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Abstract: The left–right splitting method and its application to electromagnetic scattering by large
3D scatterers are described. Exact numerical solutions to the governing integral equations can be
prohibitively expensive for large scatterers. Under the assumption that energy is predominantly
forward-scattered, the solution is expressed as a series of terms, each of which is rapidly and
efficiently evaluated. In many cases only one or two terms are needed, and the formulation
provides additional physical insight.

1 Introduction

This paper describes the left-right (L–R) splitting algorithm
and its application to electromagnetic scattering by 3D
scatterers. Surface currents are as usual expressed as the
solution of a boundary integral equation, which can become
prohibitively expensive for large or complex problems.
The L–R operator splitting, used for 2D (scalar) problems
in [1, 2] and related methods [3–5], expand the solution
of this equation as an operator series in increasing orders
of multiple scattering. Each term can be evaluated rapidly,
and the approximation is provided by truncating the
series.

The approach has proved versatile and has been applied
to extended rough surfaces as well as finite scatterers,
converging for a wide range of incident angles. The
approximation can provide considerable physical insight,
and truncation errors can be examined theoretically, in
some sense independently of discretisation.

In many cases only a single iteration is needed to provide
accurate results. At its simplest the evaluation time scales

with Oðf 4Þ, where f is frequency. This is sufficient to treat
electrically large scatterers, but could be accelerated to

Oðf 3Þ by use of fast matrix multiply methods (e.g. fast
multipole).

2 Method and applicability

The method arose originally in the treatment of low-
grazing-angle scatter by rough surfaces. Suppose cartesian
co-ordinates (x,y,z) are specified where z is the vertical, and
x is in the plane of incidence and can be thought of as a
‘range’ direction. If a known radar field is incident on,
say, an extended rough surface, the induced surface
current can be obtained by solution of the magnetic field

integral equation

JincðrsÞ ¼
1

2
J � n�

Z

surface

J �rGdS ð1Þ

or more conveniently in terms of operator notation J inc ¼
AJ where rs ¼ ðx; y; zÞ, all terms except J are known, J inc

¼ n�H inc and n is the surface normal. By splitting the
integral into two halves with respect to x to the left and
right of the observation point rs, this can be written
J inc ¼ ðLþ RÞJ , where the Cauchy principal value is

assumed to be in L. Formally the solution J ¼ A
�1
J inc

can be expanded and written as a series

J ¼ ðL�1 � L
�1
RL

�1 þ . . .ÞJ inc ð2Þ

The key step is that under the observation that the effect of
R is in some sense small, this series converges quickly and
can be truncated. Physically this corresponds roughly to the
assumption that surface interactions are primarily ‘from the
left’, as expected in this scattering regime. More precisely, in
many cases R is effectively small by comparison with L for
two reasons: first, R excludes the ‘diagonal’ or principal
value, and indeed vanishes in the limit of scattering by an
infinite plane; secondly, when applied to a predominantly
right-going wave a rapid phase-variation occurs in the
integrand. This has been borne out numerically, but in
general it cannot be made precise as it depends on the exact
scatterer shape and incident field.

Once the surface currents are obtained the scattered
electromagnetic fields at all angles are found by integration
of these currents over the surface.

Considerable success has been obtained in applying this
approach to perfectly conducting rough surfaces and
waveguides, and for radar interaction with closed scatterers.
For a wide range of incident angles accurate results are
obtained using only one or two iterations.

3 Numerical evaluation and cost

Discretisation of the system is straightforward and gives rise
to a matrix equation, withA, L, andR replaced by matrices.
The number of surface points N required in the discretisa-

tion scales with the square of the frequency f 2. The main
computational advantage arises from the cost of inversion
of L compared with that of A. In effect, A is a full matrix so

that the time needed for ‘exact’ inversion scales with f 6,
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whereas L (which in the 2D case is lower triangular) can be

inverted exactly by a marching method of Oðf 4Þ. Further
terms in the series involve multiplication by R but inversion
only of L, so computation time is proportional to the
number of terms used.

3.1 Formulation of matrix equations
The computational details are most easily understood by
first describing their application to 2D scattering and then
extending to the general 3D case. Consider a surface h(x,y)
having corrugations in the y-direction and incident field
vector lying in the (x,z)-plane. The y-dependence can then
be ignored and the equations for a TM field (say) reduce to

HincðrsÞ ¼ HðrsÞ �

Z 1

�1

@Gðrs; r
0Þ

@n
Hðr0ÞdS ð3Þ

where integration is over the surface, G (in this case) a zero-
order Hankel function and rs ¼ ðx; hðxÞÞ, r

0 ¼ ðx0; hðx0ÞÞ
both lie on the surface. Equation (3) can be writtenHincðrsÞ ¼
ðLþ RÞH with L and R defined by

Lf ðx; zÞ ¼ �

Z x

�1

Gðr; r0Þf ðx0ÞdS;

Rf ðx; zÞ ¼

Z 1

x

Gðr; r0Þf ðx0ÞdS

ð4Þ

and L includes the principal value. This system is then
discretised with respect to x, choosing N equally-spaced
points fxng. The integral is thus written as a sum of
subintegrals, over each of which the unknown part of the
integrand Hðr0Þ is treated as constant and the remaining
part of the integrand is a known function of hðxÞ. Writing
this for each of the N surface points gives rise to a matrix
equation, say Hinc ¼ AH . If we define the slope variable

sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h0ðxnÞ
2

q

where h0 ¼ dh=dx, the matrix entries

can be approximated by

Amm ¼ �
1

2
�

d

s2mp
h00ðxmÞ

� �

; and

Amn ¼
id

4
sn
@H

ð1Þ
0

@n

�

�

�

�

�

krmn

for m 6¼ n

ð5Þ

It is straightforward to obtain more accurate formulations if
necessary. Applying the left–right splitting series (2) to H in
place of J, the discretised operators L, R give rise to
matrices given, respectively, by the lower and upper
triangular parts of the matrix A in (5), with the diagonal
included in L. As L is lower triangular, it can be inverted
rapidly and efficiently by back-substitution giving the first
term in the series. (In effect, this ‘marches’ the solution for
the surface current from left to right.) Further terms in the
series can be obtained similarly, combining L�1 with
multiplication by R.

Returning to the general 3D case, (1) transforms to range
and transverse co-ordinates x, t

J incðrsÞ ¼
1

2
J � n�

Z Z 1

0

gðr0ÞJ �rG dx0
� �

dt ð6Þ

where g is the Jacobian of the co-ordinate transformation.
The operator L is obtained as for the 2D case, replacing the
infinite upper limit by x in the inner integral. Discretisation
of this system is again straightforward and results in matrix
forms for L and R. These matrices have dimensions
2M � 2M , say, where M is the total number of surface
points at which solution is required. The key computational
step is the inversion of L which (analogous to 2D) is
obtained by marching the surface current in the x-direction.

The system is well-suited to parallelisation and such
calculations have been carried out on the Cranfield–
Cambridge High-performance computer facility. The
marching technique for evaluation of L

�1 falls into two
main parts at each step: a matrix multiplication and an
inversion of a ‘small’ matrix whose dimension is given by
the number of surface points in the plane transverse to the
x-axis. For example, without further approximation,
evaluation for a scatterer of around 220 by 20 wavelengths
can be carried out in around 100 minutes using 32
processors on the SunFire machine. Current amplitudes
on a waveguide of these dimensions are shown in Fig. 1 as a
shaded contour plot. The electric field on a transect some
distance along a similar waveguide is shown in Fig. 2.

For a typical scatterer the matrix inversions form a small
part of the overall computation time, compared with the
matrix multiplications. Evaluation time for these scales with
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Fig. 1 Surface current amplitudes on waveguide of length 220 and
diameter 20 wavelengths

Fig. 2 Electric field amplitude on plane transect along waveguide
of Fig. 1
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Oðf 4Þ because the Green’s function must be evaluated for
each pair of surface points. The L–R series, before further
approximation, allows solution for electrically large scat-
terers in reasonable times. If necessary accelerated methods
could be applied including those based on fast multipole or

wavelets to reduce this to Oðf 3Þ.

4 Further remarks

The method has been described for the magnetic field
integral equation (MFIE) rather than the electric field
equation (EFIE). This is in part because of the better
convergence properties of MFIE sometimes found with
iterative schemes such as standard method of moments.
However, it is emphasised that the L–R splitting approach
is not restricted to MFIE. Indeed, in treating 2-D problems
it was applied with equal success to TE and TM waves
represented, respectively, by EIFE andMFIE. Similarly it is
applicable to acoustic scattering for which it was originally
proposed [1].

Some remarks should be made by comparison of L–R
splitting with other techniques such as the multilevel fast
multipole method (MLFMM). First, L–R splitting has a
fairly clear physical basis in that where energy propagates
predominantly in one direction the first term in the series
dominates; although convergence may be rapid even when
this condition is not strongly satisfied. Secondly, our
experience on waveguide problems has been that L–R
splitting has been much more efficient in both speed and
memory requirements than, for example, MLFMM. (Such
comparisons have not yet been made for fully optimised
versions.) Thirdly, methods such as FMM are normally
applied in combination with approximate methods for
inversion of the large matrix, whereas L–R splitting is
aimed directly at this inversion; therefore as mentioned
above acceleration methods such as FMM can be combined
with L–R splitting if necessary.

The approach here lends itself naturally to planar or
near-planar structures for which it was originally developed,
and can in principle treat dielectric or multilayered
materials. One way to do this exactly is to consider the
full coupled equations for the electric and magnetic currents
on each interface. However, the number of unknowns then
increases proportionately, leading to a corresponding
increase in memory and computation time.
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