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The paper considers the steady-state harmonic response of an elastic fluid-loaded
membrane supported by irregularly spaced ribs. Under the assumption of subsonic
wave coupling, the solution is given exactly for any configuration as a product of
2 x 2 transfer matrices. It is well known that the response of a periodically ribbed
membrane exhibits a pass/stop band structure. Although this structure is destroyed
in the irregular case, we find that two distinct régimes remain: smooth and
fluctuating exponential decay. The transfer matrix solution is used to explain these
regions. The average transfer matrix is obtained exactly; where the decay is smooth
its eigenvalues approximately determine the localization length.

1. Introduction

This paper considers the problem of wave propagation along a fluid loaded elastic
membrane which is supported by an irregular array of ribs. One of the ribs is driven
by a time-harmonic force and the rest have infinite mechanical impedance. Coupling
between bays is provided purely by fluid loading. This and related problems have
been widely studied (see, for example, Crighton 1983, 1984, 1988; Crighton &
Maidanik 1981; Eatwell & Willis 1982; Mace 1980; Photiadis 1992; Sobnack 1991;
Spivack 1991). The Green function (Crighton 1983, 1984) for the fluid-loaded
membrane consists of an acoustic component G, and a subsonic surface wave
component Gy; attention here will be restricted to régimes in which G, can be
neglected at distances comparable with the rib spacing. The only method of solution
previously presented in the literature is by numerical inversion of the governing
matrix equation. In such systems this procedure is extremely sensitive to rounding
errors, and rapidly becomes prohibitive for large arrays.

When the ribs are periodically spaced (see Crighton 1984; Sobnack 1991) the
frequency response of the system falls into stop bands, in which energy is
exponentially localized about the driving force, and pass bands, in which energy
propagates without attenuation. For finite periodic arrays the behaviour has
considerable complexity, and the detailed solution (Spivack 1991) exhibits high
sensitivity to driving frequency. Irregularity introduces exponential localization of
surface waves at all frequencies. Sobnack (1991) and Sobnack & Crighton (1994)
derived analytical expressions for the decay length for small and large disorder, and
noticed that the average response in the stop band is insensitive to structural
irregularity.

The purpose of this paper is to present an exact solution for structures with
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arbitrary rib spacing under the assumption of subsonic wave coupling, and to
elucidate important features of the response. In particular it is shown that the
response remains highly dependent upon frequency. By manipulation of the
governing matrix equation, the force at any rib can be expressed in terms of the
forces at two adjacent ribs. This gives rise to a sequence of 2 x 2 transfer matrices,
which act successively on adjacent pairs of rib forces. The solution is thus evaluated
from the free end of the array towards the driving force, and at that point a
normalizing factor is determined which completes the solution. This is directly
analogous to the situation for a regular array. From this description the effect upon
the system of any changes of configuration is easily seen; moving one rib affects only
the forces upstream (towards the driving force), apart from the multiplying factor
which is constant along the array.

There are two distinct localization régimes, in which the decay is either smooth or
Sluctuating. These correspond roughly to frequencies lying in the stop and pass bands,
respectively, and the transition between them occurs over a small frequency band.
When the decay is smooth, the typical response is insensitive to structural disorder.
This behaviour can be understood in terms of the transfer matrices: smooth decay
occurs where one eigenvalue is dominant and the eigenvalues are narrowly
distributed about the mean. Furthermore, the stop band response typically shows a
slight decrease in localization with disorder. It follows that for every degree of
disorder there are ‘stationary frequencies’ at which the decay rate is equal to that
of the regular case. At such frequencies, the decay length at first increases with
disorder and then decreases again.

In §2 the mathematical formulation is given and the statistical models are
described. The general exact solution is given in §3. This is followed by a calculation
of the mean transfer matrix, treating the rib-spacings as independent random
variables. In §4 the effects of disorder are considered and illustrated, including the
degree and qualitative nature of localization, and a comparison is made between the
eigenvalues of the mean transfer matrix and the decay rate.

2. Mathematical formulation
(@) Physical model and governing equations

Full details of the physical model and properties of the Green function are given
elsewhere (e.g. Crighton 1983, 1984 ; Sobnack 1991) and will not be repeated at length
here. Notation follows that of Spivack (1991). We consider an elastic membrane
which lies in the plane y = 0, bounding a quiescent compressible fluid in the half-
space y > 0 and a vacuum in y < 0. The membrane is supported by N thin ribs along
the lines z, = mh+u,, where m=1,...,N, and the displacements u,, may be
deterministic or drawn from some statistical distribution (see §256). We may assume
that u; = 0. The rib at z; is driven with a prescribed velocity in the y-direction by
a time-harmonic line-force. The solution for a force applied at any other rib may be
obtained in almost exactly the same way as here and shows no qualitative difference.
All ribs other than that at z, have infinite mechanical impedance. Fluid loading is
therefore the only mechanism by which energy can be transmitted across any non-
driven rib. A harmonic time-dependence exp (—iwt) is to be understood throughout.
The force on the membrane due to the mth rib is denoted F,,. V(z) is the normal
velocity of the fluid-loaded membrane, and G is the corresponding Green function. It
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will be assumed that V(x,), the velocity of the driven rib, is known. (The solution of
the related problem in which the force F) is prescribed is obtained in the same way
simply by renormalizing throughout by F}.) By convention x increases from left to
right, and the driven rib is at the left-hand end.

Adopting the notation in Crighton (1984), G = G, + G, where G,, G, are the acoustic
and subsonic wave contributions to the Green function, respectively. « is the
wavenumber of the subsonic surface wave which propagates on the fluid-loaded
membrane. Crighton shows that (7, can be neglected except at small arguments. Thus
for k|lz| > 1, G is given by

G(x) ~ G (x) = 4, exp (ix|z]).

Similarly, we take G(0) = G(0)+G,(0) = 4,. The constants 4., 4, are given in
Crighton (1984) and are not needed explicitly here.

We seek the solution for the forces F,,. These determine the structural response
everywhere since F,, and V are related by

N
Viz) = X F,Gle—z,). (1)
n=1
Since V(x,,) is known for all m we can obtain a matrix equation from which the forces
can be determined. The problem may be scaled so that the velocity at x; is unity, the
factors 4, 4, simplify, and the reference rib-spacing % is subsumed into the scaled
driving frequency ¢ in such a way that in the absence of disorder the rib locations
are given by x, = n. We thus obtain

W = AF. 2)

Here W= (1,0,...,0) is the vector of scaled velocities, F = {F,} is the vector of
forces, and 4 is the symmetric N x N matrix given by

Ay = exp (igla;—x,|), for j#k
with diagonal Ay =1—1/4/3.

The method of solution presented in this paper does not depend on the assumed form
of the diagonal elements. In the examples to follow, these are chosen to correspond
to the low frequency range of heavy fluid loading (Crighton 1984).

The rib-spacing is denoted by ¢, =x,—x,_; so that with no disorder §, = 1,
and displacements of the ribs from the periodic configuration by «, = x,—n. We
define z = exp (ig), f = Ay, = 1 —1/4/3 and denote the mth row of 4 by A4,,. The
matrix equation (2) represents N linear equations, denoted [1]...[N], which are of
the form

AmF = 61m’ [m]

where §,,, is the Kronecker delta. Explicitly, for N > m > 1 this can be written as
A Y R R Y /NS o I S Sy T S e T TN 1) (3)

Here we have introduced the normalized forces E,,, defined as E,, = F,, /Fy.

We recall briefly the characteristics of the response of a fluid-loaded elastic
membrane supported by a finite periodic array of ribs (Spivack 1991). The frequency
in this case can be assumed to lie in [0, 2w), and this range is divided into stop bands,
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where the rib forces decay exponentially away from the driving force, and pass bands,
where the forces fluctuate from one rib to the next, but without overall attenuation.
The stop bands are (0, 2r), and (x,3n), and the remaining open intervals are the pass
bands. The band edges themselves possess quite distinct responses and do not strictly
conform to either band. These regions correspond to the properties of the transfer
matrices: at pass band frequencies the eigenvalues lie on the complex unit circle,
whereas in the stop band they are real, their product is one, and the larger one
determines the rate of decay. By contrast, in irregular systems the response becomes
attenuated at all frequencies. For convenience, however, we will continue to refer to
these frequency ranges as stop and pass bands.

(b) Statistical models

To characterize the degree of disorder we need a statistical description of the
irregular structure. We will suppose here that the rib locations depart from
periodicity according to some distribution such that ‘on average’ the arrangement
is periodic. The governing equations can be written in terms of rib positions z,,
displacements u, from periodicity, or bay lengths (rib spacings) §,,.

Each array is to be thought of as member of an ensemble of random processes, and
averages are taken over the ensemble unless stated otherwise. The ensemble average
throughout is denoted by angled brackets <...>. The problem is most easily discussed
in terms of independent sets of random variables. (For example {u,} is independent
if {up tyy = {uyy {u,,y for m # n.) The sets {u,} and {d,} cannot simultaneously be
independent.

There are two obvious models for the disorder. In one, the random displacements
u, are drawn independently from some distribution with mean zero. Since ribs
cannot overlap this restricts |u,| to be less than . Sobnack (1991) adopts this model
with the uniform distribution on [ — 4, 4]. This will be referred to as model 1. Following
Sobnack the degree of disorder will be defined by 4. (For more general distributions
it is more natural to define the disorder as the r.m.s. variation (u2»%, which in this
case is 4/4/3.) As indicated above choosing the u,s independently introduces a
correlation between successive rib spacings 6,: a large bay will tend to be followed
by a small bay (and conversely).

In the second model the bay lengths §,=x,,,—x, are allowed to vary
independently, according to some positive distribution with mean 1. For our results
d, is chosen uniformly from [1 —4,1+ 4] where 4 is less than 1. Again the degree of
disorder is defined to be 4. This will be referred to as model 2. It is more flexible in
that the ensemble contains that of model 1 as a subset, and also allows greater
disorder. In this case the rib displacements z, —n describe a random walk, and
although z, again has mean n, displacements to the right may now be arbitrarily
large, so that the variance of x, about its mean value » grows unboundedly with =.

These models are sufficiently general for most purposes. For small disorder there
is no qualitative difference between the resulting response. In practice the choice
between them may be governed by the envisaged application: thus we would apply
model 1 if all rib positions are measured from a fixed point to within an absolute (not
percentage) tolerance, and model 2 if each rib is placed in relation to the previous
one.

Note that the mean {4) of a linear operator 4 is the operator B such that
(Af» = Bf for any fixed vector f. It follows that the mean of a matrix is given by
the mean of its elements. Finally (see, for example, Papoulis 1981), given any
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function g of » independent random variables X, ..., X,,, with distribution functions
fi,1=1,...,n respectively, the mean of g can be written

(o> =f f 9Xys o X ) oo fadX, . dX,.

3. General solution

In this section we obtain the exact solution for the forces along a finite irregular
array. We first rearrange the system of equations [1] to [V] in order to express the
force at each rib in terms of its nearest neighbours. This gives rise to a succession of
2 X 2 transfer matrices. I'rom these we obtain the normalized forces K, = F,,/Fy, for
all » 2 2. Finally the normalized driving force £, and the end force F are obtained,
both of which are expressly coupled to all other ribs. This completes the solution.
Later in this section we will evaluate the average transfer matrix P = (P,), and
compare its eigenvectors and eigenvalues with the analogous quantities for a periodic
array.

We restrict ourselves for simplicity to the case in which the driven rib is at one end
of the array. The analysis changes little when the Mth rib, say, is driven, and the
results are qualitatively identical. The extension to this more general case is exactly
analogous to the corresponding extension for a periodic array (Spivack 1991):
equations [1] to [M —1] are normalized by F}, and equations [M + 1] to [N] by Fy.
This enables us to find the forces to the left and right of F,,, normalized by ¥, and
Fy respectively. It is then straightforward to find F,, F,,;, Fy and thus complete the
solution.

The method presented here is analogous to the treatment for a periodic array
(Spivack 1991). The transfer matrix in that case remains constant along the array
and all forces can be expressed in closed form. This is of course not possible in the
irregular case because the solution depends upon arbitrarily many independent rib
displacements. An intermediate case, in which a single rib in a periodic system is
displaced, has been tackled using a similar formulation by Sobnack (1991), and
Sobnack & Crighton (1993).

(a) Ezact solution for an arbitrary array

The expressions which describe the transmission along the structure are now
derived. The main quantities will be written in terms of x,, or §,, as is convenient. The
procedure is similar to the regular case, adapted here to take account of the
additional algebraic structure due to disorder. The calculation is straightforward but
notationally cumbersome, and unnecessary details will be omitted.

(1) Normalized forces at the last two ribs
The force F_, at the penultimate rib can be found in terms of that at the end-rib
Fy by a simple manipulation of (2). To do so, we multiply equation [N—1] by the
factor 2’v and subtract the result from equation [N], obtaining
Fy = pFy, (4)

where = (22— f)/(1—f) 2. (5)

This gives explicit values for the normalized forces at the two ribs at the extreme
right, i.e. By, = and £, = 1. We will denote the vector (u,1) by x.
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(ii) Transfer matrices

The next step is to rearrange equations [1]-[V] so that the force at any rib is
expressed completely in terms of those at neighbouring ribs. We now consider three
consecutive equations [n], [n+1], [n+2] where 2 < n < N—2. Each of these is an
equation in 4, of the form (3) for m = n, n+1, or n+2. We define the vector B as

— Zppi— Tpio—%
B= An+1_z ki nAn_yn(An+2_z e ”An)’

2 T+t — pPn1"2%q

where Vp = (6)

2 Znte — z%n+e"2%q

It is easily verified that B has only three non-zero entries. Further, since Bis a linear
combination of the vectors 4,,, we have B-F = (. Specifically we can write

Byt B+ 0 By = 0. (7)
For convenience, we have introduced the symbols

W, = (1 _ﬂ) z_xn(zxnﬂ —Vn zxn+2)’

’

W, = (ﬁ— zzxnﬂ_zxn) — Y ZEe (2 — zxnﬂ_zxn)’ (8)

w;’L = z¥na(z P nh — zwnﬂ_zwn) — f)/n(ﬂ— 22xn+2_2xn).

From this we can write F =0, F, +a,F, .,

where a;, = —w;, /v, and a;, = —w; /w,. The transfer matrix equation is then given by
B Foiy) = BB i1, £ ), 9)

where P, is the matrix P, = (al; ogl) (10)

These coefficients may be required in terms of rib locations z,,, displacements w,,, or
spacings &,. Here we need only the dependence upon 4,,:

, ﬂz_(an+1+an+z) + (2 - ﬂ) 21T 0n4e — pOnr1Ones _ pOnie—0nyy
an - (1 —ﬁ) (z_an+z—zan+2) (11@)

zanﬂ — z_anﬂ

and an=—m. (11d)
Equations (11) depend on the two random variables ¢,.,, 6,.,; the corresponding
expressions in terms of rib displacements are more complicated in that they depend
upon the three random variables u,, %,,,, %,.,.- Note that the quantity z %r+: — 2%+
in the denominator of both terms vanishes when the bay length times frequency is
a multiple of m. We denote by ¢, the value of § where this occurs. Despite these
singularities, there is no dramatic change of amplitude at such points, as will be
shown in §4. For the moment we will assume that z7%n+z 3£ 2%n+e,

From the above equations we obtain the normalized forces, which are more
conveniently written in pairs:

(Em’Eerl) :Pm"'PN—Z(x) (12)
for N—2 < m < 2, where x again denotes the vector (u, 1).
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Figure 1. Amplitude of the force || as a function of # along two arrays of length 20
which differ only in the position of the 5th rib.

(iii) Forces at each end rib and completion of the solution

It remains only to find the forces at the first (the driven rib) and last ribs. The
normalized driving force £, can be found from any of the equations [2] to [N]. From
[2] for example we obtain

N
E,=—2% [,[)’E2+ % zxi_%EiJ. (13)

i=3
Finally the normalizing factor, i.e. the end force Iy, is obtained by dividing equation
[1] through by Fy, and taking the reciprocal of each side:

N -1
Fy = [ﬂE1+ > z’i‘zlEi] , (14)
=2
where the values K, are given by (12) and (13). Since F,, = K, F, for all m, this

completes the solution.

Equations (12)—(14) represent an exact solution to the problem (2) for an arbitrary
configuration of ribs. The action of the matrix with random elements of order 1
everywhere thus reduces to nearest-neighbour coupling apart from the constant
multiple F), throughout and the driving force F,. Note that direct inversion of the
matrix A4 is inherently sensitive to numerical error in such systems, and is
computationally prohibitive for large arrays (see Sobnack 1991). Both of these
difficulties are overcome by the above solution.

(iv) Some examples

It is now clear that if a rib in any system is relocated, only the forces to the left
are affected, apart from a change in the multiplying factor Fy. An illustration of this
is given in figure 1, which shows the normalized forces £, along two irregular arrays
of 20 ribs, identical except for a shift in position of the 5th rib. (The forces are shown
here as functions of rib-position.)
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We conclude this part with two more examples exhibiting the difference between
the behaviour in stop and pass band frequencies. Figure 2 shows the response at the
mid-pass band frequency 2n, along an array of 30000 ribs with very slight disorder
4 =0.05. This shows both long-range localization, and many local fluctuations of
several orders of magnitude. The full array (showing the force at every 50th rib), is
given in (@), and in (b) is a ‘short’ section of 500 ribs. By contrast, figure 3 shows the
response for much larger disorder, 4 = 0.8, at the stop band frequency irn. In these
figures, the horizontal axis represents rib position. Further illustrations are given in
§4, where the response is considered in more detail.

(b) Average transfer matrix

We now calculate the average P = (P,), and briefly examine its eigenvectors and
eigenvalues. This will later enable us to characterize the localization length in those
regimes in which the effects of disorder are not too significant.

We consider model 2, and assume here that 4 < nt/¢—1, so that singularities in
(11a), (11b) are excluded To specify (P,>, we need the mean matrix coefficients.
Define o’ = <{a},>,a” = {a} . Since these coefﬁ(nents are functions of two independent
random variables &, ., 6,,,, each is given by a double integral. (For statistical model
1, the coefficients are functions of three successive random variables. The resulting
triple integrals appear to be intractable, although they may be reduced to a single
integral which is easily treated approximately for small disorder.) Let ¢, = 8, —1, so
that the random variables ¢, are uniform in [ —4, 4]. Since little confusion can arise
here, we will drop the subscript n. The probability integrals are evaluated in the
appendix. From equation (11a), it is not difficult to see that o’ can be written

1=p

8
)+ s - ()|
From (A 2)-(A 5),

, _ sin(g4) 1 _In(1—=2"*)—1In (1 —2*"*)
Y= ﬂgbd[(ﬂ Z)(l £igA )

(2—plz—z" (1—ln(Z_2+2A_2;;11(2_2_%_1))]. (15)

-4

o = { Bz —<2%)) <

The second coefficient is slightly easier to obtain:

o' = () =) (1)),
which, using (A 2), (A 3) and (A 6), gives

” . y i a4 —z+z4
o = SO 1o 2225 (22220 .

The eigenvalues are given by the roots of the equation
A= A—a" = 0.
Thus A = 3o+ /(a4 4a")) (17)

where ¢ = 1,2 and ¢ = 1 corresponds to the plus sign before the square root. The
corresponding eigenspaces are then represented by the vectors

Proc. R. Soc. Lond. A (1994)



Disorder and localization in ribbed structures 81

1010

1015 (a)
1010 10° 5

5
10 108_.
100 4

T [ B S B | 107 T '1 T S T
0 1 x104 2 x 104 3x104 15000 15200 15400

Figure 2. (a) Log-linear graph of the force along an array of 30000 ribs, at the mid-pass band
frequency ¢ = 3n, and 4 = 0.05, showing every 50th value; (b) the forces on a short section of 500
ribs in the middle of the same array.
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Figure 3. Force along an array of length 30, at the mid-stop band frequency Zr, for large disorder
4=108. .

Figure 4. Moduli of the two eigenvalues of the averaged transfer matrix (F,), as functions of
disorder 4, at the stop band frequency 2.0. ‘

Since the eigenvalues in the periodic case completely determine the band structure,
it is interesting to consider the effect upon them of disorder. In the pass band the
moduli of the eigenvalues of (#) remain equal but increase from one. At stop band
frequencies, the moduli of the eigenvalues eventually approach each other as the
disorder increases. The larger eigenvalue decreases, and it will be seen that this
corresponds to slower exponential decay as the disorder increases. These moduli are
seen in figure 4 as functions of 4 at ¢ = 2.0. As the frequency approaches the band
edge the eigenvalues coalesce at a decreasing value of disorder.
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4. Disorder and localization

We now consider the main effects of disorder on the typical response of the
structure, and in particular we aim to explain the distinct character of response
found at different frequencies. We shall show also that in one region, in which the
decay is smooth, the decay rate can be characterized by the eigenvalues of the mean
transfer matrix. The singularities which arise in the transfer matrix coefficients will
be discussed in §45 below.

(a) Régimes of localization

Localization is usually defined as an asymptotic property as n— 00:
nHn|F, | ~ . (19)

Here, y is some fixed function of frequency and disorder (see for example figure 2),
which we refer to as the decay rate. (We can also consider the decay length 1/vy).
Sobnack (1991) studied the ensemble averaged quantity

nnlh)y = (20)

Equation (20) is useful for arrays of fixed length N and in practice yields the same
decay rate as (19) for sufficiently large N. Note that (20) is not strictly independent
of n, and for sufficiently small NV or 4 the variations along the array can overshadow
the decay. Nevertheless, in simulations (20) converges remarkably smoothly to a
constant value even for small N. Neither quantity, however, describes detailed
features of the response.

The existence of two markedly different régimes of localization has been seen in
figures 2 and 3. There are regions of smooth and of fluctuating decay, which
correspond roughly to the stop and pass bands respectively. In addition Sobnack
(1991) found from numerical simulations that the average stop band decay rate (20)
is affected little by structural disorder. These properties have essentially the same
origins, which lie in the properties of the eigenvalues of the transfer matrices. The
behaviour along the array can therefore be understood by examining the properties
of each transfer matrix.

Consider for the moment the transfer matrix P, (equation (10)) as a ‘canonical’
function of the random variable 6, ,,. We denote the eigenvalues of P, by A{™, so that

AV = o T/ (0 +4ar)) (21)

for ¢ = 1,2, where ¢ = 1 corresponds to the plus sign. The corresponding eigenvectors

are
yiv = (A, 1). (22)

Throughout the pass bands the eigenvalues A{®, A{® have equal modulus even for
large disorder, while in most of the stop band one of the values remains dominant as
disorder increases. These properties and their effects closely echo the periodic case
(see §2). Figure 5 shows the ratio of the eigenvalues of P, as a function of rib spacing
and frequency. Here the rib spacing, represented by §,,,, increases from 1 (no
disorder) to 1.3, and J,,,, is fixed at 1. The results are qualitatively independent of
the specific value of 6,,,. Remarkably little change takes place with change in
spacing. The sharp increase which marks the band edge in the regular case remains,
moving gradually into the stop band as the disorder increases. We note, however,
that the product of the eigenvalues is no longer unity.
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Figure 5. Ratio of the eigenvalues of P, as a function of rib spacing and frequency. Frequency
increases from 0 to nt from right to left. The disorder, represented by rib-spacing 8, increases from
0 (i.e. 6, =1) to 0.3 (8, = 1.3), with §,,, fixed at 1. The base level of the graph is at unity. Values
in the triangular region &, > d,,, beyond the singularity have been arbitrarily cut off at 2.0.

The second effect is not as sharply defined but is also important: along the array
the distribution of eigenvalues, and therefore (from (22)) that of the eigenvectors, is
relatively narrow throughout the stop band. This occurs because the dominant
eigenvalues change very little at stop band frequencies as the disorder increases, and
is clear from figure 6, which shows the ratio |A{”/A,| as a function of frequency and
disorder. Here A, is the corresponding eigenvalue for the regular array, so this
quantity measures the extent to which the dominant eigenvalues change with
disorder. The effect of this is illustrated in figure 7, which compares variation of the
dominant eigenvalue along a typical array at stop and pass band frequencies. The
lower curve, corresponding to the mid-pass band frequency, shows variation which
is greater than that of the mid-stop band, shown in the upper curve, by roughly an
order of magnitude. The eigenvalues of the mean transfer matrix (P} are also shown,
indicated by the straight lines.

To understand the consequence of this, consider the trajectory of any two-
dimensional vector (i.e. forces at two adjacent ribs) under the action of successive
matrices P,. In the stop band, where A{™, say, is the dominant value, P, acts almost
like the projection onto y{®, multiplied by A{™. The vectors y{™ lie in a similar
direction for all n, so subsequent matrices simply attract the trajectory into a narrow
cone of directions where it becomes trapped, increasing in modulus with the A{®s. In
the pass band, however, there is no such preferred region, and just as in the periodic
case this results in fluctuations along the array, which are increased here by random
variations in the eigenvectors. The situation is shown schematically in figure 8a (stop
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Figure 6. Ratio |A{™ /A, as a function of frequency and disorder, where A, and A{™ are the dominant
eigenvalues for disorder equal to zero and §, respectively. §, again increases from 1 to 1.3, and the
frequency goes from zero to n. Where the values are level they are approximately one. The values

in the region §, > 4., have again been limited to 2.0.

10% -

100 ]

ekl At

moduli of ejgenvalues

107! T T T T T T T
0 40 80
rib position
Figure 7. Moduli of the dominant eigenvalue of transfer matrices £, as functions of rib-position n
along a typical array of length 100, at two frequencies. The upper curve (slight variation) is at the

mid-stop band, and the lower curve (large variation) is the mid-pass band. The straight lines
represent the eigenvalues of the averaged matrices {(B,>.
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(b)

Figure 8. Schematic view of the action of the transfer matrices (a) in the stop band and (b) in the
pass band. The arrows represent typical eigenvectors with lengths corresponding to the magnitude
of the respective eigenvalues, normalized so that the vertical eigenvector has unit eigenvalue. The
shaded areas indicate the spread of angles of the eigenvectors as they change randomly along the
array. The trajectory of one initial vector under the action of the first few matrices is shown in each
case.

band) and 8b (pass band). Here the arrows represent typical eigenvectors (which will
not in general be orthogonal), with lengths corresponding to the magnitude of the
respective eigenvalues. The shaded areas indicate the spread of angles that occur as
the transfer matrices, and therefore the eigenvectors, change randomly along the
array. For clarity, the actions of the matrices shown here have been normalized so
that the vertical eigenvector has length unity. A typical trajectory of an arbitrarily
chosen vector under the action of the first few matrices is shown in each case.

Some further features emerge from this. First, it suggests that where the response
decays smoothly, the decay rate can be characterized by the eigenvalues of the mean
matrix (F,). This is confirmed by the comparison, in figure 9, between the decay
length as a function of frequency and the quantity 1/In|A,|, where A, is the modulus
of the dominant eigenvalue. Here 4 = 0.5, and the zero-disorder case is included for
comparison. Secondly, since the dominant eigenvalue decreases in the stop band, the
effect of disorder there is to increase the localization length. This is also clear from
figure 9. We note that since disorder tends to decrease localization in the stop bands,
the decay rate against frequency curve for the random case crosses that for the
regular case at some point in the stop band, for every non-zero A. At such
frequencies, the decay length at first increases with 4 and then decreases again,
crossing the value it has in the regular array.

Finally, we recall that for a regular array the pass band response varies rapidly
with frequency. Although irregularity eliminates these pass bands, the response of
any given array retains a high sensitivity to frequency. Figure 10 shows the response
at two frequencies, ¢ = 3.1 and ¢ = 3.2, in a small neighbourhood of the band-edge
at . The array consists of 50 ribs with small disorder, 4 = 0.05. Although the change
in decay rate is particularly sharp because the interval includes the band edge,
similar changes in the details of the pattern are found throughout the frequency
range. A further illustration of frequency dependence is given in figure 11. This shows
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Figure 9 Figure 10
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Figure 9. Comparison between the decay length (full line) as a function of frequency and the

quantity 1/In A, (dashed line), where A, is the dominant eigenvalue of (P). The decay length was

found by averaging over many numerical simulations. The decay length for a regular array is also

shown (dotted line).

Figure 10. The modulus of the response at two frequencies along the same array of 50 ribs: (a)
¢ = 3.1 (dotted line), and (b) ¢ = 3.2 (full line).
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Figure 11. The modulus of the force at the second rib in a fixed array of length 10 with
disorder 4 = 0.2, as the frequency changes from 0 to .

the amplitude of the force at a single rib (the second) as a function of ¢, from 0 to
7, for larger disorder 4 = 0.2 in a fixed array of length 10. The smooth behaviour in
the stop band and the extremely rapid amplitude changes in the pass band are
typical of the results obtained.

(b) Transfer matrix singularities

In §3, we noted that there are conditions under which the elements &/, and o, of
the transfer matrix P, can become singular. This occurs when (see equation (11))

Z 0 — 20t = —2i8in @d,,, = 0.
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Physically, this condition arises when the distance between ribs n+1 and n+2 is an
integer multiple of the wavelength, and so corresponds to a resonance condition in
a system without fluid loading. As we now show, however, the fluid loaded system
exhibits no resonance phenomenon at these frequencies.

To determine the behaviour of the solution as sin ¢¢,,,, ~0, we must consider the
explicit dependence of the solution on the variable §,,,. Since only P, and P,
depend on §,,,, it suffices to consider the matrix product

M, M
M=P,P,, =1 ~2
nor [MZI M22]

The matrix M takes the vector (F,,,, F, ;) to the vector (F,, F,,,). Using equations
(10) and (11), we find that the elements M,; are given by

o (z_anﬂ — z‘sn+1) (z_§n+z — z3n+z) z_3n+1z_3n+z — z§n+223n+1 1
1= -
(1-p)? -4
z_5n+1 — z5n+1 z_3n+3z_5n+z — z5n+z Sn+3
( )( 2omis)
(1 —_ ﬂ) (z_5n+a — 23n+a)
z_3n+zz_3n+1z_3n+3 — 23n+2z5n+123n+3
(27 %n+s — Zonts) ’
(23)
(2“3n+1 —_ z3n+1) (z“sm—z _ 25n+2) 2_5n+12_5n+2 — 25n+225n+1
12 ™ (1 —ﬂ) (z_3n+3 — z‘sn+3) o (2_3n+3 — 2‘5n+3) ’
M z_8n+3z_5n+2 — 28n+223n+3 (z_‘sn+z — z3n+2)
21— (z‘5n+a_—z3n+a) - (1 _ﬂ) ’
M = (z*5n+z — 23n+2)
22 (27§n+3 —_ Z‘sn+3) : )

Equations (23) show that the elements of the matrix product P, P, remain bounded
for all values of §,,,. Since the elements of P" become infinite in the limit as
sin ¢d,,,— 0, the matrix M provides a convenient means to evaluate the solution
when sin ¢4, ., € 1.

To understand intuitively why M remains bounded, we can also interpret the
action of the matrices P, and P, ,, geometrically. Equations (11) can be used to show

that in the limit as sin¢d,,,, -0,
1 0
Pn+1_’>|i1 0} .

Thus in this limit, P,,, is a projection onto the vector (1,1), so that when
singé,,, =0, F,., =F,,,. The one-dimensional span of this vector is the only
subspace which remains bounded under the action of P, in the limit. (More precisely,
P,y tends to infinity for all y except multiples of (1,1).)

5. Conclusions

We have obtained an exact solution for the forces along an irregular array of ribs
in a fluid-loaded membrane, which is valid in the approximation of purely subsonic-
surface wave coupling. The solution is written in the form of a product of transfer
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matrices. This formulation allows us to explain the marked sensitivity of the solution
to frequency including the two distinct régimes of localization behaviour previously
observed in numerical simulation (Sobnack 1991 ; Photiadis 1992). We have shown
that this frequency dependence has the same roots as the stop and pass bands of the
regularly ribbed structure.

Two important problems remain. The first is to quantify the localization rate
analytically for any degree of disorder. The second is to study localization
phenomena under the action of a Green function with longer-range acoustic coupling.

The authors thank Professor D. G. Crighton and Dr M. B. Sobnack for helpful discussions, and the
referees for the discovery of a number of errors in the manuscript. This work has been carried out
with financial support from the U.K. Natural Environmental Research Council and from the U.S.
Office of Naval Research (code N0014-92-J-1035).

Appendix A

In this appendix we calculate some of the quantities required for the average
transfer matrix. Asin §3, define ¢, = §,, — 1. Wherever possible the subscript will be
dropped. Any function f of the uniformly distributed random variable ¢ has mean

ey = | smax (A1
We first evaluate the averages (2°) and (27%). The first of these can be written
(&) = 2(z%)
Y
so that (%) = zsin (¢pA)/PA. (A 2)
Similarly (2% =z sin (¢pA)/pA. (A 3)

We need to calculate three further quantities. The first is the average of the
expression
Zfa/(z—a_za) — 1/(1 _ezi¢+2i¢c).

Now we can write
. . d ln [1 . ezi¢+21¢X]
1— 2ip+2ipX\—1 X— -
(1—e ) dX( %ig .
and thus, by (A 1),

z=¢ 1 [ 1
<23_ 25> ~ 94 JA [ — p2ip+2igX dX
= m[2l¢x—ln(l—22){+z)]€d (A 4)
Next, since 2°/(z°—2%) is the complex conjugate of —z7%/(z7—2%), we obtain
2 - [2ipX +1n (1 —272%7%)]4 (A 5)
Z =2 4ipA -
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z™? _, 1
| - ot p2pe ]

Similarly to the above, or applying Gradshteyn & Ryzhik (1965, eqn 2.313, p. 92),

we eventually obtain
270 1 —z+2%\|
(=) =gl (2L 49

The branch cut of the above complex logarithm is, as usual, taken along the
negative real axis, and the imaginary part defined to lie in [ — %, «]. All logarithms are
thus defined unambiguously since each of the arguments lies in the right half of the
complex plane.

Finally, we need to find
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