normalized 
variance S: is, from expressions (6), (7) and (45) 

S: = QO(v) dv - 1, (49) 

Q+,(y) = (1,(2~)2) I_:, exp { - I,:’ H(gz,zf, vk-‘(z/-z); z) dz} e-i”E dg. (50) 

4.4. AN IMPROVED ESTIMATE 

A more accurate evaluation of the fourth moment can be obtained by estimating the 
difference between m(v,, v2) and its fundamental approximation m,,(v,, vl). The Fourier 
transform of this estimate M,(v, vZ), from Appendix A, is 

Ml(V v2) = MT(u, d - JK.(v, 4, (51) 

Ml(V v2) = W0N0/(2~)*1 exp{-ik[~~v2(zr)z~1+vk~‘~~-qk-1~~2(~~)]} 

xJ:ew{ -J: H[(&+qk-l(zf-s))z/zf,v&r)+(z~-z)vk-l; zldz 
I 

=‘H[(~+qk-‘(z,-s))z/zf-(z-s)qk-‘,vz(zJ 
s 

+uk-‘(zf--z); z] dz 
I 

x F(q){l-cos [(&+qk-‘(zf-s)) *qs/z]}ds dqd& (52) 

and 

exp { -ik[g * v,(z,)z;‘+vk-’ exp WMZ.) 

+vk-‘[z,-s]) * qk-‘} 

=‘H[&z/z,,v,(z,)+uk-*(z,-z); z]dz F(q) 

{I- ~0s It * w/ zrl) ds dq d5, (53) 

Co = 2k2p2, F(q) = {1/(27r)*} p(v) eiq’” dv, (54) 

where p(v) is defined by equation (22). The results equations (52) and (53) apply to the 
case of a point source and a linear profile so No in this case is (4~z)-~. 

4.5. PLANE WAVE INCIDENT ON A HALF SPACE 

This section is concluded with the results for MO and M, in the case when a plane 
wave is incident on a half-space containing the irregular medium. A uniform refractive 
index profile is assumed. The method of derivation closely follows that of the point source 
and so details are not given here. For the plane wave case 

Mo(v v*(z,)) = (27T)2 ‘J Jw{-JT H[&v,(z,)+vk-‘(zf--z);z]dz exp{-iv.g}dc, 
1 

(55) 
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CO 
M,(v, v*(z)) = (2T)2 [IS r exp -i[u- 5-4-v2(zf)l I 

H[g+qk-‘(zf-s),v,(z,)+vk-r(zj-z); z]dz 

H[&+qk-‘(zf-z),vz(zf)+Vk-‘(z,-z); z] dz 
I 

exp{-i[v.&-q.v,(z/)-v. km’q(zf--s)]} 

xexp - 
r I 

=‘H[&,v,(z,)+vk-‘(z/-z); z]dz 
0 

x F(q)[ 1 - cos (q * g)] ds dq dg 1 . (56) 
5. EVALUATION OF FLUCTUATION SPECTRA AND DISCUSSION OF RESULTS 

It is important that the theoretical expressions should be capable of being evaluated 
numerically. Evaluations are presented in this section for two irregular media of practical 
interest. For the sake of simplicity the case of a half space on which a plane wave is 
incident is considered, with only one transverse dimension in the x direction. However, 
the basic methods of evaluation are the same in other cases and the results illustrate well 
the basic properties of the intensity fluctuation spectra. 

5.1. MEDIUM WITH A SINGLE SCALE SIZE 

The medium irregularities have the transverse spatial autocorrelation function 

p(x) = exp { - x2/ L2} (57) 

where L is the outer scale of the irregularities. From equation (54) the spectrum corre- 
sponding to equation (57) is 

F(q) = ( L2/2Jrr) exp { - q2 L2/4}. 

5.2. MEDIUM WITH A POWER LAW SPECTRUM 

Here the irregularities have the transverse autocorrelation function 

P(X) = (1-f IA/L) exp {-M/L]. 

The spectrum corresponding to equation (59) is 

F(q)=2/7r(l+q2L2)2. 

5.3. THE FUNDAMENTAL SPECTRUM 

The following scaled variables are now introduced: 

5 = 5XL_‘, v, = ?&L-l 7 v = v,L, q = qxL, Z = z/ kL2. 

the fundamental spectrum Mo( v) equation (55) then becomes 

(58) 

(59) 

(60) 

(61) 

(62) 
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Here the parameter r arises naturally out of the scaling, 

l- = k3p2p,L2, (63) 

and can be used to distinguish different scattering regimes, and 

g(x,y)=f(x)+f(y)-~(x+y)-~(x-Y), f=PlPo. (64365) 

The improved estimate M,( V, 0) equation (56) can be rearranged in a straightforward 
manner and when written in terms of the new variables, equation (61), takes the form 

x[exp 2r { J 6M5+q[~-sl, vt)-AS, vt)ldt 

x exp { - iv( .$ - qs)} dq dt ds. (66) 

Numerical evaluation of the fundamental expression (62) for M,(v, 0) presents no 
difficulty. The improved estimate M,( V, 0), however, is a triple integral and it is advisable 
that at least one of these be evaluated analytically. In Appendix B it is shown that in the 
case when f(e) can be represented as a Taylor series it is possible to expand the g 
functions in the exponents of M,(V) equation (66) in small powers of .$ and q and carry 
out the 5 integral to give 

j$=r J -5 

J UG - K2) ds, 
n 0 

(67) 

where 

I 

co 
K1 = [exp ( - Y*/~(Y)/JcY] F(q)exp{-q2(y-P2/a)+iVq(S+PIa)1 

-03 

x[1-t{exp(-[q2(1+4i~)-2vq]/4~)+exp(-[q2(1-4iP)-2vq]/4a)}]dq 

(68) 

K2= [exp (- v2/4a)/J~] Irn F(q) exp {ivqs} 

[I-i{exp(-[q’-2vql/4n)+exp(-[q2+2qvl/4a)jldq. (69) 

In expressions (68) and (69) 

a = rzJ -f”(O) +f”( V.zf)/ VZ,], 

~=rv-2[l+~(0)(vS)2-f(vS)], 

r=Tv-3[-ffn(o)(~s)3-2vs+29(vs)], S( us) = J o”s f(p) dp. (70) 

In general the q integrals in expressions (68) and (69) cannot be evaluated analytically 
but this can be done numerically without trouble. The remaining integral with respect to 
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s in expression (67) presents no difficulty since the limits are finite and the integrand is 
slowly varying. 

5.3. SPECTRA OF INTENSITY FLUCTUATIONS 

The spatial frequency spectra of the intensity fluctuations are shown in Figures 4 and 
5 for the two media described above at different distances in the scattering medium. These 
distances are given as fractions of the distance at which S:, the normalized variance of 
the fluctuations, is a maximum, zrO. The spectra are shown as the sum of the fundamental 
and the refined estimate. The fundamental is shown by the broken line and the sum by 
the full line. The spectra for the medium with the single scale size are shown in Figure 
4 and those for the medium with the power law spectrum appear in Figure 5. 

It is clear from the figures that the fundamental gives quite an accurate representation 
of the spectrum. The maximum discrepancy with the refined estimate occurs when the 

0) (bl 

I I 

1.0 10 
Y 

Figure 4. The spatial spectra of intensity fluctuations for the medium with the autocorrelation function (57) 
and r = 1000 for different distances of propagation z /z I ,,, = (a) 0.05, (b) 0.1 and (c) 0.2. The broken line gives 
the contribution due to the fundamental while the full line gives the refined estimate. 
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1-o 10 
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Figure 5. The spatial spectra of intensity fluctuations for the medium with the autocorrelation function (59) 
and r = 1000 for different distances of propagation z f /z ,0 = (a) 0.05, (b) 0.1 and (c) 0.2. The broken line gives 
the contribution due to the fundamental while the full line gives the refined estimate. 

scintillation index is a maximum, i.e., z,/ zro = 1, and is at most of the order of 18% at 
the peak of the spectrum and much less elsewhere. Thus if high accuracy is not required 
the fundamental form provides a simple and quick means of investigating how the different 
autocorrelation functions of medium irregularities affect the form of the intensity fluctu- 
ation spectra. 

Finally, the variance of the intensity fluctuations S: obtained by integrating the spectrum 
over all spatial frequencies is given in Figure 6 as a function of the scaled distance z for 
the case of the medium with autocorrelation function expression (57) when r = 1000. 
The maximum discrepancy between the fundamental and the improved estimate is of the 
order of 15% near the variance peak. The variance obtained by computer simulations of 
propagation in a randomly irregular medium with the Gaussian autocorrelation function 
expression (57) by Macaskill and Ewart [12] are also shown in Figure 6. 
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Z 
Figure 6. The variance of intensity fluctuations as a function of zr for r = 1000 in a medium with autocorrela- 

tion function (57). The broken line gives the fundamental approximation and the full curve includes the extra 
contribution leading to the refined estimate. The points and error bars are the results of numerical simulations 
of the corresponding scattering experiment [12]. 

5.4. RELATIONSHIP TO THE RESULTS OF OTHER AUTHORS 

The fluctuation spectra and variances obtained in the present paper are valid for all 
values of r and at all ranges z in a multiply scattering medium. The spectra obtained by 
some other authors (Zavorotnyi et al. [6], Dashen [8]) are valid in the limit for large 
distances of propagation when the variance S: approaches its limiting value of unity. 
They can be obtained as limiting cases of the expressions derived in the present paper. 
To illustrate this one can consider M,( u, 0), equation (66), in the case of large z when 
g(& VZ), equation (64), becomes simply f(t). Th e result then obtained for the spectrum 
Q,(V) in this limit is, 

F(q){1 --OS Eq(5+ 4s)ll 

-exp{-2r[l-f(.$+qs)]} ee’““d[dqds. 
I 

(71) 

If this expression and the large range form of the fundamental term expression (62) are 
combined, 

@(~)“@o(~)+@1(~), (72) 

then the resulting expression for Q(V) corresponds to that obtained by Zavorotnyi et al. 
[6] when u2 = 0. In spectral form it is 

@(~)=(1/27r) exp{-2rZ,[1-p(~)]}e-i”5d~+(T/~) I F(q) 

x exp Z,-(Zf-s)f(t+qs)- *f({+qZ)dZ eeiYt dr dq ds. 

(73) 
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Integration of expression (73) with respect to v gives the variance St, the first term of 
which is the saturation value of unity, while the second gives the way in which this 
asymptotic value is approached at large range. 

Exactly the same procedure can be applied in the case of a point source starting from 
expressions (50), (52) and (53). The asymptotic large range form resulting is identical 
with that obtained by Dashen [8]. 

ACKNOWLEDGMENT 

This work has been carried out with the support of the Ministry of Defence (Procurement 
Executive). 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

li). 

11. 

12. 

REFERENCES 

R. P. FEYNMAN and A. R. HIBBS 1965 Quanfum Mechanics and Path Integrals. New York: 
McGraw-Hill. 
G. EICHMANN 1971 Journal of the Optical Society of America 61, 161-168. Quasi-geometric 
optics of media with inhomogeneous index of refraction. 
K. FURUTW 1972 Journal of the Optical Society of America 62, 240-254. Statistical theory of 
wave propagation in a random medium and the irradiance distribution function. 
J. H. HANNAY 1976 Cambridge University Hamilton Prize Dissertation. 
M. EVE 1976 Proceedings of the Royal Society A347, 405-417. The use of path integrals in 
guided wave theory. 
V. U. ZAVOROTNYI, V. I. KLYATSKIN and V. I. TATARSKI 1977 Zh. Eksp. Teor. Hz. 73, 
481-497. Strong intensity fluctuations of electromagnetic waves in randomly inhomogeneous 
media. 
V. U. ZAVOROTNYI 1978 Zh. Eksp. Teor. Fiz. 75, 56-65. Strong fluctuations of electromagnetic 
waves in a random medium with a finite longitudinal correlation radius of inhomogeneities. 
R. DASHEN 1979 Journal of Mathematics and Physics 20, 894-920. Path integrals for waves in 
random media. 
V. I. TATARSKI 1971 NTIS, U.S. Department of Commerce, Springfield, n-68-50464. The effects 
of a turbulent atmosphere on wave propagation. 
B. J. USCINSKI, C. MACASKILL and T. E. EWART 1983 Journal of he Acoustical Society of 
America 74, 1474-1483. Intensity fluctuations. Part I: Theory. 
C. MACASKILL 1983 Proceedings of the Royal Society A386, 461-474. An improved solution 
to the fourth moment equation for intensity fluctuations. 
C. MACASKILL and T. E. EWART 1984 Journal of Applied Mathematics 33, 1. 

APPENDIX A 

An estimate of ml, the difference between m and its fundamental approximation mo, 
is now made. Let 

m,(v,, vZ) = m(v,, 4 - mo(vl, ~2) (Al) 

and so 

W(v, v*) = WY 4 - Mo(v, vz). W) 

To make an estimate of M1 one can first note that since equation (26) is symmetric in 
vl, v2 they can be reversed without changing the value of m(vl, vZ). When this is done 
and the Fourier transform of the resulting expression taken one has 

M(v,v,)=N,S-..lexp{ik[v:(z,).v,(z~)-I:I(v~-v~~).v*dz 

H(v,, ~2; z) dz 4-v,! d[vzl dv,(z,). (A3) 
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Now MO can be given the formal representation 

M,(v,v,)=N,~...lexp{ik[vj(z,).v,(l,) 

- I “(v;-v,Q) .v,dz+uk-’ .v,(zr)] 
0 I 

d[v,l d[vzl dv,(z, 1, 
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iA4) 

where vZo(z) is the value of VJZ) obtained when evaluating the zeroth approximation. 
For example in the case of the uniform and linear profiles it is, from equations (47) and 
(50), 

~~~(z)=~k-~(z~-zZ)+v~(z,L (A5) 

The validity of expression (A4) can be verified by carrying out the path integral with 
respect to vz and then solving the resulting equation for v,(z). Using equations (A3) and 
(A4) in equation (AZ!) and expanding the exponential terms involving h one obtains, on 
retaining only the first term in the expansion, 

M,(v, vz) =N,I..-lexp(ik[v;(r,).v,(q)-~~[v~-v,9).r,dz 

+vk-’ 
I [I 

‘f 
. vl(zf)l exp - ff(v,, ~20; z) dz z’ {H[v,(s), vzo(s): 51 

0 II 0 

-WV,(~), v,(s); ~11 ds d[v,ld[vJ dv,b,I. (A6) 

Now the two final quantities H can be written as sums of the correlation function of the 
medium p, and when the spectral representation 

F(q) = [1/(27r)2] 
I 

p(v) exp (iq. v) dv. 

is introduced one has 

M,= Ma-M,, 

Ma(v) v2) = 2k2,u2No exp {ik[v;(+) . v2(zf) +vk -’ . vl(z, 11) 

(‘47) 

(A8) 

xj:exp{ -ik[: [v:‘-v,Q+qk-‘6(z-s)] .v2(z) dz 

x F(qNl -cm (VI(S) . dl ds dq d[v,l dCv21 dv,(q) (A9) 

M,,(w, v2) = 2k2p2No 
I I 

. . . exp {ik[v;(z,) . v2(zf)+vkm’ . vl(zf)]} 

xexp - 
1 I 

” WV,(~), v,,(z); ~1 dz 
0 

x-~(cl)[l --OS (v,(s) * 41 ds dq d[v,l d[vzl h(q). (AlO) 
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The path integrals with respect to v2 and vi can now be carried out in both M, and Mb to 
give v,. The procedure is similar to that employed in section 4 of the paper. In M,, vl(z’) 
is evaluated for two regions of z’ because of the discontinuity in the equation for vi(z) 
introduced by the delta-function. The boundary conditions used are that vi( z) is continuous 
at z = S, is equal to zero at z = 0, and must reduce to the form in the zeroth approximation 
when s = zF Also the discontinuity in the first derivative of v,( z) at z = s is equal to -q/k. 
This gives finally for vi(z) in Ma 

VI(Z) = b&)+qk-‘(z,- s)lz/z/ (OSZSS) 
v,(z)=[v,(z,)+qk-‘(z,-s)]z/zf-(z-s)qk-’ (SGZ=SZf) (All) 

while in Mb 

h(Z) =v,(zf)zlzr. 6412) 

Use of these results in equations (A9) and (AlO) leads to equations (52) and (53). 

APPENDIX B 

The exponential terms in expression (66) are combined and it is noted that, since TZ 
is assumed to be large, the first of the resulting exponential terms, 

[1-g(5+4b-sl, vy)+ I:’ [l-d& v)l) dy, 031) 

is negligible except for values of g close to unity. Inspection of the form of g equation 
(64) shows that this occurs for small values of the first of the arguments of g. 

The main contribution to I, is thus obtained by expanding the functions g in equation 
(Bl) in Taylor series in the first of their arguments and then carrying out the integrals 
with respect to y. This leads eventually to 

Ii = exp { - (at’+ 2P5q + yq2)), 032) 

where the coefficients (Y, p, y are given by equations (70). The same procedure can be 
followed with the second of the exponential terms to give 

Iz = exp { - a[*}, (B3) 

so that equation (66) becomes 

F(q) sin’ (q[/2)[1, - I,] e-i”‘s-ss) dt dq ds. (B4) 

The integrals with respect to 5 are of standard form and can easily be carried out to 
yield the results in expressions (68) and (69). 


