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Abstract

This note concerns bounded derivations on maximal triangular operator algebras on a
Hilbert space. Given any bounded derivation δ on a maximal triangular algebra whose in-
variant lattice is continuous at 1, an operator which is shown to implement δ is constructed
explicitly. For a general reducible maximal triangular algebra the same construction yields
an operator which is shown to implement any δ, if and only if δ obeys an additional triple
product rule.

This work is based on unpublished parts of the author’s dissertation [19] and describes
a variant of the proof of a more general result in [21] and is thus in effect a footnote to
that work. To the best of the author’s knowledge the constructive proof and triple product
rule have not appeared elsewhere. The work here is not set in the context of the large
body of subsequent research, and no claims are made regarding its relationship to later
developments.

1 Introduction

Maximal triangular algebras were studied by Kadison and Singer [13] and their properties
have been the subject of numerous subsequent studies. In this note we consider derivations
on maximal triangular algebras and the questions of when, and by what operators, they
are automatically implemented. The results obtained are proofs by construction, i.e. an
operator is exhibited explicitly which implements the given derivation.

Derivations, on both bounded and unbounded operator algebras, have been studied
extensively (e.g. [2, 5, 6, 12, 16]), in particular on C∗ and von Neumann algebras [3, 11, 17],
and certain classes of non-self-adjoint algebras [4, 10]. Nest algebras, consisting of all
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operators in B(H) leaving invariant every element of a given subspace nest and which thus
share many properties with maximal triangular algebras, were introduced by Ringrose
in [15] (see also [1,7–9,14,18]). Christensen [4] showed that all derivations on nest algebras
are implemented. A constructive proof of this result was given in [19, 20], in which the
cases of invariant lattices respectively continuous and discrete at 1 were treated separately,
and which motivates the approach here.

A maximal triangular algebra is reducible if it has any non-trivial invariant subspaces;
otherwise it is irreducible. For reducible algebras whose invariant lattices are strongly
continuous at 1 we show by construction that any derivation is implemented. Subsequently,
for any reducible algebra S with an invariant projection p we construct an operator which
implements the given derivation on the subsets pSp and p⊥Sp⊥. Since p⊥Sp = {0} this
leaves only pSp⊥. We show that implementation of δ on this set is equivalent to a natural
triple product rule on δ. We note that an identical construction for a non-trivial nest
algebra yields a proof which no longer depends on whether the invariant lattice is continuous
or discrete at 1, and therefore provides an alternative proof.

2 Definitions and preliminaries

Let B(H) be the set of bounded linear operators on a complex Hilbert space H. An algebra
S ⊂ B(H) is triangular if the algebra S ∩S∗ is maximal Abelian in B(H). Then S ∩S∗ is
the diagonal of S. For any triangular algebra S1 containing S we have S ∩ S∗ = S1 ∩ S∗
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since S ∩ S∗ is maximal Abelian.

Note that lat(S) ⊂ S∩S∗ : For p ∈ lat(S) and a ∈ S∩S∗, we have ap = pap, a∗p = pa∗p,
so p commutes with S ∩ S∗. However S ∩ S∗ is maximal Abelian, so p ∈ S ∩ S∗. For any
p ∈ lat(S), a ∈ S, p⊥ap = p⊥pap = 0, so that p⊥Sp = {0}.

A derivation on an operator algebra A is a linear map δ from A into B(H) obeying
the product rule δ(ab) = δ(a)b + aδ(b). For a projection p in the domain of δ, δ(p) is an

operator which maps the range of p into its kernel, and vice versa, so that (δ(p))2 commutes
with p. (To verify this, consider the identity δ(p) = δ(p2) and apply the product rule.) We
identify p with its range where this is unambiguous, and so for example may write η ∈ p
when pη = η.

For any b ∈ B(H) the map db defined on a subalgebra A of B(H) by db(a) = ba − ab

for all a ∈ A is a derivation. If δ is a derivation on A and δ = db for some b ∈ B(H) then
we say that δ is implemented. If also δ : A → A then δ is inner.

If ξ, η are non-zero vectors in H, then < ξ, η > denotes the inner-product of ξ with η,
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and ξ ⊗ η denotes the rank one operator given by (ξ ⊗ η)ζ =< ζ, ξ > η for all ζ in H.

We require a few known properties and results (for most of which we omit proofs):

Lemma 1. [13]. If p ∈ lat(S) then pB(H)p⊥ ⊂ S.

Corollary 2. [13] If p ∈ lat(s) then Sξ ⊃ p ∀ξ ∈ p⊥.

Lemma 3. [13] Lat(S) is totally-ordered.

Lemma 4. The commutant S′ of S is trivial i.e. S′ = C.

Hence, from a trivial calculation, for any derivation δ on S, any two linear maps which
implement δ must differ by some α ∈ C.

We will also need the following result for derivations acting on projections:

Lemma 5. [19] Let p be any projection and let δ be any derivation whose domain includes
p. Then
(i) δ(p) is an operator mapping r(p) into n(p) and vice versa,
(ii) δ is implemented on p by the operator b = (1− 2p)δ(p). and
(iii) If δ1(p) denotes any operator which maps r(p) into n(p) and vice versa then the linear
extension of δ1 to the algebra (p) generated by p and 1 is a derivation.

Proof. (i) p2 = p, so that
δ(p) = pδ(p) + δ(p)p.

Pre-multiplying by p we get pδ(p)p = 0, and since δ is defined also on p⊥ = 1− p we get a
similar result for p⊥, so that pδ(p)p = p⊥δ(p)p⊥ = 0.

(ii) Compute, using (i): (1− 2p)δ(p)p− p(1− 2p)δ(p) = δ(p)p+ pδ(p) = δ(p).

(iii) (p) is just the set {α+ βp : α, β ∈ C}, and since δ1(C) must be zero, δ1 is defined
on α+ βp ∈ (p) by δ1(α+ βp) = βδ1(p). Also δ1 is automatically linear.

Let α1, α2, β1, β2 ∈ C. Then δ1 [(α1 + β1p) (α1 + β2p)] = δ1 [α1α2 + (α1β2 + α2β1 + β1β2) p]

= (α1β2 + α2β1 + β1β2) δ1(p). and δ1 (α1 + β1p) (α2 + β2p) + (α1 + β1p) δ1 (α2 + β2p)

= α2β1δ1(p) + β1β2δ1(p)p+ α1β2δ1(p) + β1β2pδ1(p)

= (α1β2 + α2β1 + β1β2) δ1(p). Hence δ1 is a derivation.
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3 Derivations on maximal triangular algebras

Throughout the remainder S will denote a reducible maximal triangular algebra. Let
δ : S → B(H) be a continuous derivation. For the case in which the invariant lattice is
strongly continuous at 1 an operator is constructed which implements δ. We also formulate
a condition on δ under which, for any reducible maximal triangular algebra, the constructed
operator is well-defined and implements δ.

We now proceed with the construction. There is p ∈ lat(S) such that p ̸= 0 or 1 . Let
ξ ∈ p⊥, η ∈ p be unit vectors. Then by Lemma 1 the rank one operator ξ ⊗ η is in S and
Sξ ⊃ p. This immediately gives the first result:

Lemma 6. For p ∈ lat(S) such that p ̸= 0 or 1, choose unit vector ξ0 ∈ p⊥ and write
p0 = ξ0 ⊗ ξ0. Define a map b1 by

b1aξ0 = δ (ap0) ξ0 (1)

where a ∈ S, aξ0 ∈ p, and b1p
⊥ = 0. Then b1 is a well-defined and bounded linear operator,

with ∥b1∥ ⩽ ∥δ∥, and δ(a)p = db1(a)p ∀a ∈ S.

Proof. Although p0 is not necessarily contained in S, if a ∈ S such that aξ0 ∈ p then
ap0 = p (ap0) p

⊥ ∈ S and ∥ap0∥ = ∥aξ0∥0. Also aξ0 = 0 ⇒ ap0 = 0. Thus it follows
immediately that b1 is well-defined and linear. Furthermore

∥b1aξ0∥ = ∥δ (ap0) ξ0∥ ⩽ ∥δ∥ ∥ap0∥ = ∥δ∥ ∥aξ0∥

whenever aξ0 ∈ p, and so b1 ∈ B(H) and ∥b1∥ ⩽ ∥δ∥. Let a, c ∈ S such that cξ0 ∈ p. Then
acξ0 ∈ p, cp0 ∈ S and

(b1a− ab1) cξ0 = [δ (acp0)− aδ (cp0)] ξ0 = δ(a)cξ0.

Hence b1 implements δ on p.

We can now state the main derivation result for those algebras S with the property
that lat(S) is strongly continuous at 1.

Theorem 7. Suppose S is such that 1 is the strong limit of projections in lat(S). Then δ

is implemented and we can construct b ∈ B(H) such that δ = db |S and ∥b∥ ⩽ 2∥δ∥.

Proof. For any pα ∈ lat(S), pα < 1, we can construct bα as in Lemma 6 (replacing p, b1

by pα, bα).
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As is to be expected since bα implements δ on pα and S′ = C it can be shown that
(bα − bβ) pα ∈ Cpα whenever pα < pβ < 1 and that

∥(bα − bβ) pα∥ ⩽ ∥δ∥.

We can thus assume without loss of generality that (bα − bβ) pα = 0 whenever p ⩽ pα ⩽

pβ < 1 for some fixed non-zero projection p ∈ lat(S), and ∥bα∥ ⩽ 2∥δ∥. It is then easy to
show that the strong limit b for {bα} exists and that δ = db | S, and ∥b∥ ⩽ 2∥δ∥

For p ∈ lat(S), p ̸= 0 or 1, Lemma 6 gives an operator b1 = b1p. Continuing with the
construction we define c1 = pc1p

⊥ by

c1p
⊥ = −δ(p)p⊥, c1p = 0 . (2)

Then pc1p
⊥ = c1p

⊥ by Lemma 5. It is clear that c1 ∈ B(H) and ∥c1∥ ⩽ ∥δ∥. Now define
b2 by

b2 = b1 + c1. (3)

Then we have

Theorem 8. With c1, and b2 defined as in (2),(3), b2 implements δ on the algebra Sp =

pSp, and ∥b2∥ ⩽ 2∥δ∥.

Proof. Let a ∈ S. With the notation of the construction of b1, if ξ ∈ p then

(b2ap− apb2) ξ = (b2pap− apb2) ξ

= δ (apcp0) ξ0 − apδ (cp0) ξ0, where c ∈ S, cξ0 = ξ1,

= δ(ap)cp0ξ0 = δ(ap)ξ.

If ξ ∈ p⊥ then

(b2ap− apb2) ξ = − apb2ξ = apδ(p)p⊥ξ

= apδ(p)ξ = δ(ap)ξ − δ(ap)pξ = δ(ap)ξ.

Hence δ = db2 | Sp.

Remark. b2 clearly implements δ on p since

(b2a− ab2) p = b2pap− ab2p = (b1a− ab1) p ∀a ∈ S,

so we could have stated Lemma 6 with b2 instead of b1.
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We come now to the final part of the construction. Recall that if q is the rank one
operator ξ ⊗ η then q∗ is the rank one operator η ⊗ ξ.

If p1 is the rank one projection ξ ⊗ ξ then p1 = q∗q and, in general,

(η ⊗ ξ2) (ξ1 ⊗ η) = ξ1 ⊗ ξ2.

This brings us to the following:

Lemma 9. Choose a fixed unit vector η1 ∈ p and put q1 = ξ0 ⊗ η1 so that q1 ∈ S. Define
a map c2 as follows:

c2p = 0, and pc2p
⊥ = 0 (4)

and for any ξ ∈ p⊥

pξc2p
⊥ = −q∗δ(q)p⊥ + q∗δ (q1) q1q (5)

where q = ξ ⊗ η1 = qp⊥, and pξ = ξ ⊗ ξ. Then c2 ∈ B(H).

(Notice that this definition depends on the fixed vectors ξ0 ∈ p⊥, η1 ∈ p. It is not
obvious that the definition is invariant to within a constant additive factor under these
choices.)

Proof. c2 is clearly well-defined. It is easy to see that c2 is bounded and that for any unit
vector η, ∥c2η∥ ⩽ 2∥δ∥ since pc2 = 0 and, for any unit vector ξ ∈ p⊥, ∥pξc2η∥ ⩽ 2∥δ∥.

It remains to show that c2 is linear. For this it must be shown that for unit vectors
ξ, {ξi}i∈I in p⊥ such that ξ =

∑
i αiξi, say, the definitions pξic2p

⊥ as above lead to the

same value for pξc2p
⊥ as by defining this directly. It will suffice to show this for, say,

ξ = rαξα + rβξβ , where ∥ξ∥ = ∥ξα∥ = ∥ξβ∥ = 1 and rα, rβ ∈ C.

Write pα = ξα⊗ξα, pβ = ξβ⊗ξβ, pξ = ξ ⊗ ξ, qα = ξα⊗η1, qβ = ξβ⊗η1, and q =

ξ ⊗ η1.

We have first that, ∀ζ ∈ H,

qζ =< ζ, rαξα + rβξβ > η = (r̄αqα + r̄βqβ) ζ.

This gives q∗ = rαq
∗
α + rβq

∗
β and

pξ = q∗q = |rα|2 pα + |rβ|2 pβ + rαr̄βq
∗
αqβ + r̄αrβq

∗
βqα·
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Defining pξc2p
⊥ directly we thus have

pξc2p
⊥ = q∗δ (q1) q

∗
1q − q∗δ(q)p⊥ (6)

= |rα|2 q∗αδ (q1) q∗1qα + |rβ|2 q∗βδ (q1) q∗1qβ + rαr̄βq
∗
αδ(q1)q

∗
1qβ (7)

+ r̄αrβq
∗
βδ (q1) q

∗
1qα (8)

−
[
|rα|2 q∗δα δ (qα) + |rβ|2 q∗βδ (qβ) + rαr̄βq

∗
αδ (qβ) + r̄αrβq

∗
βδ (qα)

]
(9)

On the other hand

pξc2p
⊥ =

[
|rα|2 pα + |rβ|2 pβ + rαr̄βq

∗
αqβ + r̄αrβq

∗
βqα

]
bp⊥

= |rα|2
[
q∗αδ (q1) q

∗
1qα − q∗αδ (qα) p

⊥
]
+ |rβ|2

[
q∗βδ (q1) q

∗
1qβ − q∗βδ (qβ) p

⊥
]

+ rαr̄βq
∗
αqβ

[
q∗βδ (q1) q

∗
1qβ − q∗βδ (qβ) p

⊥
]

(10)

+ r̄αrβq
∗
βqα

[
q∗αδ (q1) q

∗
1qα − q∗αδ (qα) p

⊥
]

(11)

Notice that q∗αqβq∗β = q∗α and q∗βqαq
∗
α = q∗β , and these occur in the last two terms of the

expression above. Comparing (9) and (11), then, term by term we see that they are equal.

This extends by induction to any finite sum of vectors in p⊥ and hence, since we have
shown c2 to be bounded, to any sum in p⊥. It follows that c2 is linear and the result
follows.

We now have

Theorem 10. Define b = b2 + c2, with b2 as in equation (3) and c2 defined as in Lemma

9. Then b implements δ on the algebras Sp and p⊥Sp⊥, and ∥b∥ ⩽ 4∥δ∥.

Proof. We already have that ∥b2∥ , ∥c2∥ ⩽ 2∥δ∥, so ∥b∥ ⩽ 4∥δ∥.

Let a ∈ S. Then (bpap − papb) = b2 pap − papb2 = δ(pap) by Theorem 8. To show
that δ = db | p⊥Sp⊥ we consider various cases.

1) Let ξ ∈ p. Then
(
bp⊥ap⊥ − p⊥ap⊥b

)
ξ = −p⊥ap⊥bξ = −p⊥ap⊥b1ξ

= −p⊥ap⊥δ(q)ξ0, where q = ξ0 ⊗ ξ1

= δ
(
p⊥ap⊥

)
qξ0 − δ

(
p⊥ap⊥q

)
ξ0 = δ

(
p⊥ap⊥

)
ξ.
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2) Let ξ ∈ p⊥ and consider pdb
(
p⊥ap⊥

)
:

p
(
bp⊥ap⊥ξ − p⊥ap⊥bξ

)
= pbp⊥ap⊥ξ = b2p

⊥ap⊥ξ

= −δ(p)p⊥ap⊥ξ = δ
(
p⊥

)
p⊥ap⊥ξ

= δ
(
p⊥ap⊥

)
ξ − p⊥δ

(
p⊥ap⊥

)
ξ = pδ

(
p⊥ap⊥

)
ξ.

3) Finally let ξ ∈ p⊥ and consider p⊥db
(
p⊥ap⊥

)
:

Choose a basis {ξα} for p⊥ and put pα = ξα ⊗ ξα, qα = ξα ⊗ η1 ∀α. We consider,
for each α, pαdb

(
p⊥ap⊥

)
. First we define the constants rαβ ∈ C by

pαapβ = rαβq
∗
αqβ.

(It is easily seen that pαapβ and q∗αqβ are multiples of the rank one operator ξβ⊗ξα.)
Note that qα−1 = qαpαapβ = rαβqβ , and similarly pαaq

∗
β = pαapβq

∗
β = rαβq

∗
α.

Then pα
(
bp⊥ap⊥ξ − p⊥ap⊥bξ

)
= q∗αδ (q1) q

∗
1qαap

⊥ξ − q∗αδ (qα) p
⊥ap⊥ξ −

∑
β

pαp
⊥apβbξ

= −q∗αδ (qα) p
⊥ap⊥ξ +

∑
β

[q∗αδ (q1) q
∗
1qαapβξ

−pαaq
⋆
βδ (q1) q

⋆
1qβξ + pαaq

⋆
βδ (qβ) ξ

]
= −q∗αδ (qα) p

⊥ap⊥ξ

+
∑
β

[rαβq
∗
αδ (q1) q

∗
1qβξ − rαβq

∗
αδ (q1) q

∗
1qβξ + rαβq

∗
αδ (qβ) ξ]

= −q∗αδ (qα) p
⊥ap⊥ξ +

∑
β

q∗αδ (rαβqβ) ξ

= −q∗αδ (qα) p
⊥ap⊥ξ +

∑
β

q∗αδ (qαapβ) ξ

= −q⋆αδ (qα) p
⊥ap⊥ξ + q⋆αδ

(
qαp

⊥ap⊥
)
ξ

= q∗αqαδ
(
p⊥ap⊥

)
ξ = pαδ

(
p⊥ap⊥

)
ξ.

Hence ∀α, pαdb
(
p⊥ap⊥

)
ξ = pαδ

(
p⊥ap⊥

)
ξ, and the proof is complete.
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Since p is invariant under S, and since p⊥Sp = {0} and Sp = pSp, we can write
S = Sp+pSp⊥+p⊥Sp⊥. Theorem 10 shows that δ is implemented by b on Sp and p⊥Sp⊥,
so extending the result to S itself hinges on whether it holds for the remaining term pSp⊥.
This we have not proved in general. However, we give as the final result a natural condition
on δ in the form of triple product rule under which it does indeed hold.

To motivate this consider operators s1, s2, s3 ∈ S and a /∈ S such that s2as3 ∈ S. For
example if s3 = s3p

⊥ and s2 = ps2 then by Lemma 1 a can be any operator in B(H).
Then although δ(a) is undefined one may ask whether the equation

δ (s1s2as3) = s1δ (s2as3) + δ (s1) s2as3 (12)

holds. In general this would seem to be a very strong restriction, although of course when-
ever δ is implemented it must hold since an implemented derivation extends automatically
to B(H). The result concerns a less restrictive form of condition (12).

Theorem 11 (Triple product rule). Suppose the vectors ξ0 ∈ p⊥ and η1 ∈ p, the basis
{ξα} for p⊥, and the operator b are all as previously defined. Let η be any vector in p.

Define the rank one operators

qα = ξα ⊗ η1, q1 = ξ0 ⊗ η1, q = ξα ⊗ η, and q2 = ξ0 ⊗ η· (13)

Then δ is implemented if and only if

δ(q) = δ (qq∗αq1) q
∗
1qα + qq∗αδ (qα)− qq∗αδ (q1) q

∗
1qα. (14)

If so then δ = db | S.

Proof. We have q = qq∗αq1q
∗
1qα and q2 = qq∗αq1. All the operators q, qα, q1, q2 and none

of their adjoints, are in S.

In addition to the expressions for q, q2 in terms of the other operators we have qα =
qα0q

∗
1q1 and other such relations which arise wherever the "end-points" of the various

operators coincide. So (14) can be written

δ (qq∗αq1q
∗
1qα) = δ (qq∗αq1) q

∗
1qα + qq∗αδ (q1q

∗
1qα)− qq∗αδ (q1) q

∗
1qα·

Assuming that δ is implemented, say by c, δ = dc can be defined on the whole of B(H),
and we can compute using δ as if this is so:

δ (qq∗αq1q
∗
1qα) = δ (qq∗αq1) q

∗
1qα + qq∗αq1δ (q

∗
1qα)

= δ (qq∗αq1) q
∗
1qα + qq∗αδ (q1q

∗
1qα)− qq∗αδ (q1) q

∗
1qα.
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Suppose now that (14) holds.

If a = pap⊥ ∈ S, then a =
∑

α papα where pα = ξα ⊗ ξα∀α and each papα ∈ S. So

when considering operators in pSp⊥ we may restrict our attention to the rank one operators
ξα ⊗ η, where η ∈ p.

Consider, then, q = ξα ⊗ η, η ∈ p. Then q is as in the statement of the theorem.

For any ξ ∈ p⊥, qξ =< ξ,ξα > η so

bqξ = b1qξ = < ξ, ξα > b1η

= < ξξα > δ (q2) ξ0

= δ (q2) q
∗
1qαξ.

Then

(bq − qb)ξ = b1qξ − qpαbξ = [δ (qq∗αq1) q
∗
1qα + qq⋆αδ (qα)− qq∗αδ (q1) q

∗
1qα] ξ

However condition (14) says that this is just δ(q)ξ which is what we require.

We have thus shown that if condition (14) holds then δ = db | pSp⊥ and Theorem 12
shows that b implements δ on the rest of S, and so the proof is complete.

Remarks.

1) The condition (14) can be shown to be a special case of the product rule (Property
D) introduced in [21] and is therefore ostensibly a weaker requirement, although
Theorem 11 implies that these conditions are equivalent.

2) The operator b can be constructed in an identical way for any non-trivial nest algebra
N since we have used operators in pB(H)p⊥ and if p ∈ lat(N) such operators are
also to be found in N . Furthermore Theorem 11 can be applied to N , and we know
that condition (14) of Theorem 11 holds. Thus the construction yields a proof for
nest algebras which deals simultaneously with cases discrete and continuous at 1.

3) The definitions and results here lend themselves naturally to Banach space general-
ization if we should care to imitate the process used in [19,20] for nest algebras.
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