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ABSTRACT 

In this paper the notions of nest and nest algebra are generalised to sets of 
operators on Banach space. Their fundamental properties are established and 
continuous derivations on such algebras are shown to be implemented by an 
operator which can be constructed explicitly. 

Introduction 

Nest algebras of operators on Hilbert space were introduced in 1965 by 

Ringrose [4] and generalise in a certain way the set of all n x n matrices to 

infinite dimensions. Christensen [1] proved every derivation on a nest algebra to 

be continuous and implemented and Lance [3] gave another proof of implemen- 

tation as part of a wider cohomology result. 

This paper accomplishes two tasks. The first is to generalise the notion of nest 

algebras to sets of operators on Banach space, showing the definition to be 

satisfactory by establishing fundamental properties and giving examples. The 

second is to prove that every continuous derivation on such a nest algebra is 

implemented by a bounded operator. The proof constructs this operator 

explicitly and hence yields a new and slightly more informative proof for nest 

algebras on Hilbert space. (Note that both [1] and [3] rely on strict Hilbert space 

techniques and hence cannot be generalised directly.) 

Preliminary notation and definitions 

Throughout, H denotes a complex Hilbert space, E a complex Banach space 

and B(H), B(E) the sets of bounded operators on H, E, respectively. By 

"projection" we mean simply an idempotent. In the context of a Hilbert space 
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self-adjoint projections will be referred to as such. P(E) denotes the set of 

projections in B(E). If p is a projection, then r(p), n(p) refer to its range and 

null-space respectively, and p~ to the projection 1 - p .  For convenience a 

projection is sometimes identified with its range, and so we may write ~ E p to 

mean ~ E r(p). If the vectors ~, r/ are in H, then ~: Q ~7 denotes the rank 1 

operator defined by (~ ~ r/)~" = (~, st)r/ for all ~" E H. 

Recall that a nest on H is a totally-ordered strongly closed set L of 

self-adjoint projections on H containing 0 and 1. A nest algebra N on H is then a 

set alg(L) of all operators in B(H) leaving invariant every element of a nest L. 

We may thus think of N as a flow on L in the direction in which L decreases. A 

derivation on an algebra A in B(E) is a linear map 8 from A into B(E) such 

that 8(ab) = aS(b)+ 8(a)b for all a, b E A. 8 is implemented if it is of the form 

8 ( a ) =  b a - a b  for all a in A, for some b E B(E). We denote by db the 

derivation thus defined by b. 

Many properties of self-adjoint Hilbert space projections are inapplicable to 

projections in general. In particular, although the self-adjoint projections in 

B(H) are exactly those of norm 1, there is no duality in general between closed 

subspaces of a Banach space and projections of norm 1. (However, see Remark 1 

below.) Furthermore, for p, q in P(E), it is not necessarily the case that 

r(p)C r(q) ~ n(q)C n(p). However, P(E) can be partially ordered (see Dun- 

ford and Schwartz [2]) as follows: Let p, q be in P(E). Write p_-<q if 
pq = qp = p. Hence, if p < q, then p and q commute, q - p is a projection, and 

we have both that r(q) contains r(p) and n(p) contains n(q). We can now make 

the main definitions. 

DEFINmON 1. A nest on E is a totally-ordered uniformly-bounded set L of 

projections in P(E) containing 0 and 1, such that L is complete as an abstract 

lattice, and for any subset S of L 

( V s { P } ) E =  V and (ks{P})E=pEsA{pE}" 

This is analogous to the concept of completeness applied by Dunford and 

Schwartz [2; Ch. XVII] to Boolean algebras of projections. By [2] we could have 

replaced the boundedness condition by the stronger requirement that L belongs 

to a Boolean algebra which is complete as an abstract lattice. The following can 

be stated without proof: 

LEMMA. L is strongly closed and, in particular, for any directed family {p, } in 
L the projection V{p~} is the strong limit of {p,} and is consequently in L. 
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DEFINITION 2. A set N of operators in B(E)  is a nest algebra if N -- alg(L) 

for some nest L on E. 

Henceforth, unless otherwise stated, the context of the work will be E and the 

terms nest and nest algebra used in the generalised sense. 

If p is in a nest L, define p-  by p-  = V {q EL : q < p}. Then p-  is in L. We can 

define p§ analogously. 

L can be considered discrete or continuous (from below) at p according to 

whether or not p-  is distinct from p. 

REMARKS. 

(1) It might be thought that when E is a Hilbert space, our notion of a nest 

algebra N is more general than the usual one since L can contain non-self- 

adjoint projections. However, N is defined by its invariant subspaces, and these 

form a nest in the usual sense. In fact, every projection p, whose range coincides 

with that of a projection in L, is in N and is invariant under N. 

(2) The following example illustrates the need for our concept of complete- 

ness: Consider the Banach space l ~ of bounded sequences of complex numbers, 

and let L be the set {pn}U 1, where pn is the projection onto the first n 

coordinates. Then V {p, } = 1. However, if ~ is the sequence with I in each place, 

then 11 (1 -p~)s  c II = 1 for all n and so p, does not tend strongly to 1. This situation 

arises because the subspace V {r(pn)} is the set of sequences tending to zero. 

This has no complement and so is the range of no projection. 

Basic properties and examples 

All the fundamental properties which might be expected are present. For the 

Hilbert space versions of several of the following results, see Ringrose [4] or for 

Corollary 7, Christensen [1]. (The proofs are not essentially very different, but 
we are concerned here to establish the existence of certain operators, in addition 

to their membership of a given nest algebra and we cannot, of course, use 

adjoints.) Whenever a rank i operator a is mentioned below with vectors 7/in its 

range and ~ such that a~ -- r/, we have in mind the operator ~ @ , / for  the case in 

which E is a Hilbert space. For example, the linear functional f in Lemma 4 

below would then be given by f ( .  ) =  (., r/). 

Let L be nest, bounded by the real number k, and let N = alg(L). 

LEMMA 3. If  p is a non-zero projection in L, then 

pB (E)p C S. 



196 M. SPIVACK Isr. J. Math. 

For all p in L, p lNp  = {0}. 

PROOF. (Exactly as in [4] for Hilbert space.) 

Let q be in L, and a in B(E) .  

If q =< p-,  then pap lq = 0 = qpap-iq. 

If p < q, then p = qp and so 

pap-l  q = qpap-i q. 

Hence pap -~ is in N. 

LEMMA 4. Let p~, p~ be non-zero projections in L such that p~ < p~. Let ~ E p~, 

rl E p~ -p-~ be unit vectors. Then there is a rank 1 operator a in N such that 

a~l = ~, ap ~ = ap ~ = O, and II a II 2k. In particular, if p ~ < p~, then we may take 

p~ = p~ and choose ~, *1 E p~ -p-~. 

PROOF. By the Hahn-Banach Theorem there is g E E* such that g(, /)  = 1 

and 11 g ]1 = 1. Define f by 

f = go(p~ - p : )  

so that f(~')= g((p~ - p ; ) ~ )  for all ~" E E .  Then, clearly, f E E *  and 

IIf 1[ = < lips - p :  [I --< 2k. 

Define a by a~ = f(~')~ for all ff E E. Then a is a bounded linear operator of 

rank 1, Ila II = IIf II --<2k, and aT/= r Certainly apS = ap~ = 0  since 

(p~ - p~)p~ = (p~ - p~)p~ = O. 

Furthermore, for any p E L, 

p<=p~ ~ a p = a p ~ p = O = p a p  

and 

p,<=p ~ p ~ = r  ~ pap=ap .  

Hence a E N. 

LEMMA 5. If p~, p~ E L such that 0 < p~ < po and ~, ~1 are unit vectors in p~, 

po - po respectively, then there is a rank 1 operator a E N such that aT1 = ~, 

ap, = ap~ = 0 and II a II--< 2k. 

PROOF. As for Lemma 4. 

COROLLARY 6. If  p is a non-zero projection in L and rl is a non-zero vector in 

p- l ,  then r (p)CNT 1. In particular, if 1-<  1, then N~ = E  for all ~ E 1-1. 
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PROOF. Put p~ = p, p, = 1 in Lemma 4. 

COROLLARY 7. The commutant N'  of N is trivial. 

PROOF. Suppose first that 1- < 1. Let ~ E E, c E N'.  Choose 77 ~ 1 -• and a 

rank 1 operator  a E N such that aT/= ~. Then 

c~ = ca*l = acrl 

the last term being a scalar multiple of ~. Since this holds for all ~ ~ E, c must lie 

in C. Suppose now that 1- = 1. Let p be in L, 0 < p < 1. Choose ~ ~ p, r / E  p - I  

and a rank 1 operator  a E N such that a'0 = ~. Again, if c ~ N' ,  then c~ is a 

scalar multiple of ~. So cp is a multiple of p. However,  the set {p ~ L : p < 1} 

tends strongly to 1; so, since cp E Cp for all p < 1, c E C. 

EXAMPLES. Let L p denote the set of (equivalence classes of) Lebesgue 

measurable complex-valued functions f on the interval (0, 1) such that If  I p is 

integrable, where p is any real number such that p >= 1. Let  L = denote the set of 

essentially bounded functions in L p considered as the multiplication operators in 

B(LP).  Consider the set P = {X(o.~): )t E (0, 1)} of characteristic functions in L =. 

It is easy to see that P is a nest, and so we may take as a nest algebra N = alg(P). 

N then contains L ~ and the left-shift operators. We could, alternatively, choose 

as a nest any of the numerous sub-nests of P, giving rise to a nest N, containing 

N. For example, the sets 

P, ={X(o,,,)E P : n >= 1, r = O , . . . , n }  

are nests and are in the obvious sense discrete, whereas P is everywhere 

continuous. P is clearly a maximal nest. 

Incidentally, the trivial nest {0, 1} gives rise, of course, to the nest algebra 

B(E) .  

The derivation result 

We can now prove the main theorem. Let L, again, be a nest on E bounded by 

k and let N = alg(L). Let  6 : N---> B ( E )  be a continuous derivation. 

THEOREM 8. There exists an operator b in B ( E )  such that 6 = db IN, and 

II b II--< 2(1 + 4k )k  2 II 6 II, 

PROOF. Take the two cases, in which L is discrete at 1 and continuous at 1, 

separately. 

Case 1. Suppose 1- < 1. Choose any unit vector ~ E 1 - l .  Then by Corollary 
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6, N~ = E and in particular Lemma 4 gives us a rank 1 operator p~ such that 

p~s c = ~. Define a map b on E by 

bab~ = 8(ap~)~ for all a E N. 

b is well defined since a~ = 0 ~ ap~ = 0, and b is clearly linear and defined on 

the whole of E. It is easy to check, referring to Lemma 4, that [I ap~ II---- 2k II a~ [I. 

So b is bounded and II b II--< 2k t[ 8 I! because II ba~ II = II 8(apt)~ II =< II 8 tl II ap~ It. 

Furthermore, 8 = db IN since, for a, c in N, 

(ba - ab )c~ = 8(acp~)~ - aS(cp~)~ = 8(a)c~. 

Case 2. Suppose 1 -=  1. Then, if we write L as the directed set {p~}, 

{p~ : p~ < 1} tends strongly to 1. The construction will proceed as follows: for 

each p~ such that p, < 1, we will define an operator b~ such that 6 (a )p ,  = 

dbo(a)p,~ for all a E N and in such a way that {b~} has a strong limit. 

For each p~ < 1, choose p,,, p,,, in L such that p~ < p,, < po~ < 1, and unit 

vectors sc~, ~ p~, - p~, ~ E p~ - p~,. Now choose a rank 1 operator q~ in N as in 

Lemma 4 so that q~:~: = ~, and II q~ II--< 2k. 
By Corollary 6, N~, D r(p~), so we can define b~ on E by 

b,,a~, = b~aq~,,2 = ~ (aq~)~,,2 for all a E N 

such that a~,, E p~, and 

b~p~ = O. 

b~ is well defined since aq. = 0 whenever a ~  1 = O. b. is bounded: 

II b~a~,, II--< II ~ II II aq,~ II--< 2k II 8 II II a~ol II 

so It bo I Po ~11--- 2k II 8 II, and therefore 

[[bo II = tl(b. IP.)Po 11----2k lip= II ll~ II--< 2k=~11811. 

Furthermore, for a, c E N, where c~,, ~ p~, 

( b~a - ab, )c~, = 6 ( acq~ )~2 - a6 ( cq. )(~,~ = 8 ( a )c~,~ 

and so ~ (a)p~ = db. (a)p. for all a E N. 

We would expect, for p. < po, that (b,, - b ~ ) p ,  E Cp~, and we can show this 

directly: Let p~, p~ be in L, with po~ < p~ < 1. Choose a rank 1 operator q in N 

according to Lemma 5 so that q~o, = ~2, and II q II---- 2k. Comparing b~, be on p~, 

we have, for a E N such that a~2 E po: 
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and 

Therefore, 

b~a~, = 6 ( aqo ) ~  = 6 ( aq~ ) q q ~  

b~a~, = b ~ a q ~ q q ~  = 6 ( aq~qq~ )~e~. 

(b~ - b~ )a~o, = aq..3 (qq~ )!de~ = I~a~.,, 

say, where /z is the complex number such that 

1~4~, = q,,3 ( qq~ ) ~ .  

Note that 

[ I~ [ = [ f (~ (qq~)~)  [ ~ II f II II ~ II II q H II q~ II ~ (2 k)3 [[ ~ II, 

where f ~ E* is defined for q~ as in Lemma 5. This shows what we want for p~ 

and p~ when P~2 < P~- The same thing thus applies even if p~2 _-> p~, since there 

exists p~, say, such that p~ _-> V {P~2,Pt~} and both (b, ,-b~)p~ and (be - b~)p~ are 

multiples of p~. 
Now fix pl, say, in L, 0 < p, < 1, and construct b, as above. By the argument 

above we can suppose, for each po => pl, that (b~ - bl)pl = 0, by replacing each b~ 

with b~ - / ~ ,  where tz~pl = (b~ - b~)pl. The bound for the norm of each b~ is then 

given by 

Ilb~ 11--<2( 1 +4k)k2113 11. 

So we now have an "increasing" bounded set {b~} of which each b~ 

implements 8 on po. There is clearly a strong limit b in B ( E )  with lib II= 

2(1 + 4k)k  2 It 6 II, and bp= = b~p~ for all p, < 1. Hence b implements 6 on N. 

REMARKS. 

(1) Let E be a Hilbert space. Then the rank 1 operators referred to in the 

above proof all have norm 1. The bound for [[ b If then reduces to 2 II ~ II- In fact, 
instead of adjusting each b~, we could have appealed, in this case, to weak 

compactness, and this would yield a bound of [[ 3 [[ for the norm of b. This is 

essentially Lance's proof [3]. 

(2) The existing proofs, [1] and [3], of the Hilbert space version of this result 

also, effectively, consider the continuous and discrete cases separately. As long 

as L is a non-trivial Hilbert space nest a construction can be made which avoids 

this [5], but the process is then far more complicated. 
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