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CER.TAIN PROPERTIES OF DERIVATIONS 

MARK SPIVACK 

ABSTRACT. We consider two properties of implemented derivations on oper- 
ator algebras, and give applications. One provides a simple test and leads to 
examples of nonimplemented derivations on commutative algebras. The other 
is stronger and yields a necessary and sufficient condition for derivations on 
pB(H)p' to be implemented, where H is a Hilbert space and p is a projection 
an H. Any algebra S on H has an extension to an algebra S2 acting on H @ C 
containing such an algebra. We show that any derivation 6 on an algebra S is 
implemented if and only if 6 has a bounded strongly continuous extension to 
S2. If so we can construct an implementing operator explicitly. 

1. Introduction. Given a bounded derivation 6 on an operator algebra, the 
question most often asked is whether or not 6 is implemented. In this paper we 
discuss two properties of implemented derivations, one geometrical and the other 
algebraic, and give some applications. 

We first prove some basic results, and in particular that the first property is a 
consequence of the second. With the help of the geometrical property, a simple 
example is then constructed of a nonimplemented bounded derivation on a single 
rank 1 operator. 

Let B(H) be the set of bounded operators on a Hilbert space H, and let p be 
a projection in B(H). If A is the commutative algebra pB(H)p', then A2 - 0 
and so any linear map 6 from A into itself is a derivation. In particular there 
are many nonimplemented derivations of this kind, and we give an example (again 
using the geometrical property). However, we can show that 6 is implemented if 
and only if it has the algebraic property and is strongly continuous. The proof 
exhibits an operator which, under these conditions, implements S. This result 
extends to all algebras which contain A and p and leave p invariant, and the same 
construction holds. Algebras of this form for some p include all nontrivial nest 
algebras and reducible maximal triangular algebras. (It has been shown elsewhere 
that all derivations on nest algebras are implemented [1, 5, and 8]. The differences 
in the proof here are discussed below.) If we extend H by 1 dimension, then 
any algebra S has a (canonical) extension to such an algebra S2 for p of rank 1. 
This leads to the general result that any bounded derivation on an algebra S is 
implemented if and only if it has a bounded, strongly continuous extension to S2. 

2. Preliminaries. Throughout, we consider operators on a Hilbert space H. 
A derivation on an operator algebra A is a linear map from A into B(H) such 
that &(ab) = a&(b) + &(a)b for all a, b in A. 6 is implemented if it is of the form 
6(a) = ba-ab for all a in A and for some b in B(H). If so we say that b implements 6, 
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and we denote by db the derivation thus defined. Clearly, &(1) = 6(12) = 26(1) = 0. 
When we refer to a map on a single operator a as a derivation we mean that its 
natural linear extension to the unital algebra generated by a is a derivation. If a 
is in B(H), then r(a), n(a) denote the closure of the range and the null-space of 
a respectively. If p is any projection, p1 denotes its complement 1 - p. (When we 
refer to projections we always have in mind selfadjoint projections.) If A is any 
set of operators, we denote by lat(A) the lattice of subspaces left invariant by A. 
If L is any set of projections, the algebra of operators leaving every element of L 
invariant is denoted by alg(L). 

A nest on H is a totally-ordered strongly closed set of projections on H containing 
0 and 1. A nest algebra N on H is then a set alg(L) of all operators leaving invariant 
every element of a nest L (see [6]). It follows that lat(N) = L. An algebra S is 
triangular if S n S* is maximal Abelian in B(H) (see [4]). Then s n s* is called the 
diagonal of S. Since any triangular algebra containing S has the same diagonal, 
S is contained in some maximal triangular algebra. S is called reducible if lat(S) 
is nontrivial, and irreducible otherwise. The following property is also common to 
nest and maximal triangular algebras. 

LEMMA 1 [4, 6]. Let A be a nest algebra or a maximal triangular algebra, and 
let p be a projection in lat(A). Then A contains the set pB(H)p'. 

It follows, in particular, that if ( is any nonzero vector in n(p) and 77 is in r(p), 
then the rank 1 operator a = ( 0 77 is in A. 

We come now to the main definitions. 
DEFINITION 1. A derivation 6 on an algebra A has Property G if 6(a), is in 

r(a) whenever ( is in n(a), for all a in A. 
DEFINITION 2. A derivation 6 on A has Property D if 

(1) 6(abc) = 6(ab)c + a&(bc) - a6(b)c 

whenever b is in A, and ab, bc, and abc are also in A. 6 has Property Dp if (1) holds 
when b is a partial isometry, and Property D1 if (1) holds when b is of rank 1. 

If every bounded derivation on an algebra A has one of these properties, we say 
that A has that property. 

As already mentioned, Property D is the stronger condition. When we know 
that it holds we can, in effect, use operators outside the domain of a derivation to 
examine its behavior. 

3. Basic results. Let 6 be an implemented derivation. Then it follows imme- 
diately from the definition that 6 obeys Property G. Since 6 is implemented it may 
be extended to the whole of B(H), and a simple application of the derivation law 
yields Property D: 

6(abc) = 6(ab)c + ab&(c) = &(ab)c + a&(bc) - a&(b)c. 

This of course has no meaning unless 6 is defined on c. 
If p is any projection it is easily shown that &(p)p' = p&(p), which is just 

Property G. In fact we have the following, which we will not prove. 

LEMMA 2. A map 6 on a projection acts as a derivation if and only if it obeys 
Property G. 
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It is well known that any derivation on a projection is imnplemented, and this 
follows from the same fact. (One such implemnenting operator is given by 

(1 - 2p)6(p).) 

LEMMA 3. Property D implies Property G. 

PROOF. Let 6 have Property D. Let a be in the domain A of 8, and let p 
and q be the projections onto r(a) and the complement of n(a) respectively. Tten 
a -pa = aq --paq. So 8(a) --_ (pa)q -+ p8(aq) - p8(a)q, and the result follovs. 

We briefiy mention here derivations on von NeLeumnanrn algebras. S3uch derivations 
are automatically continuous [7]. It has boeen shown that derivations on almost all 
classifications of von Neumann algebras are implemented (see Christensen [2]). 

LEMMA 4. Any von Neuman17n algebra A has Property LD. 

PROOF. Let b, ab, bc, and abc be ;n A and let, q be tne projection onto n(b)'. 
Then qc is in A. So 

6(abc) 6(ab)qc + ab8(qc) -- 6(ab)c - abV(q)c + ab6(qc) 

6(ab)c - a6(b)c + a8(b)qc + ab6(qc) 

6(ab)c - a6(b)c + a8(bc), 

as required. 

4. FFurther restults and applications. 
4.1. A simple nonimplemented derivation. In the study of cert,ain operator al- 

gebras the question naturally arises; Is a, derivation on a single rarnk I operator 
automatically implemented? Belowi, with the help of Property C, we give a very 
simple example in which this does not hold. 

Let H be any Hilbert space of dimension 3 or greater. Let , rij be orthogonal 
unit vectors in H, and denote by q thle rank 1 operator ( 0 rq. Notice that q2 -0 O. 
Let A be the unital algebra generated by q. Then A = {o + oq: a, e C}, and 
A is nonselfadjoint. We define a derivation on A as follows: Put 8(q)f --, andl 
6(q)? = ? whenever . Now extend by linearity to the whole of A. 

It is obvious that & is well defined. To prove that 8 obeys the derivation rule we 
need only show that q6(q) + 6(q)q -(q2) -_ 0, and this is almost trivial. HenTce 8 
is a derivation. Finally, Property G fails since, for ' orthogonal to both 4 and r? we 
have f E n(q), f e r(q), and 6(q)-_ (. Thus 8 cannot be implemented. 

In this special case Properties D and G are actually equivalent. This is because 
if, for example, aq E A, then aq is a scalar multiple of q. 

A is the simplest commutative nonselfadjoint algebra that can- be defined. In 
the next section we give an example at the other extreme, for a maximal commu- 
tative nonselfadjoint algebra. We mention that Gilfeather [3] has also produced an 
example of a nonimplemented derivation on a nonselfadjoint algebra. 

As a point of interest we give (without proof) an example of a natural unbounded 
derivation for which Property G fails: Let H be any infinite dimensional Hilbert 
space. Choose a in B(H) such that n(a) is not contained in r(a) and such that 
{an: n > 0} is linearly independent (where a- = 1). The equation 6(an) = nan--l 
gives rise to a "differentiation" on the unital algebra generated by a. This is a 
well-defined unbounded derivation for which, as we have said, Property G does not 
hold. 
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4.2. Derivations on algebras containing pB(H)p'. Let p be a nontrivial pro- 
jection and let A be the algebra pB(H)p'. Suppose that 6: A -* A is a bounded 
linear map. Then, as mentioned above, 6 is a derivation since it automatically obeys 
the derivation rule. In the absence of a multiplicative structure it is of interest to 
find minimal conditions for implementation to be automatic. Note that 6 extends 
trivially to the unital algebra A1 generated by A, which is maximal commutative. 

As an example of a nonimplemented derivation on A consider the following: 
Let (o, 4, be orthogonal unit vectors in n(p), and let q1, ql be orthogonal unit 
vectors in r(p). If v = o0 X 41, and u = 0 1 X7o0, then 6(a) = uav defines a bounded 
derivation on A. However, if a is given by 4, 0X11, then 6(a) j = q17. So Property G 
fails and 6 cannot be implemented. Notice, incidentally, that the identity operator 
on A is implemented, for example by the projection p. 

Note that if 61 is a derivation defined on an algebra containing A and p, then we 
can assume that its restriction to A maps A into itself: There exists an operator 
b such that 61(p) = db(p). Replace 61 by 6 = 61 - db. Then 6(p) = 0, and 6 is 
implemented if and only if 61 is implemented. Also 

6(pap') = 6(p)ap' + p6(a)p' + pa6(p') = p6(a)p'. 

We can now proceed with the construction. Note that for a rank 1 operator 
a = ( 0 1, a* is just q1 0 (. Choose fixed unit vectors $o E n(p) and 170 E r(p), and 
write po = 0 0 X0 and qo = 0 X *0. If ( is any unit vector in n(p), put pe = ( X . 

We define an operator b = pbp + plbpl (so that b commutes with p) as follows: 

(2) b1 = ba0o 6(apo)fo 

for any a E A such that ado = rq, and, if ( is in nr(p) and qi = 0170, 

(3) peb = pebpl = -q*6(ql) + q*6(qo)q*ql. 

It is not immediately clear that b is in B(H). 

LEMMA 5. b is a well-defined bounded linear operator. 

PROOF. Consider separately the parts b1 = pbp and b2 p'bpl of b. bi is 
clearly well defined and linear, and is bounded because 

llbiadol1 = 116(apo)> oll < 11611 lapoll = 11611 lladoll1 

Similarly it is clear that b2 is well defined and bounded. We must show that it is 
linear. For this it is sufficient to show that b* is linear: Let ( be a unit vector in 
n(p), and let qi 0= r10. Then 

b*4 = -6(q,)*q1d + 
q*q06(q0)*q14, 

and it is clear that this is linear in (. 

THEOREM 1. b implements the derivation 6 on A if and only if 6 is strongly 
continuous and has Property D1. 

PROOF. It need only be shown that if 6 has these properties then b implements 
6. If we can show that 6(q) = db(q) for all rank 1 operators q in A then the result 
will follow, by strong continuity. So let (o, q10, and qo be as above. Let q = 0 17 
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be any rank 1 operator in A, where (, 7 are of norm 1. Define, in addition, the 
rank 1 operators 

q 0 = 7o0, q2 =o 71, and pi=0$. 

Then we have q = qq*qoq*ql and q2 qqtqo. First suppose that ' is in r(p). Then 
(bq -qb) =-qb = 0 6(q)f. Now let ' be in n(p). Then 

(bq - qb)= blqf - qpibf 

[6(q2)q*ql + qq*6(ql) - qq*'6(qo)q*q1]i 
[6(qq*qo)q*ql + qq*6(ql) - qq*6(qo)q*q1]k. 

However Property D1 says that this is just 6(q)', as required. 
Now let S be any algebra containing A and p, and which leaves p invariant. This 

holds, for example, if S is a nest algebra or a maximal triangular algebra such that 
p E lat(S). Let 6: S -* B(H) be a bounded derivation. 

COROLLARY 1. 6 is implemented if and only if its restriction to A is strongly 
continuous and satisfies Property D1. If so, then b implements 6 on S. 

PROOF. Suppose that 6 has the stated properties. (As before they are automat- 
ically true if 6 is implemented.) As already mentioned we can assume that 6(p) = 0, 
and therefore that the restriction of 6 to A maps A into itself. We consider several 
cases. Recall that b commutes with p. First let a = pap. Suppose that c E n(p). 
Then 

db(a)> = (ba - ab)p' = 0 
and 6(a)d 6(a)p'= [6(apl) - a6(p')]d = 0. On the other hand, if c E r(p), 
and if c(o - ( then 

(ba - ab) - (bac - abc) $o = [6 (acpo) - a6 (cpo)] $o 

- 6(a)cdo = 6(a)(. 

Now let a pIap1. If ( E r(p) then, again, db(a) 6 (a)> 0. Suppose now that 
n E n(p). Then p(ba-ab) = p6 (a) ( = 0. Consider, finally, p' 6 (a): Choose a basis 

{(a} for n(p). Let 71o be as in Theorem 1, and put p, = ,0 X, and qO, = 4, Oo. 
Define the constants r,0 in C by p,apo = r,oyq*q1, where ,, (0 are two basis 
vectors. Then 

pa(ba - ab)> = q*6(qo)q*q,ap' - q*6(q,)ad - Zp(p'ap1bf 

-q*6(q,)ad 
+ E[q*6(qo)q*qapaP 

- 
paaq76(qo)q*qo + 

pc,aq76(q,3)]b 

-q* 6(q,)ad + E[r3 q 6 (qo) qo q - r,3 q 6 (qo) q q,3 + rO13 q6 (q,3)] 

=-q 6(q,)ad + s q E (r,q,3) -qO 6(q,)a + 3 q 6 (q, ap,3>) 

-q*6(q,)ad 
+ q*6(q,a)= q* q6(a)= 

p,6(a) 
. 

Hence for all a, pcdb(a)> = p,6(a)>, and the proof is complete. 
In particular, since it is known that every derivation on a nest algebra is imple- 

mented [1, 5, and 8] we have the following corollary. 
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COROLLARY 2. If S is any nontrivial nest algebra and 6: S - B(H) is a 
derivation, then b, defined as above for any projection p in lat(S), implements 6. 

The surprising feature of the construction of the operator b is that it involves 
very little knowledge of the algebra S. It is this which distinguishes the proof for 
nest algebras from previous ones, which depend on a limiting procedure and more 
detailed knowledge of the underlying nest. 

Property D (or D1) would be useless if it were not possible to test whether 
it holds in individual cases. However this can be done directly, for example, for 
von Neumann algebras (Lemma 4) and nest algebras (although for brevity we have 
not done so here). 

4.3. Extensions of derivations. Suppose that the algebras A and S are as above, 
where the projection p, or pL, is now of rank 1. Let 6: S -* B(H) be a derivation. 

LEMMA 6. The restriction of 6 to A has Property D. 

PROOF. This is immediate. For example, let p be of rank 1. Let b be in A such 
that ab, bc, and abc are also in A. Again we can assume that 6 maps A into itself. 
Now ap = ap for some a c C, so 

6(ab)c + a6(bc) - a6(b)c = a[6(b)c + 6(bc) - 6(b)c] 

= a6(bc) 6(abc). 

Now let S be any unital algebra, and let 6: S -* B(H) be a derivation. Put 
H2= H E) H1, where H1 is just a copy of C, and let p denote the rank 1 projection 
of H2 onto H1. Then the set S2= S + pB(H2)p' + Cp is a unital algebra extending 
S to H2. (Note that pB(H2)p' is, as a vector space, simply a copy of H.) 

THEOREM 2. 6 is implemented on S if and only if it has a bounded, strongly 
continuous extension to S2. 

PROOF. It is immediate from Corollary 1 and Lemma 6 that if the extension 
exists, then it is implemented on S2 by some operator b2 in B(H2), where b2 
commutes with p. Thus b2p' implements 6 on S. 

It turns out that in certain cases it is not too difficult to find extensions of this 
type. The possibilities raised by this technique will be discussed in another paper. 
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