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PATH INTEGRALS FOR WAVE INTENSITY FLUCTUATIONS
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Approximate expressions for the fourth order moment of a wave propagating in a
random medium are derived by using the path integral formulation. These solutions allow
the spectrum of intensity fluctuations of a multiply scattered wave to be found, and they
are valid at all distances in the medium. The results obtained by path integral methods
turn out to be the same as those obtained previously by solving the parabolic partial
differential equation for the fourth moment. The spatial frequency spectra of intensity
fluctuations are evaluated for a medium in which the irregularities have a single scale and
also for one in which there is a range of scale sizes.

1. INTRODUCTION

In recent years there has been an increasing interest in the use of functional integration
and Feynman path integral methods to treat problems in various branches of physics.
The method was first developed by Wiener in 1922 for the study of Brownian motion
and above all by Feynman and Hibbs [1] in quantum mechanics and electrodynamics.
Functional integration and path integrals are now among the methods used to treat the
problem of propagation in irregular media. The application to electromagnetic wave
propagation seems to have been first suggested by Eichmann [2] and was used by Furutsu
[3] to find the irradiance distribution function in an extended random medium. Hannay
[4] gave a treatment of the path integral method as applied to random media, while Eve
[5] used path integral techniques to study light propagation in irregular optical fibres.
Zavorotnyi et al. [6], Zavorotnyi [7] and Dashen [8] have used path integral techniques
to discuss the propagation of waves in an irregular medium.

An advantage of path integral methods in treating problems of propagation in random
media is that they often give valuable physical insight and act as a supplement to the
more conventional methods. Path integrals, however, can prove difficult to evaluate, and
in some cases considerable insight is required to decide which constraints may be applied
to the random paths to produce a meaningful answer.

When treating the propagation of a wave field in a random medium the quantities most
frequently studied are ensemble average moments of the random field. The first moment
gives the mean field, sometimes caiied the “coherent” or unscattered part of the wave
field. The second moment, or product of the field with its complex conjugate at another
point in the medium gives the spatial correlation of complex amplitude, and this is
frequently used in coherence experiments. The fourth moment yields the square of the
wave intensity and is thus used to describe intensity fluctuations due to scattering by
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giving the time-space spectrum and the variance of the fluctuations. Because many
measuring instruments are based on square-law detection the fourth moment is of great
interest in the theory of random wave propagation and has important implications in
practical engineering. The wave field moment have been much studied by using the partial
differential equations describing them. Solutions for the fourth moment have been
found by this traditional method. However, the increasing interest in functional integration
and path integral methods prompts one to ask whether or not this approach can yield
new information about the wave moments.

The appropriate path integrals for the first and second moments can be evaluated
without too much difficulty. However, the path integral expression for the fourth moment
has proved difficult to treat except in the limiting cases where the intensity fluctuations
are small, or where the wave has propagated to such large distances that the statistics of
the scattered field are approaching the Gaussian limit. Zavorotnyi et al. [6}, Zavorotnyi
[7] and Dashen [8] have used path integral methods to derive an expression for the fourth
moment of the wave field as this large distance limit is approached.

In the present paper it is shown how the path integral expression for the fourth moment
of the field propagating in a random medium can be evaluated for any distance of
propagation in the medium. The results are found explicitly in some particular cases and
are shown to agree with similar results obtained by quite different methods. The discussion
is conducted with reference to an acoustic wave, since the propagation of sound in a
randomly varying ocean poses important problems in the theory of intensity fluctuations.
However, the results are applicable to electromagnetic propagaton also.

2. PATH INTEGRAL FOR THE FOURTH MOMENT OF THE WAVE FIELD

Let x, y, z be a Cartesian set of axes in a space filled with medium whose acoustic
refractive index

"=1+"b=1+no(X,)’,Z)+F'~"1(x’y,2, t) (1)

contains weak random irregularities with a spatial scale L. Here 1+ n, is the ensemble
average value of n, and ny(x, y, z) is assumed to vary smoothly on a scale that is large
compared with L. Thus ne(x, y, z) constitutes the mean refractive index profile of the
medium. The small scale irregularities are characterized by n,, a randomly varying quantity
with a mean value zero and standard deviation unity, while u, the rms value of the random
fluctuations, is assumed to be very small. Let a monochromatic wave of radian frequency
w be emitted from a source at x,, y, in the plane z =0. The wavelength corresponding
to this frequency is A(k=2w/A) when n=1. If

p(x, 5, 2z t)=Re{A(x, y, z, t) exp [ i(kz — wt)]} (2)

is the pressure field at (x, y, z, t) in the medium then A is the complex amplitude of the
field associated with p but without the rapidly varying harmonic dependence on z and
t. The residual time dependence of A is due to the time variations of refractive index,
which are assumed to be very slow compared with »~'.

The instantaneous intensity of the acoustic wave in the medium varies rapidly like
exp {i(kz — wt)} with a slowly varying envelope 1. From equation (2) this envelope intensity

18

L= A(x;, yi, 2, ) AX(Xs, Ys, 25 1), (3)
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In investigations of intensity fluctuations the fourth moment of A at some distance z in
the medium is used:

m= <A(xla Y, 2, tl)A*(x2’ Y2, 2, t2)A(x3’ Y3, 2, t3)A*(x4, Ya, Z, t4)> (4)
When

(X4, Ya, Z, t4) = (xl’ Y15 2, tl), (X3, Y3, 2, t3) = (x2) Y2, Z, t2)’ (5)

the fourth moment (4) reduces to (I, ), the space-time correlation of the intensity. Further,
when points 1 and 2 coincide the fourth moment reduces to (I°), the variance of the
intensity fluctuations.

The importance of calculating the fourth moment (4) is thus clear, since it allows one
to evaluate not only the intensity correlation

pr ={L1 (6)
but also the other quantity most frequency used in this area, the normalized variance
1= =(DH/TY, (7

sometimes referred to as the scintillation index.

2.1. PATH INTEGRALS

The fourth moment (4) can be evaluated as follows by using path integral methods. It
is assumed here that the scale size of the irregularities L is large compared with the
wavelength of the wave A: i.e., kL » 1 so that the angles of scatter are very small. In this
case the propagation of A is well described by the parabolic wave equation

BA(X, y, 2, 1)/ 3z = (1/2k)(0* A/ ax* + 3° A/0y*) + iknyA, (8)
with the boundary condition
Ao=(4mz) " exp {ik[(x — x0)*+ (¥ — ¥0)*1/ 22}, (9)

corresponding to a point source at (X, yo, 0). Feynman and Hibbs [1] showed that the
solution of equation (8) with the boundary condition (9) is given by the limit of the
multi-dimensional integral

i [® ikl \' ikz L [P fr;—r,\°
A t)=lm— —_ = — _Jﬁf__l)
(r, z,2) =lim > L,o J(m) exP{ I jg,[z( z
+ ny(r;, 25 t)]} dry---dr;---dr_,. (10)

Here r; is the vector from the z axis to the point (x;, y;) in the z; plane. The points (r;, z;)
lie on a path from the source to the observer and expression (10) can be represented as
an integral over paths. In the limit as I approaches infinity expression (10) becomes

A(r, 25 1) =2ij . I exp {ik sz B (d—;(—zzl) +n(e(z), z, t)] dz} d(paths), (11)

where the integration is now over all paths connecting (r,, 0) and (r, z). In what follows
the time dependence will be suppressed. The physical meaning underlying expressions
(10) and (11) becomes clear when one considers Figure 1 in which one of the paths is
shown. The position vector of the path r(z) follows an irregular trajectory from (r(0), 0)
to the observation point (r(z), z;). On traversing this path a point on a wave front
experiences a phase shift, relative to the phase reference e'**, that is due to two causes.
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Figure 1. Illustrating a typical path and the co-ordinates used in writing out the path integral (10) and (11).

The first is the extra geometrical distance covered because of curvature of the path. This
is expressed by the first term under the integral sign in the exponent of (11). The second
is due to the varying value of the refractive index n over the path and this is taken into
account by the other term in the exponent of expression (11). Only one such path is
illustrated in Figure 1. The actual value of A observed at (r(z), z;) is the result of the
field traversing all possible paths between source and observer. This is allowed for by
adding together the A’s resulting from all possible irregular paths between source and
observer, each of which would be a different irregular trajectory in Figure 1. This is the
meaning of the integral over paths, d(paths).

Note that expression (11) is the limit of the discrete form (10) in which the medium
is divided into layers of thickness z;—z_,. This fact will be used when defining the
meaning of a delta function introduced later in the paper. Finally, although the above
discussion has been for a point source situated at (r(0), 0) the case of a plane wave can
easily be dealt with as well since this is equivalent to point sources of equal intensity
situated uniformly over all elements of the z=0 plane. Thus the plane wave result can
be obtained from the point source case by appropriate integration. Similarly, the case of
an extended source can be treated since it is a set of point sources with a spatial distribution
of intensities in the z =0 plane.

The required expression for the fourth moment (4) is now written down by using
expression (11):

(E(ry, Zf)E*(l'z, Zf)E(l's, Zf)E*(l"z, Zf)) = m(r, Zf)

=N, J e j exp {%c rl [(r1)* dz, = (ry)? dz+ (r5)* dz5 — (rl)? dz4]}

0

Zr
X exp {ik J. [no(ry, 2)) dzy — ng(ry, 25) dzy+ ng(rs, z3) dz3 — no(rs, z4) d24]}

K2u? z, 2
X exp { - 2” <<J' ny(ry, 2;) dzy— ny(ry, 25) dz; + n,(r3, 23) dzz — n,(rs, 24) dz.,,)
0

xd[r,] d[r,] d[r;] d[r,]. (12)

The prime is used to denote differentiation with respect to the argument: e.g., r; = r;(z),
and rj=dr;(z)/dz.

Here the four-fold integral over paths has been written formally by using the notation
d[r,] d[r,] d[r;] d[r,]. The normalizing factor N, arises because of the inclusion of
(ikl/2mz) from expression (10) in the element in path space when passing to the continuous
representation (11). The manner in which N, is evaluated is best explained in terms of
a concrete example later in the paper.
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Clearly, the ensemble average affects only the randomly varying components which
have been gathered together in the last exponential of expression (12). The fact that the
magnitude of these random components is very small compared with unity, or alternatively
that they obey Gaussian statistics, allows one to write the ensemble average in the form
appearing in expression (12).

2.2. NEW CO-ORDINATE SYSTEM
The following change of variables [9] is now made to facilitate further calculations

v =%[(r1 +1,) —(r,+15)], Y2 =%[(r1 +r,) = (rstry)],
u,=%(r1+r2+r3+r4)—s, u,=(r,—r,) +(r;—r,). (13)

Here S(z) is defined as the path of a ray in the absence of random trregularities of
refractive index, i.e., when u =0, and satisfies the ray equation

S"(z) =Vny(S(z); z). (14)

The physical meaning of the new variables is clear if one considers Figure 2. u, gives the
position of the centre of mass of the points ry, r,, 3, T4, on four paths, relative to the
deterministic ray path S. v, gives the separation between the centre of r, ry, taken as a
pair, and r,, r;, also taken as a pair. v, fulfils the same function for the pairs r,, r, and
r;, .. Finally u, is a measure of the symmetry of arrangement of the above pairs of points.
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Figure 2. Illustrating the physical meaning of the variables (13) used to simplify the path integral for the
fourth moment.

The four variables v,, v,, u,;, u, are functions of z. The first exponent of expression (12)
then becomes, in terms of the new variables, exp {ik j;’ [S'-ub+uj-uj+v]-vi]dz}. The
second exponent of expression (12) can be simplified by expanding n, about the ray path
S(z). It can be assumed that the presence of random irregularities leads to small deviations
of the paths from the deterministic ray S(z) and so one introduces

w=r,-S, j=1,234 (15)

er

The small deviations w; are also shown in Figure 2 and can be expressed in terms of v,,
v,, U;, u, by using equation (13). Let w,;, w,; be the projections of w; on the x and y axes
and introduce the operator

V= (w, 3/dx+ wy,; d/dy). (16)
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Then the Taylor expansion of nq in the variables (15) is
no(r z) = nols+Vno|s+3Vnys. (17)

If terms up to and including quadratic are retained in equation (17) the second exponent
of expression (12) becomes exp {ik ¥ [Vn, - w,+u,Qui +v,Qv)]dz}, where Q is the
matrix

Q=[ 8°ny/ax|s  8°ng/ox 3}"5]

(18)
Fno/ax ayls 3 no/dy’ls

The new expressions for the first and second exponents of expression (12) can be
combined, rearranged, and integrated by parts to give the following expression for the
fourth moment:

m=N0J cee J exp {ik[S' - uy+v5 - v;+ub - u,}y}

X exp { —ik[J‘2[ (v5-v,Q) ' v, dz+J‘2f (v —u,Q) - u, dz]}

X exp { — #(uy, vy, v2; 2)} d[u,] d[u,] d[v,] d[v,]. (19)

Here

k2M2 z 2z \ ) )
* = ) o Jo [DGu,+v;; z,, zj)+ DGu,—vy; z, Zj)+ D(v,—3u,; z, Zj)

+ D("z"’%“z? Zj Zj) = D(v,+vy; z, Zj) —D(v;—vy; 2, z)] dz; dzj, (20)

D;= {[ny(r; z;) - nl(l'j, Zj)]z) (21)

is the structure function of the random part of the refractive index. The fact that S obeys
the ray equation (14) has been used in obtaining equation (19), while the integrals over
paths are now in terms of the new variables u, v. It should be noted that the variables v,
and v, appear symmetrically in all the expressions leading up to equation (19) and so
could be interchanged without affecting the result.

In those cases when the autocorrelation function R(r, r;; z;, z;) =(n(r; z;)ni(r;, z;)),
associated with the structure function Dj, exists H can be simplified. If the spatial scale
of the irregularities L is much smaller than the scale on which either n, or u vary in the
z direction then we can introduce the variables z =3(z; + z;), { = z; — z;, and integrate with
respect to {. This gives rise to a new correlation function which can be thought of as the
projection of R on a plane transverse to the direction of propagation,

Pij = J R(ri’ rj; Z, g) dg; (22)

and # becomes
%: J‘ ’ H(vl(z), V2(Z); Z) dz,
0
H =K1’ [2po+ p(v2+v)) + p(v,= V) — p(Gur —v,) — p(Guy +v,) — p(v, —3uy) — p(v, +3u,) .
(23)
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3. EVALUATION OF THE PATH INTEGRAL FOR THE FOURTH MOMENT
3.1. POINT SOURCE

Using the boundary condition (9) corresponding to a point source situated at S(0) =
(X0, Yo, 0) one finds that

u,;{0) =u,(0) =v,(0) =v,(0) =0. (24)

What follows is concerned, not with the general fourth moment at z; but rather with
quantities involving intensities at two points I;, I,. One sees, from equations (5) and (13)
that this implies that u,(z,) can be set equal to zero in the solution. If one turns to equation
(19) one sees that u, in the first exponential is evaluated only at the fixed values it assumes
at the initial and final points 0, z; and so is not a variable in the path integral d[u,]. This
path integral involves only the u,[z] in the second exponent of equation (19) which can
now be carried out to yield the delta functional 8[u3 —u,Q]. The path integral with respect
to u, is then carried out and u,, in view of the delta functional, is given by the solution
of the equation

u; =u,Q (25)

Since u,(z,) is zero, then u,(z), the solution of equation (25), is identically zero for all z
so that equation (19) becomes

m= NO'[ o '[ exp {ik[vg(z) “vy(2)]g —ik J’Z/ (v§

-v,Q) v, dz]} exp { — JZf H(vy, vy, z) dz} d[v,}d[v,]. (26)

0

where
H= 2k2/~“2[P0”P(V1) = p(v2) +%P(V2+V1) +%P(V2 -v)] (27)

since p is an even function of its argument. It is further assumed that u”> can be a slowly
varying function of z and also that p can depend on z otherwise than through its argument

v(z).

3.2. THE APPROXIMATION OF SMALL DEVIATIONS

Some approximations must be made in order to evaluate expression (26). The path
integrals with respect to v,, v, cannot easily be carried out since the presence of v,(z) in
H(v,,v,, z') does not permit one to obtain a delta-functional by integrating the second
term of the exponent of expression (26) with respect to v;. However, progress can be
made if one assumes that the presence of the random scattering component distorts the
deterministic rays by very small amounts. This enables one to derive an approximate
form for v,(z) which can later be used to assist in the evaluation of the required path
integral expressions. The approximate form of v,(z) is denoted by v,4(z) and defined to
be the variable v,4(z) in the absence of random scattering but in the presence of the
deterministic profile of the refractive index. This corresponds to setting H equal to zero
in (26).

In order to determine the form of v,,(z) one can note that since v,(z), v,(z) appear
symmetrically in all expressions leading to expression (26) one can interchange them to
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obtain, for H=0,
m(vl(zf); Vz(zf)) =Ny J J €Xp {ik[v’l(z) -vy(2)]§

—ik sz V1 —v,Q) -vzdz} d[v,]d[vs]. (28)

The path integral with respect to v, can now be carried out to yield a delta-functional,
as before, and subsequent integration with respect to v, means that it is constrained to
obey the equation

vi(z)=w(2)Q (29)

with the condition that
v;(0)=0, (30)
and also v,(z,) is the value of v, in the plane z = z; i.e., the separation of the two points
(ry, 2) = (14, 2¢), (rp, 27) = (r3, 2), ' (31)

at which the intensities I,, I, are observed. The solution of equation (29) subject to
condition (30) gives v,(z) in the absence of random scattering: i.e., the required v,o(2).
The physical significance of v,4(z) is illustrated in Figure 3. The fourth moment m involves

(re,2)=(ry, 2,)
V1(l')

('2 ,lf)’(r3.lf)

Figure 3. Illustrating the small deviation approximation for v,(z) given by the geometrical rays.

four paths from the source point to the two observation points (31) above. These four
paths are indicated by the broken lines. From its definition (13) and Figure 2 one sees
that v,(z) is the separation of the mid-points of the two pairs of paths traversed by r,(z),
r,(z) and ry(z), ry(z). In the absence of the random component of refractive index the
two ray paths from source to the two observation points are the geometrical rays indicated
by the heavy lines. They are given by the solutions of the ray equation (14) passing
through the source and the two observation points. The solution of equation (29) for the
same conditions gives an approximate expression for the separation of these deterministic
rays: i.e., v,o(z). One can now proceed on the assumption that the presence of refractive
index irregularities causes the rays to deviate by only small amounts from the deterministic
paths and so v,(z) can be replaced by v,o(z) in the slowly varying term of expression
(26): i.e., in H. The other exponent of expression (26) is a rapidly varying term, and here
v,(z) is not replaced by its approximate form.

3.3. THE FOURIER TRANSFORM OF m(v,, ¥,)

The path integral expressions discussed above stem from the discrete representation
expression (10). The path integrals with respect to v,(z) and v,(z) are carried out in slabs,
transverse to the z axis. A typical slab lying between z;_, and z; can be seen in Figure 1.
In the continuous limit these slabs become infinitesimally thin. Now the path integral
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with respect to v,(z) in expression (26) cannot be carried out in the last of these slabs
bordering on z; since here v,(z) has been fixed by the boundary conditions expression
(31) and is equal to v,(z;). This difficulty is overcome by taking the Fourier transform of
m with respect to v;(z) at the entrance to this last slab. This integration allows v,(z) to
take all values in the last slab and frees the end points of the paths in Figure 3 so that
the d[v,(z)] path integral can be carried out. If z;_; is the z coordinate at the entrance
to the last slab then the required Fourier transform is

—

M(v,v,) = J‘ m(vl(zf); Vz(Zf)) e M-y dvl(zf-l)

4277)2

Hexp{xk[vz(z) ()17} exp{ szHm(z),vz(z);z)dz}

xexp{ J [v5(z) —vy(2)Q—vk™ 8(z—zf_1)] vl(z)dz}

xdvi(z)] d[vo(2)] dv,(z-)). (32)

One replaces v,(z) in H of expression (32) by v,4(z) for the reasons outlined above. One
also notes that the presence of the Dirac delta function 8(z—z,_,) in the last exponent
of expression (32) implies a discontinuity in v5(z) at z,_,. This can be seen more clearly
from the equation for v,(z) given below. For this reason the first exponential on the
right-hand side of expression (32) must be evaluated as

exp {ik([v4(2) - V()15 +[vi(2) - vi(2)]5)} (33)

where z}i)l, z‘fi)1 are respectively the values of z immediately before and after z,_, where
the discontinuity in v5(z) occurs. The quantities v,(z), v,(z), however, remain continuous
at this point. Keeping this in mind, and using equation (30), one obtains the approximate
form

My(v,v;) = JJCXP {1k["2(2f 1) Vz(ZH))] Vl(Zf |)+1k"2(2f) Vl(Zf)]}

No_
(2m)?
X eXp { - JZJ H(vio(2),v,(2); 2) dz}

0
xexp_{ —ik J‘ZI [v5(z) —va(2)Q - vk '8(z— z,_1)] - vi(2) dz}

xd [vi(2)]d[vx(2)] dvi(zy) (34)

The path integral with respect to d{v,(x)] can now be done in equation (34) since the
v,o{z) in H is tied to the deterministic rays and does not vary with the path integration.
This leads to the following delta functional

8(v3(2) —vo(2)Q - vk™'8(z~z_,)) (35)
which, when the path integral with respect to d[v,(z)] is carried out, gives

Mq(v, v2) = {No/(27)} exp {ikvy(z) - vi(z)}

X J' exp { - JZI H(v,0(2), v2(2); 2) dz}

X exp {ik[vé(z}:)l) _Vé(z}t)l)] : V1(zj—1)} dvl(zf—l) (36)
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with the following equation for v,(z),
v3(z) =vy(2) Q+vk™'8(z—z;_y). (37)
The expression (36) is a first approximation to the Fourier transform of the fourth
moment (26) with v,(z) specified by equation (37) and v,(z) defined by equation (29).

These equations, together with equations (18) and (14), complete the first step in evaluating
the intensity fluctuation spectrum by path integral methods.

4. EXPLICIT FORMS OF M,(v,v,) FOR SPECIFIC CASES

To illustrate how the formal solution (36) can be applied explicit forms will now be
found in two specific cases.

4.1. UNIFORM REFRACTIVE INDEX PROFILE

The first case is that of a randomly inhomogeneous medium in which n,;, the mean
refractive index is constant in both space and time. The source is constant in both space
and time. The source is situated at the co-ordinate origin while the observing points are
at (3x5 0, z;), (—3x5 0, z;). The deterministic ray path to the first point is, from equation
(14)

S(z) = x;z/2z. (38)

Now Q, in equation (18), is zero since n, is a constant, so equation (29) becomes v{(z) =0,
and v,4(z), which is its solution with initial condition from equation (30) is

vio(z) =vi(z7)2/ z¢ (39)
Similarly
vi(z)=vk'8(z—z_,), (40)
which has the solution
v,(z)=Az+B  (0<z=z{7), (41a)
v,(z)=Cz+D (29 =<z=z). (41b)

One sees from expression (40) that there is a discontinuity of magnitude vk™ in vj(z)
at z = z,_;, as mentioned above. Matching v,(z) in the plane z = z,_, and using the boundary
condtiion at z = z; we obtain

v,(2) =(C—vk ) (z—z_y) — C(zp— z7_1) +vx(2() (0<z$z}"_)1), (42a)
vo(z) = C(z — z) + v,(zy) (z<z=<7z). (42b)

We determine C by setting H =0 in (36) and carrying out the integral, remembering that
the discontinuity in v} is equal to vk~'. When the inverse Fourier transform is applied
to the result we have an expression for m(v,(z); v2(z,)) in the absence of random scatter.
This can then be compared with the corresponding expression that follows directly from
expressions (4), (9) and (13),

m(vy(z); vx(2)) = (4z)"* exp {ikvi(2) - vo(2)/ 2}
to give
No=(4mz)™*
C=vy(z)/ zs (43)
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Using expressions (42a), (43) in (36) and letting z,_, approach z; one obtains, denoting
v,(z;.,) by £ in this limit,

Mo(v, v) ={1/(4mz)*H{1/(2m)’} exp {ikva(z() - vi(2;)/ 2/}

X Jm exp { - JZI H(€2/z5v2(z)z/ 2z —vk (2 — zp); 2) dz}

—o0 0
xexp{—iv - &} d&. (44)

The calculation of the fundamental approximation in the case of a medium with a uniform
mean refractive index is now complete. The corresponding expression for mg(v,(z;), v2(z/))
is obtained by taking the Fourier transform of expression (44). To compare the result
with expressions for mg(v,(z), vo(z,)) derived by other methods it is convenient to
introduce the new variable

v'=v—kvy(z)/ z,

Noting that H is a symmetric function of each of its first two arguments one finally obtains

mo(vi(zva(z)) = {1/ (4m2)*H1/ (27)%} _[ j exp

{ - IZf H(§z/z5, vi(2) +v'k (2, — 2); 2) dz}

x exp { —i[kvy(z,) - &/ 2, + V' (E+v,(z))]} dE dv'. (45)

In this form expression (45) agrees with the results of Uscinski et al. [10] and Macaskill

[11].

4.2. LINEAR REFRACTIVE INDEX PROFILE

The second case is a medium in which the mean component n, is a linear function of
the co-ordinate transverse to the direction of propagation. Take

Ny = dg + ax. (46)
The ray path in this case is
S(z')= a22/2+(xf/zf—az_,/2)z (47)

with the observer situated at the point (x; 0, z;) on the ray. Now Q is zero in the case of
the linear profile expression (46) and so the equations for v,(z) and v,o(z) remain the
same as in the case of the uniform profile just considered. The solution for My(v, v»(z/))
is thus the same as for the uniform profile and is given by expression (45).

These results show that within the framework of the present approximation the profile
n, must be at least a quadratic function to give a non-zero Q and affect the form of
My(v, vo(z;)) directly. The fourth moment for a linear profile would differ from that for
a uniform profile if it were to be calculated for a non-zero value of u,.

4.3. INTENSITY FLUCTUATIONS

One is now in a position to calculate the intensity correlation (6). It is, from expressions
(4) and (5)

pi(xy) =J Mo(v,0) e ™ dv, (48)
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where My(v, 0) is given by expression (45) in the cases being considered. The normalized
variance S7 is, from expressions (6), (7) and (45)

1= I Dy(v) dv—1, (49)
D(v) ={1/(2m7)% Jw exp { - J'zj H(Ez/z vk (z;—2); 2) dz} e v EdE (50)

4.4, AN IMPROVED ESTIMATE

A more accurate evaluation of the fourth moment can be obtained by estimating the
difference between m(v,, v,) and its fundamental approximation m(v,, v,). The Fourier
transform of this estimate M,(v,v,), from Appendix A, is

M,(v,v;) =M, (v, v;) — M, (v, v,), (51)

M,(v,v;) ={CoNy/ (27)*} -[ . -[ exp {—ik[£ - va(z))z7 ' +vk ™' E—qk ™ - vy(z)]}

X J-ZI exp { - js HI(E+qk™'(z;—5))z/ 2 vo(2) + (z, — 2)wk ™5 2] dz}

V] 0

X exXp { —J. ! H[(§+qk_1(zf—s))z/zf—(z —s)qk™!, va(zr)

s

+vk (2, - 2); 2] dz}

x F(q){1—cos [(E+qk™'(z,—s)) - qs/z]} ds dq dE (52)
and
CoNG ) o . % )
My(v,v,) = (27r)2 '[ ’ J exp { —ik[& - Vz(Zf)Zf +vk - E]} J.o €Xp {1k(V2(Zf)

+vk '[z,—5]) - qk™}

X exp { - IZf H[§z/ 2z, vy(z) +vk ™\ (z,— 2); 2] dz}F(q)

0

{1—cos[&- qs/z]} ds dq dE, (53)
Co=2k’u?, ~ F(q)={1/(2m)% J’ p(v) €' dv, (54)

where p(v) is defined by equation (22). The results equations (52) and (53) apply to the
case of a point source and a linear profile so N, in this case is (47z) ™"

4.5. PLANE WAVE INCIDENT ON A HALF SPACE

This section is concluded with the results for M, and M, in the case when a plane
wave is incident on a half-space containing the irregular medium. A uniform refractive
index profile is assumed. The method of derivation closely follows that of the point source
and so details are not given here. For the plane wave case

My(v, v,(z/)) =-(—2-3;)—2- j- J- exp { - J:f HIE; vo(zf) +vk_‘(zf —2z); z] dz} exp{—iv - &} dE,
(55)
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M, (v, vx(2)) = (2?)2[II exp { —i[v-£-q- Vz(zf)]}

X J-Zf exp { - JS H[E+qk (2 —5), valz) +vk ' (z;— 2); 2] dz}

1] 4]

X exp { - JZf HIE+qk (z,—2),vo(z) vk '(z;— 2); 2] dz}
x F(q){1—cos [(E+qk™'(z,—s)) - q]} ds dq d&

——I cee f J ]exp{—-i[v ~E—q-vlz) v k”q(zf——s)]}

[}

X exp { - IZI HIE, vy(z) +vk ™ (z,— 2); 2] dz}

0

x F(q)[1—cos (q- §)] ds dq dé]- (56)

5. EVALUATION OF FLUCTUATION SPECTRA AND DISCUSSION OF RESULTS

It is important that the theoretical expressions should be capable of being evaluated
numerically. Evaluations are presented in this section for two irregular media of practical
interest. For the sake of simplicity the case of a half space on which a plane wave is
incident is considered, with only one transverse dimension in the x direction. However,
the basic methods of evaluation are the same in other cases and the results illustrate well
the basic properties of the intensity fluctuation spectra.

5.1. MEDIUM WITH A SINGLE SCALE SIZE
The medium irregularities have the transverse spatial autocorrelation function
p(x)=exp {—x*/L% (57)

where L is the outer scale of the irregularities. From equation (54) the spectrum corre-
sponding to equation (57) is

F(q)=(L*/2Vm) exp{—q°L*/4}. (58)

5.2. MEDIUM WITH A POWER LAW SPECTRUM
Here the irregularities have the transverse autocorrelation function

p(x)=(1+|x|/L) exp {—|x|/L}. (59)
The spectrum corresponding to equation (59) is
F(q)=2/m(1+q’L*~ (60)

5.3. THE FUNDAMENTAL SPECTRUM
The following scaled variables are now introduced:

E=¢L7',  w=uv, L7, wv=wvl, gq=ql, Z=z/kl’ (61)

the fundamental spectrum M,(v) equation (55) then becomes

M,(»,0) =$ J exp { —or J "T1-g(& v(Z,-2)] dz} exp {—ive}de  (62)
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Here the parameter I" arises naturally out of the scaling,
I'=Kp?p,L?, (63)
and can be used to distinguish different scattering regimes, and

gx, ) =f(X)+f(y)-f(x+y)-3f(x-y),  f=p/po (64, 65)

The improved estimate M,(», 0) equation (56) can be rearranged in a straightforward
manner and when written in terms of the new variables, equation (61), takes the form

My(», 0)=:—£J fr JF(q)sinz (%‘5) exp{—zrj "-g(g Vt)]dt}

x[exp {2T L [g(&+qlt—s], vt)—g(§ vt)] dt} -1]
xexp {—iv(é—~qgs)}dg dé ds. (66)

Numerical evaluation of the fundamental expression (62) for My(»,0) presents no
difficulty. The improved estimate M, (v, 0), however, is a triple integral and it is advisable
that at least one of these be evaluated analytically. In Appendix B it is shown that in the
case when f(£) can be represented as a Taylor series it is possible to expand the g
functions in the exponents of M,(») equation (66) in small powers of £ and g and carry
out the £ integral to give

M1=_J I(KI_KZ) ds, (67)

where

a0

K,=[exp (—v*/4a)/Va] J F(q) exp{—q°(y—B*/a)+ivq(s+B/a)}

—0ao

x[1-3{exp (~[g*(1+4iB) —2vq)/4a)+exp (—[¢°(1-4iB) —2vq}/4a)}] dq

(68)
K =[exp (~ v*/4a)/Ve] E F(q) exp {ivgs}
[1-3exp (—[q°—2vq)/4a)+exp (~[g°+2gv]/4a)}] dq. (69)
In expressions (68) and (69)
o= TZ{~f'(O)+/"(vZ)/ v,
B = P 1+4(0) (5>~ (35)]),
Y= DA O 25 +236s)), Fom=| fpdn 0

In general the g integrals in expressions (68) and (69) cannot be evaluated analytically
but this can be done numerically without trouble. The remaining integral with respect to
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s in expression (67) presents no difficulty since the limits are finite and the integrand is
slowly varying.

5.3. SPECTRA OF INTENSITY FLUCTUATIONS

The spatial frequency spectra of the intensity fluctuations are shown in Figures 4 and
5 for the two media described above at different distances in the scattering medium. These
distances are given as fractions of the distance at which S7, the normalized variance of
the fluctuations, is a maximum, zs. The spectra are shown as the sum of the fundamental
and the refined estimate. The fundamental is shown by the broken line and the sum by
the full line. The spectra for the medium with the single scale size are shown in Figure
4 and those for the medium with the power law spectrum appear in Figure 5.

It is clear from the figures that the fundamental gives quite an accurate representation
of the spectrum. The maximum discrepancy with the refined estimate occurs when the
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Figure 4. The spatial spectra of intensity fluctuations for the medium with the autocorrelation function (57)
and I' = 1000 for different distances of propagation z/z,, = (a) 0-05, (b) 0-1 and (c) 0-2. The broken line gives
the contribution due to the fundamental while the full line gives the refined estimate.
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Figure 5. The spatial spectra of intensity fluctuations for the medium with the autocorrelation function (59)
and I" = 1000 for different distances of propagation z,/z,,=(a) 0-05, (b) 0-1 and (c) 0-2. The broken line gives
the contribution due to the fundamental while the full line gives the refined estimate.

scintillation index is a maximum, i.e., z;/z,,= 1, and is at most of the order of 18% at
the peak of the spectrum and much less elsewhere. Thus if high accuracy is not required
the fundamental form provides a simple and quick means of investigating how the different
autocorrelation functions of medium irregularities affect the form of the intensity fluctu-
ation spectra.

Finally, the variance of the intensity fluctuations S7 obtained by integrating the spectrum
over all spatial frequencies is given in Figure 6 as a function of the scaled distance z for
the case of the medium with autocorrelation function expression (57) when I" = 1000.
The maximum discrepancy between the fundamental and the improved estimate is of the
order of 15% near the variance peak. The variance obtained by computer simulations of
propagation in a randomly irregular medium with the Gaussian autocorrelation function
expression (57) by Macaskill and Ewart [12] are also shown in Figure 6.



RANDOM MEDIA WAVE INTENSITY FLUCTUATIONS 525

2:0
!
14
15 Pt i
\\i\\\
®)
g 10
3
0-5-
| 1 ]
0-05 010 015 02

Z
Figure 6. The variance of intensity fluctuations as a function of z, for I = 1000 in a medium with autocorreia-
tion function (57). The broken line gives the fundamental approximation and the full curve includes the extra
contribution leading to the refined estimate. The points and error bars are the results of numerical simulations
of the corresponding scattering experiment {12].

5.4. RELATIONSHIP TO THE RESULTS OF OTHER AUTHORS

The fluctuation spectra and variances obtained in the present paper are valid for all
values of I' and at all ranges z in a multiply scattering medium. The spectra obtained by
some other authors (Zavorotnyi et al. [6], Dashen [8]) are valid in the limit for large
distances of propagation when the variance S7 approaches its limiting value of unity.
They can be obtained as limiting cases of the expressions derived in the present paper.
To iltustrate this one can consider M (v, 0), equation (66), in the case of large z when
g(¢ vz), equation (64), becomes simply f(£). The result then obtained for the spectrum
@, (v) in this limit is,

®(v)=(I'/ ) f j f " F(q){1-cos [q(£+g5)]}

X [exp { —2T[Zf—(Zf—s)f(§+qs)*J'sf(§+qZ) dZ:I}
—exp{—2IT1—-f(&+ qs)]}jl e "*d¢dgds. (71)

If this expression and the large range form of the fundamental term expression (62) are
combined,
P(v)= Po(v) + D,(v), (72)

then the resulting expression for @(») corresponds to that obtained by Zavorotnyi et al.
[6] when v, =0. In spectral form it is

V4

P(v)~(1/2m) J exp{—2IZ[1-p(&)l} e ™ de+(I'/ ) I J I 'F(q)

x{1~cos [q(£+4gs)]}

xexp{—ZF[ZI—(Zj.ns)f(§+qs)—J'Sf(§+qZ) dZ:I} e ™ dédgds.
(73)
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Integration of expression (73) with respect to » gives the variance S7, the first term of
which is the saturation value of unity, while the second gives the way in which this
asymptotic value is approached at large range.

Exactly the same procedure can be applied in the case of a point source starting from
expressions (50), (52) and (53). The asymptotic large range form resulting is identical
with that obtained by Dashen [8].
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APPENDIX A

An estimate of m,, the difference between m and its fundamental approximation my,
is now made. Let

my(vy, v2) = m(vy, v2) ~ mo(vy, ¥2) (A1)
and so
M(v,v2) = M(v, v,) = My(v, v,). (A2)

To make an estimate of M, one can first note that since equation (26) is symmetric in
v,, v, they can be reversed without changing the value of m(v,,v,). When this is done
and the Fourier transform of the resulting expression taken one has

z

M(v,v;) =N, J T J €Xp {ik[v,l(zf) * va(zp) "j ’ (vi—=v,Q) - v, dz

0

+vk_1v1(zf)]} exp { - J’ZI H(v,,v,; 2) dz} d[v,1d[v,] dv,(z). (A3)

0
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Now M, can be given the formal representation

My(v,v;) = N, J Tt J €Xp {ik[v’l(zf) ) Vz(zf)
- JZI (vi—-v;Q) v, dz+vk™'- Vt(Zf)]}

Zr
X exp { —J H(vy, vy, 2) dz} div,] d[v.] dv,(z,), {A4)

0

where v,0(z) is the value of v,(z) obtained when evaluating the zeroth approximation.

For example in the case of the uniform and linear profiles it is, from equations (47) and
(50),

vzo(z)=vk_’(zf—z)+vz(zj-). (AS5)

The validity of expression (A4) can be verified by carrying out the path integral with
respect to v, and then solving the resulting equation for v,(z). Using equations (A3) and
(A4) in equation (A2) and expanding the exponential terms involving h one obtains, on
retaining only the first term in the expansion,

M (v, v;) = NOJ- cet J' €Xp {ik[V;(Zf) 'Vz(zf)—J / [vi-v,Q) - v,dz

+vk'- v,(zf)]} exp [ —er H (v, ¥ 2) dz] J’ZJ‘ {H[v,(s), vy(5): 5]

— H[vi(s), vy(s); s]} ds d[v,] d[v,] dv,(z). (A6)

Now the two final quantities H can be written as sums of the correlation function of the
medium p, and when the spectral representation

F(g)=[1/(2m)*] J p(v)exp (ig - v) dv. (A7)
is introduced one has

M,=M,-M,, (A8)

M,(v,v,) =2k2,“2N0J' s J exp {ik[vi(z) - va(z) +vk ™" - vi(z0)]}
X J‘zj exp { —ik J‘ZI [v]~v,Q+qk ™ '6(z—5)] vx(2) dz}

X exp { — J’zj Hv,(z, 5), v29(2); z] dz}

0

x F(q)[1—cos (vi(s) - )] ds dqd[v,] d[v:] dv(z) (A9)

M, (v, V) =2ku’ N J e J exp {ik[vi(z) - va(z) +vk " - vi(z)]}

X JZI exp { —ik[qk‘1 . v20(5)+sz (v —v,Q) - vy(z) dz]}

X exp { - er H[v\(z), v50(2); z] dz}

0

X F(q)[1—cos (v,(s) - )] ds dq d[v,] d[v,] dv,(z). (A10)
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The path integrals with respect to v, and v, can now be carried out in both M, and M, to
give v,. The procedure is similar to that employed in section 4 of the paper. In M,, vi(z’)
is evaluated for two regions of z' because of the discontinuity in the equation for v,(z)
introduced by the delta-function. The boundary conditions used are that v,(z) is continuous
at z = s, is equal to zero at z =0, and must reduce to the form in the zeroth approximation
when s = z; Also the discontinuity in the first derivative of v,(z) at z=s is equal to —q/k.
This gives finally for v,(z) in M,

vi(z)=[vi(z)+qk 7 (zr~$)]z/z;  (0<z<5)
vi(z) =1vi(z)) +qk ' (z;—5)]z/z; —(z —s)qk ™’ (ssz=<gz) (A11)
while in M,

vi(z) =vi(z)z/ 2 (A12)
Use of these results in equations (A9) and (A10) leads to equations (52) and (53).

APPENDIX B

The exponential terms in expression (66) are combined and it is noted that, since I'Z
is assumed to be large, the first of the resulting exponential terms,

s Zf
I, =exp { —2F<J‘o [1—-g(é+qly—s], Vy)+J‘ [1-g(¢& Vy)]> dy, (B1)
is negligible except for values of g close to unity. Inspection of the form of g equation
(64) shows that this occurs for small values of the first of the arguments of g.

The main contribution to I, is thus obtained by expanding the functions g in equation
(B1) in Taylor series in the first of their arguments and then carrying out the integrals
with respect to y. This leads eventually to

I, =exp {—(a&+2B&g+ vg")}, (B2)

where the coefficients a, B, y are given by equations (70). The same procedure can be
followed with the second of the exponential terms to give

L=exp{-a¢’}, (B3)
so that equation (66) becomes
w _T[7[7 ‘2 —iv(E-gs)
ME'iF; F(q)sin® (g¢/2)[I, - L] e™* "% d§ dq ds. (B4)
0 —a0

The integrals with respect to £ are of standard form and can easily be carried out to
yield the results in expressions (68) and (69).



