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The paper studies the problem of wave transmission along a fluid-loaded plane elastic
membrane supported by a finite array of equally spaced ribs. One of the ribs is driven
by a time-harmonic line force and the rest have infinite impedance, so that fluid
loading provides the only mechanism for the transmission of energy. Existing
solutions for the infinite analogue exhibit a stop/pass band frequency structure, in
which the energy is, alternately, exponentially localized around the driving force and
constant along the array. However, at pass band frequencies this is inconsistent with
numerical studies of finite arrays, which reveal marked amplitude fluctuations. In
this paper an exact solution is given for a general finite configuration. This is used
to explain and further explore the response. In particular it is shown that as the
array length increases the pass band response becomes increasingly sensitive to
frequency, and the solution cannot approach an asymptotic limit.

The results give the forces along the array as an interference pattern, which may
be thought of as propagating inwards from each end. This solution is obtained by
forming a 2 x 2 matrix which relates the forces at any pair of adjacent ribs to those
at the next pair. From the action of this matrix the response can be found
everywhere, and the detailed properties of the solution are determined by those of
the matrix. Special treatment is needed to deal with the band edges, which conform
neither to stop nor pass band behaviour.

1. Introduction

This paper considers the problem of energy transmission in a configuration consisting
of a plane elastic membrane supported by a finite array of evenly spaced ribs, one
driven by a time-harmonic line force and the rest having infinite mechanical
impedance. The only coupling between adjacent bays is provided by fluid loading,
and is determined by the properties of a Green function, i.e. the velocity response of
an infinite unribbed fluid-loaded membrane to concentrated forcing. The Green
funetion, studied extensively by Crighton (1983, 1984), consists of an acoustic
component (7, and a subsonic surface wave component G; attention is restricted here
to regimes in which ¢, can be neglected. Inclusion of the acoustic component or any
degree of irregularity in the rib spacing leads to qualitatively different behaviour, at
any rate over sufficiently large distances. However, if the acoustic component or the
degree of irregularity are appropriately small, results based on the inclusion of only
the surface wave component will hold over extensive distances of interest in many
applications in aeronautical and marine engineering. Solutions for the infinite
analogues have been obtained by Crighton (1984) in the case of a doubly infinite
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array driven at the centre, and by Sobnack (1991) for the semi-infinite case in which
the first rib is driven. (This and related problems have been widely studied (see, for
example, Woolley 1980 ; Mace 1980; Crighton & Maidanik 1981 ; Maidanik & Dickey
1988; Crighton 1989; Mead 1990).) These solutions are expressed in terms of the
forces produced at each rib. The results reveal that the frequency range falls into stop
bands, in which the response is exponentially localized around the driven rib, and
pass bands, in which energy propagates to infinity unattenuated with constant
amplitude.

The response of finite structures falls similarly into pass and stop bands. However,
while the behaviour in the stop bands corresponds to the infinite analogue, most pass
band frequencies exhibit large fluctuations along the array, and at certain frequencies
the solutions are stable but distinet according to whether the number of ribs is odd
or even (Sobnack 1991). Such features persist as the number of ribs is increased, and
thus in general the finite-array solution does not approach a well-defined limit at
infinity. The object of this paper is to give the full solution for a general finite
configuration and to explain the observed features; in particular we consider the
overall behaviour as the array length is increased and the frequency changes, and
examine carefully the solution for the band-edges.

The solution may be simply formulated. Suppose the system consists of N ribs,
driven at the Mth. The problem is equivalent to solving a system of N linear
equations to find the vector F representing the forces at each rib. This system can be
arranged (except in the vicinity of the Mth equation) so that any adjacent pair of
values F,,, F, ., can be expressed in terms of the next pair ¥, ,, F,,, .. We thus obtain
a 2 x 2 ‘propagation matrix’ P which expresses this relationship and is independent
of m. (Such an approach is not new to problems of this type (Hood 1985).) In the stop
bands the eigenvalues of this matrix are real and determine the decay rate. In the
pass bands they lie on the complex unit circle, and result in unattenuated wave
propagation. To explain the amplitude variations, however, one must examine the
action of P more closely.

It is useful to think in terms of the waves to either side of the driven rib normalized
by the respective end-values F, and F. In effect these normalized waves propagate
inwards, until they encounter the driven rib, at which point the normalizing factors
to the left and the right are determined. Thus for a given frequency the pattern of
forces evolving from an end-rib is the same (to within a complex multiple) for any
length of array and wherever the driven rib is located. The detailed variations along
the array in the pass bands can then be characterized as interference between two
waves, each due to the propagation of one of the eigenvectors of P. Each of these
waves turns out to have constant amplitude, so that the solution at each pass
frequency is a simple interference pattern.

From this model a broader picture emerges. The response of the arrays in the pass
bands becomes increasingly sensitive to the driving frequency with distance from the
ends of the array. This is because the waves at neighbouring frequencies propagate
at different speeds, governed by the eigenvalues. It is also found that the amplitude
is constant along the array only at the frequencies at the upper edges and middle of
the pass bands. At the Jower pass band edges it is found that the amplitude decays
linearly away from the driven rib, and it will be shown that none of the band edges
strictly conforms either to stop band or pass band behaviour. It is further shown that
the forces at frequencies close to the lower band edges reach maximum amplitudes
which increase unboundedly with array length.
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Wave propagation in finite periodically ribbed structures 617

It is feasible to extend this approach to treat more general Green functions. A more
important aspect is that it opens the way to an analytical treatment of the
localization which is observed in randomly perturbed systems (Sobnack 1991). 1t is
hoped to treat this in another paper. An incidental consequence of the model which
should also be mentioned is that it provides the solution for arbitrarily large systems,
avoiding the highly inaccurate inversion of large matrices.

The paper is organized as follows: in §2 the governing equations are set out. The
general solution is formulated in §3, after derivation of the propagation matrix and
its properties. Most of the results of this section apply to any Green function of
exponential form. Simple explicit solutions are found in §4 for the special cases which
arise at the boundaries between bands and in the middle of the pass bands. The
solution in the stop bands reduces to a simple form because for large arrays one of
the eigenvalues dominates, and this solution is given in §5. The section also considers
further the behaviour of the solution as the frequency changes and as the array
length increases. Upper and lower bounds are found for the fluctuating amplitudes
at each pass band frequency, and the most relevant quantities which arise in the
solution are illustrated. The structural response of the membrane beyond the region
supported by ribs is also given.

2. Mathematical formulation

The physical model and the Green function and its properties have been fully
described elsewhere (Crighton 1983, 1984 ; Sobnack 1991) and details will not be
repeated at length here. It is assumed that an elastic membrane lies in the plane
y = 0, with a static compressible fluid in the half-space ¥ > 0 and a vacuum in y < 0.
The membrane is supported by N thin ribs along the lines z,, = mh where m = 1, ...,
N. The rib at z,, for some M < N is driven in the y-direction by a time-harmonic line-
force, and all other ribs have infinite mechanical impedance. Fluid loading is
therefore the only mechanism by which energy can be transmitted away from the
vicinity of the driven rib. A harmonic time dependence exp (—iw?) is to be understood
throughout. The response of the membrane is characterized by the velocity V(z), and
the velocity at the mth rib is denoted V,,, so that V,, = 0 for m # M. The force on the
membrane due to the mth rib is denoted F,, and the Green function of the fluid-
loaded membrane is G. Then G = G, + G where G, and G, denote the acoustic and
subsonic surface wave components respectively. If the ribs are widely spaced in an
appropriate sense, then G(x, —x,) can be approximated by G, for n # m, and this
assumption is made here. The main problem with which this paper is concerned is the
solution for the forces F',.

It will be assumed that the velocity V,, at the driven rib is known, and the force
Fy; required to produce this will be found as part of the solution. (The solution of the
related problem in which the force is prescribed is obtained simply by renormalizing
throughout by F,,.) The structural response of the membrane is given by

N
n=1
and the forces are related to the velocities by
N
n=1
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Under the assumption that G (x) can be neglected except for small arguments the
Green function has the form G(x) = A exp (iklz]) for z # 0, and G(0) = 4,. The
problem may be scaled in such a way that the velocity at z, is unity, the factors 4 _,
A, simplify, and the rib-spacing % is subsumed into the scaled driving frequency ¢.
This gives rise to the matrix equation

W = AF, (3)

where W is the vector of scaled velocities, which takes the value 1 at the M-th place
and zero elsewhere, F = {F} is the vector of forces, with m = 1,...,N, and 4 is the
symmetric N x N matrix given by

A =exp(iglj—kl), for j#k,
with diagonal Ay, =1—i/v/3.

For the specific form of this diagonal it is assumed that the fluid and membrane
parameters correspond to the low-frequency range of heavy fluid loading. At higher
frequencies a more complex form arises; for such frequencies it would be
straightforward to derive results similar in structure to those in this paper, although
more complicated in detail.

The scaled frequency ¢ may be assumed to lie in (0,27n]. By convention x is taken
to increase from left to right. It will be assumed that the driven rib is not at the right-
hand end. Define z=exp(i¢), and =4, , =1-i/4/3. This matrix equation
represents a system of N linear equations which will be labelled [1] to [&], so that
equation [m], say, where m # M, is

0=z""F +...+2F, +BF,+zF, ,+..+zN""F, [m]

and equation [M] is similar but with 0 on the left replaced by 1.

Since the solution is first to be obtained for the forces normalized by the values at
the end-ribs, we define £, =F, /F, for m =M, and similarly £, =F, /F, for
m <M. (Note that we have chosen to normalize the force at the driven rib by
the factor to the right.) It will be shown that, provided m <M < N—m+1,
By =Ey i

3. General solution

In this section the expressions which describe the transmission along the structure
are derived, and these will later be used to explore in detail the resulting pattern of
waves. The first step is to rearrange the equations in §2 so that the force at any rib
is expressed completely in terms of those at neighbouring ribs. This is possible
because of the form of the underlying Green function, and is the key property. This
leads to the definition of the constant 2 x 2 matrix P, which gives the forces at any
pair of adjacent ribs in terms of the next two and whose properties thus govern the
nature of the solution. The next step is therefore to identify these properties, by
finding the eigenvectors and eigenvalues of P as functions of frequency. When this
has been done the forces E,, normalized by the end-values are obtained in terms of
powers of the eigenvalues, and this finally allows the normalizing factors to be
derived in closed form. Other features such as the maximum and minimum
amplitudes along the array will be discussed later.

The derivations are straightforward and details will be kept brief. (There are
necessarily a large number of equations: for each of the several cases the forces at the
end-ribs and driven rib must be obtained, and these further depend on the location
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Wave propagation in finite periodically ribbed structures 619

of the driven rib.) Further discussion and illustration of most of the quantities will
be given in §5. Unless stated otherwise the expressions obtained apply to the right
of the driven rib, that is for F,, where m > M, and extend in the obvious way to the
left. The word ‘amplitude’ is used throughout to describe the modulus of the force.

(a) Derivation of propagation matriz

Consider any equations [m], [m+1] and [m+2] above, where M <m. 1t is
convenient to write these in vector form, so that, for example, equation [m] is

0=("12"2 .. 2,8,2...2Y"™)F,
where § appears in the mth place.
Multiply equation [m] by z and 2* in turn, where z = exp (i@), to get
0= (2™, 2m1 .. 22 B,2,2%,2%, 24 ... 2N ™) - F, (4)
0= (Mt 2™ .. 2% 3,22, 25,24, 2% ... V"™ 2) . F, (5)
Subtract (4) from equation [m+1], and (5) from equation [m+2] to give,
respectively,
0=(0,0...0,2(1—=p), =22 2(1—2%),2*(1 —22) ...2YN ™7 (1 —2%)- F (6)

and
0=1(0,0...0,22— 2% 2—2%, f—2*, 2—25 .. N2 N-mi2y. | (7)

Multiplying (7) by 2z we can write
0=1(0,0...0,22(1 =), 2%(1 —2%),2(f—2*),22(1 —2%) ... 2V Y1 —2%))-F (8)
If we put y = (1—2*)/(1—2% = 1+2% and multiply (6) by y we get
0=1(0,0...0,2(1 =) y,(B—2%) v,2(1 —=2%) y,22(L =2 ...2Y" ™ (1L —=24)-F. (9)
Finally we can subtract (9) from (8) and revert to standard notation to get
(2 (1 =) —2(1= ) 71, + [2*(1 —2%) — (B—2") Y] Fppss
+l2(B—2)—2(1=2°) Y] F, ., = 0. (10)
This can be rearranged to give
a, F,+aol, +o,F, . ,=0, (11)

where o = (2— ) 22— and o, = 2(f—1).

Although this already gives F,, in terms of the values at two adjacent ribs, it is
more convenient to express the solution in the form of a propagation matrix. From
(11) we have

F, =—=F, ,— (/o) Fpiy

m

and, provided m—1 # M,
Fry = (afay) Fpp+ (/o) = 1] Fp .
If we define a/a, = w and write the real and imaginary components of w explicitly,
we find that w is real for all ¢, and
w=—2[cos¢++4/3sin¢g] = —4cos (¢—in), (12)

so that w takes values in the range [—4,4].
The propagation matrix equation is then given by

(F, F,) = P(Fm+1’Fm+2)> (13)

m—1>"m
Proc. R. Soc. Lond. A (1991)
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ratio of forces at last two ribs

0 2 4 6
frequency

Figure 1. The modulus of the ratio » (equation (17)) between the forces on the last two ribs as a
function of frequency. The frequencies at which v becomes unity are those for which the amplitudes
of the forces are constant along the array.

where P is the matrix

—w —1

P=(“’2"l ‘”). (14)

This holds provided the driven rib is not located between m —1 and m+-2.
The same propagation matrix holds for the incoming wave to the left of the driven
rib, so that for M > m+2

(Fm+1’Fm+2) = P(F F )- (15)

m—1>%m

The choice of the inward-propagating matrix P rather than the outward-going P
will shortly become clear; it enables us to specify an ‘initial condition’ for the wave
in the form of the two end values (Fy_,, Fy), to within the scalar multiple . (Note
that the results which follow can also be derived via the ‘square root’ of P whose

1

action is (F,,, F,.) = PF, ., F, .. for M <m—1.)

(b) Initial condition for the propagation matrix

The force F_, can be found in terms of ', immediately. Multiply equation [N —1]
by z and subtract from equation [N] to obtain

Fy_ i =VvFy, (16)
where v=(2=p)/=2(1—7).
Then v = — (w+2), that is
v=cos¢+(2v/3—1)sin¢. (L7)

Recalling that K, = F_ /F, for all m > M, the initial vector for the propagation

matrix is
(Fy 1, Fy)=FyEy 1 BEy) = Fy(, 1).

Similar equations hold to the left of the driven rib, and in particular ¥, = vF,. Note
that the forces can only have constant amplitude when |F_,| = |Fy[,i.e.|v| = 1, and
this only happens at the four frequencies in, n, &n, and 2n (see figure 1).

The behaviour of > must now be characterized in terms of the driving frequency,
by identifying its eigenvalues and eigenvectors. Since (Fy_om 1:Fn_om) =
P™(Fy_y, Fy) for all m up to the driven rib, it is clear that the eigenvalues largely
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determine the long-range evolution of the wave. The eigenvectors are needed
explicitly because they, and their components which comprise the initial vector
(F'y_1, F'y), give the detailed solution.

To find these quantities, consider the equation P(z,y) = A(z, ). It is easy to show
that the component x can never vanish except when w = 0; then P =—1 and no
inconsistency arises by choosing « # 0. Thus in general we can choose z =1, and
simply solve P(1,y) = A(1, y) to give eigenvalues A; and representative vectors (1, ;)
in the corresponding eigenspaces. Special cases occur when w = 2r, w, 3% and 2%, and
these will be treated separately.

(c) Eigenvalues of P

The determinant of P is 1 so its eigenvalues have product unity. These eigenvalues

are given by
Ay =3 —24+ 0wy (0P —4)) (18)

for ¢ = 1,2, where ¢ = 1 denotes the one with the positive sign before the square root.

Since w is real, the eigenvalues are real when w? > 4. Otherwise the term +/(w*—4)
is imaginary, and the eigenvalues are complex conjugates with modulus 1. The
condition w? > 4 is equivalent to ¢ € (0,%n) or ¢ € (n,in). The broad pass band/stop
band structure is already apparent: when the eigenvalues are real the larger one A,
dominates, and P™ acts like AT* on the corresponding eigenvector, which is equivalent
to exponential decay from the driven rib. When the values are complex they have
modulus one and both eigenvectors propagate without attenuation over any
distance. This will be quantified more precisely later, but we can henceforth refer to
the frequency ranges (0, 2r), (7, 2n) as the stop bands, and (3r, ©t), (8r, 27) as the pass
bands.

There are six degenerate cases. At the four edge frequencies 2m, m, $n, and 2m,
w? = 4 and the eigenvalues coincide at the value 1. At the two middle pass band
frequencies, ¢ = 21 and iw, w becomes zero and the eigenvalues both take the value
—1. The edge frequencies must be treated separately, and except where stated
otherwise the expressions derived below do not apply to them. The two middle pass
band frequencies will also be dealt with explicitly, but are not excluded from what
follows.

(d) Eigenvectors of P

Now consider the corresponding eigenspaces. As discussed earlier these can be
represented by eigenvectors of the form x;, = (1,y,), for ¢ = 1, 2. The eigenvectors
corresponding to the eigenvalues are then (1,y,;) where

i = -0tV (0" —4) (19)

and again ¢ = 1 corresponds to the positive sign. Then y,y, = 1, and in the pass
bands fy,] = 1, so that in that case the two components of each eigenvector x; have
equal amplitude.

These two vectors are not in general orthogonal. They coincide only at the four
edge frequencies, when the eigenvalues themselves coincide.

The relationship between A; and y; is particularly convenient. Taking the square

of y, immediately gives
Yi=2A, Yzs=2X (20)

so that A, 52 = 1. (In fact the components y,; are the eigenvalues of the square root

operator Pt mentioned above.) This greatly simplifies the eventual solution.
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(e) Projection of initial vector onto eigenvectors
Finally we want to decompose the end vector (Fy_,,Fy) in terms of the
eigenvectors, since the action of P on these has been found explicitly.
Write (¥ y_;,Ey) = gy X, + 45 X,. This gives a simple pair of linear equations
prtpe =V, it Yy =1 (21)
Then provided the term 4/ (w?—4) does not vanish (which again it does only at the
band edges)
— L —vy, _ Yo(2—Ys)
MT V-4 T Ve

Thus (Fy_y, Fy) = Fy(p; X+ p5 X5).

— vy, —1 _%(yl—z)
V=4 " V(e

(22)

(f) Solutions for the normalized waves

The first part of the solution can now be formulated, which describes how the
vector of forces propagates inwards from the end ribs under the action of . Now
By sm-1: By _om) = P"(By 1, Ey), so that from (22)

(B y—gm-1>En_gm) = AT po1 X1+ AT gy X,

It is convenient temporarily to consider separately the waves on the odd- and
even-numbered ribs, and these are immediately apparent:

By om = AT 1y + 23" 13y,

for N>=N—2m > M; and
By om = AT i+ AT 1y

for N> N—2m—1> M. Although these represent two distinct waves their
relationship is simplified by (20). Then, except at the four band-edges, the solution
to the right of the driven rib normalized by the end force is

By =98 97 ey, (23a)

where M < N—m. Within the pass bands this is a simple interference pattern, which
will be explored further in §5.
The solution to the left of M (directly or by symmetry) is similar:

B, =y 77 s (230)

for 1 < m < M. This equation is enough to characterize most features of the solution
which interest us, including phase and amplitude fluctuations in the pass bands and
rates of exponential decay in the stop bands. This illustrated in §5 (see for example
figures 3 and 4). The equation is independent both of the location of the driving force
and of the array length. Thus the pattern of forces which evolves from an end-rib for
any two configurations is the same except for a scalar factor.

(g9) The force at the driven rib and the factors F,, Fy

To complete the solution the force I, at the driven rib and the multiplying factors
Fy, Fy to each side of it must be determined. The following equations apply at all
frequencies, except those expressions written in closed form, which exclude the band
edges.
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System driven at an end rib

Suppose first that the driving force is at the beginning of the array, so that
M = 1. Then E, can be obtained from any of the equations [2] to [V]. From equation

[2],

N-2
By =—2" 3 2B+ iE,. (24)
i=0
Substituting the expression (23),
N—-2 .
By =—27" X 2y Ty ) e il
i=0

N-2 2 ] 4
=—2yy 'y X <—) —2y E (y) +752 1By,
1

=0 2. t~0

in which the geometric series can be summed to obtain

N-1__,N-1 N-1__,N-1
E — _z—l [/“1(% 2 )+/u’2(yl 2 ):]+“1—Z_li_E .
! Yo (s —2) Y1 (4, —2) Ve ?

Using (22) this can be written

IB -1 1 N—2 N—-2
B =—X=t — _ — .
1 W) A A B 3V =) (' =y ) (25)

Although the denominator 4/ (w? —4) vanishes at the band edges, it can be written
Yy, —¥, which is a factor of the numerator, and (25) remains bounded. The limiting
values at the band edges are given in §4.

The normalizing factor F, can finally be obtained by dividing equation [1] by Fy
and taking the reciprocal of each side:

N -1
Fy= [ﬂEﬁ— P zi‘lE'{l ) (26a)
i=2
The sum here can again be written in closed form:

N N-2 )
D zz—lEi =3 ZHIEHz

=2 =0

N—-2 )
=ZZ7«Z(NZ3,LL1+Z/NZ3//4)
i=0

ZM( V- 1) ﬁg<yiv~1_zzv—1)

-z Y Y1—%
e T VAV (Tt

Combining this with (25) leads to

lﬂ N—-2 N— 2)]_1. (26 b)

FN:[—-Z . e R SV

2/ (0P —4)

Proc. R. Soc. Lond. A {(1991)



624 Mark Spwack
From (25) and (265) the force F, at the driven rib can now be written
P BV 3y ' — )+lz(yN * yé“"") .
V3(E -4 (yr —?/2 N—ifayy -y )
Similarly the forces F,, = K, F, are given for all m by (23a) and (26b).

System driven away from end rib

Now let M > 2. One quantity of interest is the magnitude of the ratio B = F, /F.
This can be found without first explicitly writing #,,, and the remaining forces can
be written in terms of R. If we let m = M we can rearrange equations [M — 1}-[M + 1]
as in the derivation of the matrix P (equations (4)—(12)), taking account of the non-
zero left hand side of equation [M]. Multiplying equation [M] by z and subtracting

equation [M + 1] we obtain
N-M

= U~ Fy+ =) Pyt & 272~ 1) Py (28)

i=2
Similarly we can express F, in terms of the forces to the left:

M-1

=2f—1)Fy+ (=) Fyyy+ Z 2122 = 1) oy
k=2

Subtracting the first from the second and rearranging yields

N-M
Vi (=) By + AZ PHZ— 1) By
= = . (29a)
N Byt DT By,
k=2

In closed form this becomes

Fl _ \/3 22——,3 N~M N*M)—lz(?/llv M-1 yN—M—l)
Fyv o V3G —ﬂ R R e
Note that when the middle rib is driven, that is M = LN+ 1), this reduces trivially
to I, =F,.

Finally (29) can be used to obtain F,;, and explicit values for /|, and F. Dividing
equation [M + 1] by I, and rearranging gives

R=

(29b)

F M-1
BEy=—-z [ LY MR —JHiE,,, + Z =M= IE]
FN J=1 j=M+1
From (28) for example
z NoM
=B Ey+ @ =) Byt Z @) By,
Fy j=2 !

so that with the above form for E,,

F M-1 N— —1
FN=z[(1—ﬂ)F % MR+ LB By, + 2 A7(? —ﬂ)EM+,-] :

N j=1 j=1

Evaluating the series eventually yields

By =—2 {0 —4) 5 [22RyM =y ¥ + By M —y M) + gz (y M — M)
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Fy =2v(@ =4 [22(1=B) Ry —y3" )+ (5B +2"— )
X (7 M —yy M) =iy M Ty YN (B

and by symmetry

Fy =2/ (0*—=4) [22(1 =) Ry M —yd M)+ (i +2°—p)
X (' =yt ) = HifyY P =y T (32)

where for brevity B = F,/F ) has been retained and denotes the form (295).

The solutions for the normalized waves and for the forces at the end-ribs and at
the driven rib have now been obtained. At the middle and edges of the pass bands,
however, the waveforms simplify. In addition those for the stop bands have a much
simpler limiting form because one eigenvalue dominates. The solutions will be given
in the following sections.

4. Special cases

This section considers the solutions at the frequencies marking the stop/pass band
edges and those at the centres of the pass bands. The waveforms in these cases are
obtained explicitly, and their limits for large N are found. Discussion of the stop band
frequencies will be left until §5. For brevity the derivations will be restricted to the
case of a driving force at one end, except for the two upper pass band edges.

At the band-edges the derivation of the eigenvectors breaks down, but (13)—(16)
remain valid, and from these we can find the solution directly. When this is done it
is found that the solutions at the edge frequencies do not strictly conform either to
stop band or pass band behaviour. The upper edges have constant amplitude for each
N, but as N increases this amplitude tends to zero; conversely at the lower edges the
amplitude decreases from approximately 3 to nearly zero at the end, but does so
linearly so that the amplitude at any given rib approaches the value 3 as N increases.

The parameter o takes the value 2 when ¢ = © or 3%, and w = —2 when ¢ = 2x or
2n. Consider the action of P on any vector (z,y). When w = —2,
P(,y) = Be—2y,2¢—y) = (x,y)+2(x—y,x—y) (33)

and when w = 2

Px,y)y = Bz+2y, —2x—y) = (x,y)+2(x+y, —2x—y). (330)

Now replace (z,y) by (Ey_1,1) = (v,1) and apply this to the six cases.

(a) Upper pass band edges
¢ =2n:

When ¢ = 2x, v = 1 and from (33a) we obtain P(v,1) = (v, 1). Then F,, = F for all
m > M, and similarly F,, = F, for m <M. The expression in (29a) for the ratio F,/Fy
becomes 1 for all N and M, so that F,, = F, for all m # M. Explicit solutions are easily
found when these values are substituted in equations [M], [M + 1]. These equations

become
Il =pF,+(N—1)Fy and O0=F,+(f+N-2)F,.

The solution is thus
F,=Fy=3/(1+iN+/3) (34 a)

m
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for all m # M. This has amplitude 3/4/(1+ 3N?), which tends to zero as N increases.
The force F,, at the driven rib is:
Fyy = Fy(1—N+ Zgi). (34b)

Therefore for fixed length N the wave propagates without attenuation, but the
amplitude at any rib tends to zero as N approaches infinity. Furthermore the solution
is independent of the location of the driving force.

p=m:
When ¢ = n, v = 1 and (33b) again yields P(v,1) = (v, 1). Then the forces F,, have
amplitude equal to F, when m > M, with alternating sign,

F, = (=1)N"Fy, (35a)
and similarly F,, = (—1)™F, for m < M. The amplitudes of the forces at the end-ribs
are again equal, but with sign depending on N,

F, = (—1)¥1F,. (35b)

(b) Lower pass band edges

¢ =in:

A more surprising situation arises at the lower pass band edges. When ¢ = 2x,
v # 1 and (33a) gives P(v,1) = (v,1)+2(v—1,v—1) and since P acts as the identity
on the second term on the right

P, 1) = (v, )+ 2m(v—1,v—1).
The wave therefore grows linearly as it propagates away from the end-rib,
Ey pm=1+O—m)p—1).

This corresponds to linear decay from the driven rib and again inspection of the

behaviour with increasing N shows that it belongs neither to a stop band nor a pass
band.
Now v = 2—2, so that

By p=1+k(v—1) = 1 +k—ke. (36)
Let M = 1. Note that 2> = Z and 2* = 1. Equation [2] then gives
N
—zE, = B1+(1—2) (N=2)]+ Z Z2[1+(1—2) (N—))].
j=3

Assuming for the moment that N—2 is a multiple of 3, the sum on the right can be
written

FV=2) z+z+ 1)+ 351 —2) N=2)[2(N—1)+2(N—3)+ (N—5)] = {N—2)[22—z—1],

so that B, =—zf[1+(1—2)(N—2)]—3N—-2)[2—2—7]
=—Zf—N-2)[30(z—1)+2—2—2Z].
Since # = %z, and z = §(i4/3—1), this simplifies to
E,=N—1+Ji. (36b)
From equations [1] and [2]
1/Fy=(—2")E,+2(1-B)E,.
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Recall that £, = 1+ (¥N—2) (1 —=z) so that, for large N, £, ~ tN(3—1i4/3), which has
modulus 4/3N. Then since

f—22=38+J5) and 2(1—p) =—3(1+2i)
for large N the above expression yields
1/Fy ~ 3N(1+73)
so that, finally,

24/3
Fom~—Y2
¥ NWV3HY) (86¢)
and from (36a)
F,=FyE, ~3(v/3—-1)/(v/3+1). (364)
Similarly from (3656) the driving force is
Fy=FyE, ~2/(1+J). (36e¢)

This shows that the solution F,, decays linearly in amplitude from approximately 3
at the second rib to nearly zero at the end. Thus in the limit of large N, #,, tends to
the value 3 for all m, and in this sense the frequency belongs neither to a pass nor a
stop band.

The solution is similar when N—2 is no longer a multiple of 3, and identical in the
limit of large N. The forces in the general case M # 1 may be found similarly.

¢ =2
At the lower edge of the second pass band, ¢ = 3w, the solution is similar. Again
v# 1 and (33b) gives

P, 1) = (n,1)+2mv+1, —v—1).

Now in this case v = — (24 2). The wave again grows linearly but with alternating
sign as it propagates away from the end-rib
By = (—1)* 1 —k(v+1)) = (—1)¥(1+k+kz). (361)
Since exp (3in) = —exp (Ein), (36f) gives the same values for the forces as (36a) apart
from the alternating sign. The algebra carries through as before to give
Fy ~ (=1)¥124/3/N(v/3+1), (369)
Fy ~—=3(v/3—-1)/(v/3+1), (36h)

and # is given again by (36e).

(c) Middle pass band frequencies

As indicated earlier solutions for the frequencies in the middle of each pass band,
that is 21 and ¥, can also be written more simply than the equations in §3. In these
cases, as noted by Sobnack (1991), the wave has constant amplitude along the array,
but its value depends on whether the length is even or odd. (See Sobnack 1991 for
a different approach.)

In each of these cases, w vanishes, and v = —z, so that (£,_;,Ey) = (—z, 1), and
P =—1. The wave therefore has constant amplitude, and takes the form
Ey_gm=(=1)", Ey_gm=(—1)"""2 (37a)
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provided M is less than N—2m and N—2m —1 respectively, and similarly for the ribs
to the left of M.

Now y, =1, and z=4(—+/3+1) when ¢ =2n, and z = {(+/3—1) when ¢ = ¥n.
Substituting these values in the respective equations gives the end-values F}, F', and
the force F,, at the driven rib. Let M = 1. If N is even the second term in (26b)
vanishes, and the first term becomes +3(+1/3—1),

Fy=16/(v3-1), (370)

which has modulus 3, where the plus sign applies in the lower pass band. When N is
odd the first term vanishes and

Fy=—3/(1+/30), (37¢)

which has modulus §. Similar simple forms can be found for the force ¥, at the driven
rib, and for the corresponding quantities when M # 1.

These two frequencies thus illustrate vividly the absence of an asymptotic solution
as N tends to infinity.

5. Further results and illustrations

The above solutions allow us to examine the waveforms in some detail, and in
particular to explore their dependence upon frequency, array length, and position of
the driving force. Although the band structure is clear, several important quantities
have yet to be evaluated explicitly. These include, in the stop bands, the decay-rate
and the amplitudes around the driven rib, and in the pass bands details of the
underlying interference pattern. This is the main purpose of this section, which
includes several illustrative examples. It is shown in particular how the pass band
response fails to approach an asymptotic limit. In addition the questions of
maximum and minimum amplitudes along the array, and of periodic solutions, are
briefly examined. The final results give the response V(z) of the membrane beyond
the ribbed region in terms of the force at the nearest end-rib.

Wavelengths and decay rates can be discussed in terms either of the eigenvalues
A; or their square roots y,, as in (23). Recall that as the frequency ¢ changes from 0
to 27 the solution sweeps alternately through stop and pass bands. The eigenvalues
are at first real, in the stop band, the larger one increasing from 1 to its maximum
in the middle and back to 1 at the pass band edge, and then wind once around the
complex unit circle and back to unity at the next band edge.

The ratio ¥y _,/F, between the forces at the two end ribs is given by v, and as
mentioned above the forces are only constant along the array when [v] = 1, which
happens only at the middle and upper edges of the pass bands. Figure 1 is a graph
of this ratio against frequency.

(a) Asymptotic solution in stop bands

When ¢ is within a stop band the component x, x, of (£ _,, £ ) associated with the
smaller eigenvalue A; will decay exponentially as it propagates away from the Nth
rib. The other component u, x, will increase exponentially at the same rate, and so
for any frequency the solution at any rib simplifies and approaches a limiting form
as the array-length increases. In the lower stop band the eigenvalues are positive and
the larger one is A;, and in the upper stop band they are negative and A, becomes the
larger one.
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Assume first that the driven rib is at the left, M = 1. The solution for the
normalized values £,, from (23) is thus

B~y ™ (38)
so that L s A

where ¥ = In (|ly;]) = 3In(|A,]) defines the decay-rate. Since the eigenvalues are
negative in the upper stop band the forces £,, have alternating sign there from one
rib to the next. From (38) and (24) the force at the driven rib is

By~ iy =2 [ (L—zy) =270,
which simplifies to
By~ payp 7 (L=zyy).

This in turn gives rise to a simple form for the end-value #,

pooe Y Wi—2) (Y—)
o wil Bly;—2)+2y;(y;—2)]

When this is combined with the previous expressions to find F,, = Fy E,, the N-
dependence vanishes, and the solution assumes the asymptotic form

- (¥ —2) (y;—2)
F,, ~y;m+? ¢ J 39a
Yi ﬂ(% —z)tzy,(y;— =) ( )
for m =2 2 and
F~ Y2 . (395)

Bly;—z) +2y;(y;—2)

The decay-length, 1/, is shown in figure 2a as a function of frequency. The value
reaches a minimum of 1/In (24 4/3), at the middle frequency ¢ = im, and tends to
infinity at the band edges. The picture for the second stop band is identical, with the
minimum decay-length again in the middle, at ¢ = {n. The amplitudes of the driving
force F, and of F, from (39a) are shown in figure 26. Note that F, tends to zero at the
lower band edge, which is consistent with the limit from the pass band side, (345).

Now let M = 2. Then it is easily shown from (29) that theratio ', /F, takes the form

F/Fy ~ y 7M1, (39¢)

A more useful measure, however, is the ratio of the forces immediately adjacent to
the driving force. Since Fyy_/Fry i = Epy (Fy/Ey Fy it is easy to show that

Fo ifFppn ~ 1 (40)

provided the driven rib is reasonably far from either end. Thus, as one would expect
in this case, the forces to either side of the driven rib are equal. This is in sharp
contrast with the pass bands, as will be shown.

(b) Periodicity, amplitude bounds, and other results in pass bands

The behaviour which occurs in the pass bands is more complex. Associated with
each frequency is a wave, (23), resulting from the interference between the
eigencomponents. It is useful to consider the continuous analogue

J@) =yt yi e
Proc. B. Soc. Lond. A (1991)



630

Mark Spivack

164 3+

(@) (b)
o 3
= 7] -
« O
o 12 T
= 7
e 8 & 1
ob 3 ;;
8 s 1%
> 4 3
SR & 1
K} R

T T T l[- : T T [ T =
0 1 2 0 1 2

frequency frequency

Figure 2. Graphs as functions of frequency in the lower stop band of (a) the decay length 1/y, and
(b) the forces at the driven rib (dotted line) and the adjacent rib (full line) in an array of length 20
with the first rib driven.
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Figure 3. Normalized amplitudes along the array at two pass band frequencies, as a function of rib
position (@) with ¢ = In (dots) against the continuous wave f{x), over 15 ribs and (b) with ¢ = 2.6
over 76 ribs. Neither of these includes the driving forces.

of the expression in (23). As the frequency changes across each pass band, the
eigenvalues A; make one complete circuit of the unit circle, coinciding only at the
edges and middle of the band, where they take the values 1 and —1 respectively.
Their square roots y,; travel halfway round the circle, from 1 to —1 as frequency
increases in the lower pass band and from —1 to 1 in the upper band. The wavelength
of the continuous wave approaches infinity at the edges and is at a minimum of 2 in
the middle of the bands, so that the rib spacing is never greater than half a
wavelength. Figure 3 shows the amplitude of the forces £,, for two typical frequencies,
where the driving force at x,, is anywhere to the left. In the first of these, figure 3a,
f(z) has been superimposed on the forces along the last 15 ribs to the right. Since the
normalized wave is independent of the length N, this plot represents the last 15 ribs
of any system with N—M > 16. Figure 3b shows the response, which in this case is
more regular, of a longer array driven at a different frequency.

1t is clear when we consider the normalized wave as the driving frequency ¢
changes across the pass band that the pattern becomes increasingly sensitive to ¢ as
distance from the end-ribs increases. The reason is simply that a small change in ¢
leads to a large change in y* when n is large; in other words the interference patterns
(23) at slightly different frequencies propagate at different speeds and eventually

Proc. R. Soc. Lond. A (1991)









Wave propagation in finite periodically ribbed structures 631

(@) (b)
3+ 3+
) o)
E 2 24
3 3
& 5
8 @
51 E 14
0 T T T T T { 0 T T T T T }
20 24 2.8 32 20 24 2.8 32
frequency frequency

Figure 6. Amplitude of the forces at the end rib in systems driven at the first rib (26) and
functions of frequency, for (a) N =8 and (b) N = 16.

diverge. This is illustrated in figure 4, plate 1, a contour plot showing the normalized
amplitudes |£,| along the last 19 ribs as a function of m and of frequency across the
lower pass band. Again, this plot represents the last 19 ribs to the right of any system
with N—M > 20. Figure 5, plate 2, shows the corresponding full (non-normalized)
solution [#,,|. Here N = 20 and the system is driven at the first rib (not shown). The
frequency range in this graph has been extended to include part of the lower stop
band to illustrate the rapid transition from smooth to fluctuating pass band
behaviour. Again, the sensitivity to frequency which is apparent here is greater for
longer arrays. (Some values appear negative due to rounding errors on the colour
scale.)

It is less obvious that the same is true of the end-values F, as N increases. Figure
6 shows the modulus of ¥ in the lower pass band, for N = 8 and N = 16. The force
oscillates increasingly rapidly as NV increases, reaching a maximum value of 3 for all
N. (For comparison, the case N = 20 corresponds to the right-hand edge of figure 5.)
At the band edges, as has been seen, the amplitude ¥, at the end-rib tends to zero
as NV increases. At the same time, however, maxima of Fy occur increasingly close to
the edge frequencies.

Consider briefly those frequencies ¢ for which the normalized wave £,, is periodic
in m. These cases correspond to those values of y; which are roots of unity, and they
can be found by seolving y™ = 1 for a given n. This will not be done here. However,
it is seen immediately from (25), (265) that the forces at the driven and end ribs are
also periodic, with the same period. Therefore these periodic frequencies give rise to
fully periodic solutions.

A problem of greater interest is to estimate the maximum and minimum
amplitudes attained by K, or F, along the array for each frequency as the array
length is increased. If y; is not a root of unity then clearly the forces E,, will
eventually explore almost all possible values of the continuous wave f(z) (see
figure 3). More precisely, for any x we can find values & such that E,_, is arbitrarily
close to f(x). Therefore at non-periodic frequencies the supremum and infimum of the
amplitudes of £, are just those of the wave f(z) itself. Furthermore since there are
countably many periodic frequencies this holds for almost all ¢ in the pass bands.

Now, since y, = y;* and [y,] = ly,| = 1,

@) = g 92 ol = lua] X 1+ 3%/ 1]
Proc. R. Soc. Lond. A (1991)



632 Mark Spivack

ratio of forces at end ribs
Puy
L

2 4
O T T T T T I[
20 24 2.8 32
frequency

Figure 7. Modulus of the ratio F,/F, between the two end forces (29) for an array of length 20
with the driving force located at the sixth rib.

This reaches a maximum when

Ya o)ty = o/ ol

and a minimum when .
Yo o/t = — o/ .

The supremum E, and infimum E_ of |E,| are thus almost everywhere

E, = lp|+1pol, E_ =] —ull. (41)

Thus, to the right of the driving force, for any N the amplitudes |F,,| are bounded
above by F, = Fy E,, and below by F_= Fy E_. The ratio £, /E_ between these
quantities describes the maximum possible relative amplitude change along the
array ; this value is approached asymptotically for large N at almost all frequencies.
Now, E_ < |v] and is therefore uniformly bounded. However, |u,| tends to infinity as
the frequency approaches either of the lower pass band edges (with the inverse
square root of the frequency difference). Thus although the solutions at the lower
edges have a finite limit as N— co, the quantities £, and the ratio E,/E_ grow
unboundedly as these edges are approached. Furthermore, when M = 1, say, since
the end amplitude |Fy| has peaks of 3 arbitrarily close to the edges as N increases, the
actual maxima F, also tend to infinity. Similarly £, /E tends to infinity (again as an
inverse square root) as the upper edge is approached since E_ tends to zero. This
represents an extreme departure from the solutions obtained for infinite arrays. Since
E,, E_areindependent of N and the amplitudes |Fy| are uniformly bounded by 3, the
function 3K, is a convenient upper-bound on the amplitudes for all N.

Now consider the forces at the end ribs when the source of excitation is located away
from the end, M # 1. The amplitude of the ratio ¥, /F,, (29) in the pass band fluctuates
with frequency and with position of M. Figure 7 shows this ratio as a function of
frequency for N = 20 and M = 6. This quantity also fluctuates increasingly rapidly as
N increases.

(¢) Structural response beyond the array

Although the main concern of this paper is to characterize the forces along the
array, it is also of some interest to find the response of the membrane beyond the
region supported by ribs. This is easily found from the equation

V) = 3 B, Gle—,)

m=1
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given in §2. Let «’ first be the scaled distance of « beyond z,, so that " = z/h—N.
Then provided z’ is reasonably large the Green function G(x—zx,) can be
approximated by G, and the above equation can be written

N N
Vir) = X F, exp(ig[a’ + N—m]) = exp (igx’) X F,, 2" ™.
m=1 m=1

Now equation [N] can be written

0= % F,zN ™ LiFy

m
1

F =

and substituting this in the previous equation gives
V(x) = J5iexp (igx') Fy, (42a)

where ¥, is given by (26b) when M =1 and (31) otherwise. The response V(x) is
therefore a wave with constant amplitude J5/F| propagating with wavenumber ¢.
As we have seen this amplitude is approximately zero in the stop bands and in the
pass bands is extremely sensitive to frequency, oscillating when M =1 with a
maximum of 4/3. Similarly, the solution for z < x,, provided M # 1, is

V(x) = Lsiexp (igz”) F, (420)

where 2" is the scaled distance «” = 1—x/h, and F, is given by (32). Finally, when
M =1, (42b) must be modified slightly because of the non-zero velocity which appears
on the left-hand-side of equation [1], to obtain

V(z) = (1+J5i) exp (igx") F}, (42¢)
where F| is now given by (27).

6. Summary and concluding remarks

The full solution has been obtained for a finite array of equally spaced ribs driven
at any given location, and the resulting stop/pass band structure has been
investigated. The general case, excluding the boundaries between bands, is described
by equations (23)-(32) in §3. Equations for these boundaries and other special cases
are given in §4, and limiting forms for the stop bands in §5. In the stop bands the
energy is exponentially and, for large arrays, symmetrically localized around the
driven rib, and in the pass bands it propagates unattenuated, but with large
amplitude fluctuations at almost all frequencies. The solution is conveniently
interpreted in terms of a wave propagating inwards from cach free end, which
interacts with the driven rib and in doing so acquires a complex multiplying factor.
These waves propagate at speeds which change with the driving frequency, and as
a consequence the response becomes highly sensitive to changes in frequency as the
array length increases. This remark extends to the structural response of the
membrane beyond the ribbed region. Thus it is clear both from the normalized forces
(23) and from the multiplying end values (e.g. (26)) that in the pass bands the
response cannot approach a meaningful limit as the array length is increased. The
absence of an asymptotic limit is also apparent from the solutions at the middle of
the bands (37) and from the response near the edges (the functions #,, £, /E_ from
(41)).
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The method of solution is possible because the underlying Green function G has the
form G (x) ~ aexp (bzx) for xz # 0. Although the solutions in this paper have been
formulated for one such Green function, most of the results in §3 hold for any
function of the above form. Detailed properties of the solution, however, such as the
band structure and the behaviour within the bands depend through w upon the
relationship between exp (i¢) and S.

These results do not elucidate the response in régimes in which the acoustic
component G, plays a significant role, or those in which the ribs are irregularly
spaced. Such structures, studied for example by Crighton (1983, 1984) and Sobnack
(1991), exhibit essentially different behaviour for sufficiently large arrays. One might
extend the approach to include G, ; this gives rise, approximately, to coupling over
a finite number n of ribs, analogous to (11), which yields a (n—1)x (n—1)
propagation matrix. The difficulty then arises of specifying the initial (n—1)-
dimensional vector for the matrix. On the other hand when the ribs are irregularly
spaced this procedure will lead to a set of propagation matrices which vary along the
array, and which are not statistically independent. It is hoped to address these
problems in future work.
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invaluable discussions. The work has been carried out with financial support from the Natural
Environment Research Council of the UK. and from the U.S. Office of Naval Research (Code 1132
SM, Dr Phillip Abraham).

References

Crighton, D. G. 1983 The Green function of an infinite, fluid loaded membrane. J. Sound Vib. 86,
411-433.

Crighton, D. G. 1984 Transmission of energy down periodically ribbed elastic structures under
fluid loading. Proc. R. Soc. Lond. A 394, 405-436.

Crighton, D. G. 1989 The 1988 Rayleigh Medal Lecture. Fluid loading — the interaction between
sound and vibration. J. Sound Vib. 133, 1-27.

Crighton, D. G. & Maidanik, G. 1981 Acoustic and vibration fields generated by ribs on a fluid-
loaded panel. I. Plane-wave problems for a single rib. J. Sound Vib. 75, 437-452.

Hood, M. J. 1985 A uniqueness problem for wave propagation in a periodic structure. IM4 J.
appl. Math. 34, 279-294.

Mace, B. R. 1980 Periodically stiffened fluid-loaded plates. IT. Response to line and point forces.
J. Sound Vib. 73, 487-504.

Maidanik, G. & Dickey, J. W. 1988 Singly and regularly ribbed panels. J. Sound Vib. 123,
309-314.

Mead, D.J. 1990 Plates with regular stiffening in acoustic media: vibration and radiation. J.
Acoust. Soc. Am. 88, 391-401.

Sobnack, M. B. 1991 Fluid loading and Anderson localisation. Ph.D. thesis, University of
Cambridge.

Woolley, B. L. 1980 Acoustic scattering from a submerged plate. II. Finite number of reinforcing
ribs. J. acoust. Soc. Am. 67, 1654—-1658.

Received 20 May 1991 ; accepted 19 July 1991

Colour plates printed in Great Britain by George Over Ltd, London and Rugby

Proc. R. Soc. Lond. A (1991)



