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In this paper we address the question of estimating the average position of a beach and its inherent var-
iability about this mean. It is demonstrated how, even in a much simplified situation, the ensemble aver-
age of beach plan shape involves cross-correlation of the beach position and wave conditions. This
renders the governing equations inimical to analytical treatment. A new analytical expression for the
mean beach plan shape and its variation are derived for the case of a single groyne exposed to waves
varying in direction only. This demonstrates that ‘beach memory’ is directly related to the autocorrelation
of wave direction. For more general conditions a semi-analytical expression for the ensemble average of the
shoreline position is derived. This solution is estimated with site specific wave conditions using Monte Carlo simu-
lations. The characteristics of the solution are investigated and it is demonstrated that, for this case at least, the
terms involving the wave direction are virtually uncorrelated with the terms that do not. It is concluded that, in
an ensemble sense, the morphodynamic impact of wave direction is decoupled from that due to wave height

and period.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Changes in the configuration of our shorelines occur as a response to
waves, tides and sediment movement. Understanding and predicting
longshore sediment transport driven by varying wave and tidal conditions
is one of the most important issues confronting coastal engineers and man-
agers. Coastal management, design of coastal structures, environmental
impact assessment and flood risk assessment all depend upon our under-
standing of how the shoreline changes and will react to interventions. It
is the transport of sediment, driven by wave energy at the shoreline,
which is most altered by shoreline management strategies that typically in-
volve some combination of coastal structures and beach nourishment.
Tides are driven by gravitational forces and can be predicted to a very
good degree of accuracy by and large. In contrast, waves are driven by sur-
face winds which are notoriously unpredictable and often considered to be
randomly varying about underlying seasonal or annual trends. Shorelines
respond strongly to the incident wave conditions and therefore can also ex-
hibit large natural variations. This can make it difficult to reconcile instan-
taneous observations of the shoreline with the expected long term trends.
A good example would be an unexpectedly strong shoreline response to
the construction of a beach control structure. The shoreline manager has
to answer the question ‘Is the shoreline response simply a variation from
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the anticipated behaviour due to unusual conditions, or does it signify an
unintended impact due to an imperfect understanding of the physical pro-
cesses?’. The management response to each case will be very different and
have very contrasting costs and impacts on the neighbouring shoreline
infrastructure and communities. Understanding how fluctuations in
wave conditions transfer to variations in shoreline position is extremely
important in informing our response to situations where the behaviour
of a beach is observed to diverge from that expected.

To some extent Monte Carlo simulation can assist in this. If wave con-
ditions are considered random variables driving a stochastic shoreline re-
sponse, then by repeating simulations of shoreline evolution with
multiple but independent realisations of wave conditions a corresponding
set of realisations of likely shoreline responses can be generated. Ensem-
ble statistics of shoreline position can be calculated from the realisations
directly such as described by Vrijling and Meijer (1992) for port applica-
tions and Wang and Reeve (2010) for a detached breakwater scheme.

An aspect of Monte Carlo simulation that can cause difficulties is the
accuracy of the statistical characteristics of the input variables. If these
do not accurately represent the statistics of the variables in nature,
both in terms of distribution and correlation properties, then the
resulting outputs will be unreliable. Verifying the results of Monte
Carlo simulation can also be problematic because Nature only gives us
one realisation. In this situation it is helpful to invoke the principle of
ergodicity. That is, the assumption that the ensemble average is identi-
cal to a time average taken over a suitably long period. Ergodicity is not
guaranteed, but is often assumed, so that we can compare time averages
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of observed quantities with the ensemble averages generated from
numerical models. This avoids difficulties arising from the accumulation
of numerical errors as well as numerical instabilities that can be encoun-
tered in simulations over long periods of time.

An alternative to Monte Carlo simulation is to evaluate ensemble
averaged quantities directly. One approach is to develop a Fokker-Planck
evolution equation for the probability distribution function of beach posi-
tion as described by Dong and Wu (2013). Another approach is to formu-
late equations for the evolution of particular statistical moments of beach
position. Neither approach is particularly straightforward, even for
idealised cases. In this paper, we develop a formal moment solution for
the case of a groyne on an initially straight beach, subject to random
wave conditions. The solution is analytically intractable in the general
case, but can be estimated through Monte Carlo simulation. Here, we
use Monte Carlo simulation to generate 600 realisations to establish
sample statistics. The Monte Carlo realisations are also used to investi-
gate the correlation properties of different terms in the formal solution.
As a result, inferences can be made about the relative impacts of wave
direction and height on the statistics of the beach response.

When the angle of the shoreline is small with respect to the wave
fronts breaking at the shore, a linear partial differential equation
governing shoreline change can be derived from the continuity
equation and the longshore transport equation. In the simplest
case, wave conditions are taken to be uniform in space and constant
in time. This approach was pioneered by Pelnard-Considére (1956)
who proposed an equation to forecast changes in coastline position
near groynes and which has become known as ‘the one-line model'.
This model describes the evolution of the distance of a single height
contour from a reference line, y, as a function of longshore distance, x,
and time, t:

2
dy _ 0y 1)

ot ox?

where (when using the CERC sediment transport formula),

K= prH i Cob
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Hy is the breaking wave height, cg is the group velocity of the waves
at breaking, «, is the wave angle at breaking, p,, is the density of sea
water, p; is the density of the sediment, p is the sediment porosity, D is
the height of the active profile (usually taken as the sum of the berm
height and the depth of closure), k is the ‘coastal constant’ whose value
is set according to the sediment size distribution. Eq. (1) can be solved
for numerous combinations of fixed boundary and initial conditions, see
eg. Crank (1956) and Carslaw and Jaeger (1959). While Pelnard-
Considere proposed Eq. (1) on the basis of observations from laboratory
experiments of accumulation of sediment near a groyne, the concept
was subsequently extended to describe: sand bypassing a groyne by
Bakker (1969); the spreading of beach nourishments by Walton and
Chiu (1979); and the impacts of sediment supply to beaches from rivers
by Wind (1990). These studies considered constant, uniform wave condi-
tions. One of the first analytical studies to relax the constraint of constant
wave conditions was Larson et al. (1997) who provided solutions for,
amongst many examples, the case of a groyne compartment with sinusoi-
dal time variation of the wave angle. Subsequently, solutions for arbitrari-
ly varying wave conditions for the case of a single groyne were presented
by Reeve (2006), and for a groyne compartment by Zacharioudaki and
Reeve (2008).

While this body of research has been successful in broadening the
range of cases that can be described with analytical solutions they still
rely on the assumption of small angles. In practical applications the
‘small angle approximation’ is usually relaxed and a time marching nu-
merical solution procedure is adopted to solve the continuity, sediment
transport and wave angle equations simultaneously. Modelling suites

that include elements of wave prediction, nearshore wave transforma-
tion, modifications to allow for wave diffraction, longshore variations
in wave angle and height, and variations in beach slope have been de-
scribed by Hanson and Kraus (1989) and Dabees and Kamphuis
(1999). The general application of analytical solutions based on the
assumptions of small angles, constant and uniform wave conditions,
negligible diffraction effects to real life cases cannot be justified a priori.
Nevertheless, their robustness is demonstrated by their continuing use
for: numerical code testing; quick estimation and pedagogy. They also
have the advantages over more complete but complex models of
avoiding the cumulative effect of rounding errors and providing an effi-
cient means of estimating shoreline evolution without the need for
iteration.

The importance of the order in which storm episodes occur, or storm
sequencing, was discussed by Southgate (1995) and investigated
further with numerical Monte Carlo simulation by Dong and Chen
(1999, 2001) who concluded that chronology effects could be signifi-
cant in the short to medium term but became less significant over
longer periods of a few years. In an analysis of beach response near
a groyne Reeve (2006) noted that while using the time average
wave conditions yielded the same net transport as the corresponding
time varying conditions, the final beach configuration was depen-
dent on the sequence of storms. Walton and Dean (2011) used an an-
alytical method based on the Heaviside technique to demonstrate
that the final planform shape of the shoreline may depend on the
wave sequence despite wave conditions being spatially uniform.
Further, Valsamidis et al. (2013) found that results computed with
this technique had a strong dependence upon the sampling period,
demonstrating that short-term correlation in wave conditions has
an influence on the short-term beach response. In an analysis of
pocket beaches Turki et al. (2012) proposed a beach evolution
model that explicitly included an element of beach memory of ante-
cedent wave conditions to explain the observed behaviour of several
pocket beaches near Barcelona. This observed tendency can be ex-
plained in the context of 1-line theory.

This paper is organised as follows: Section 2 provides the back-
ground to the deterministic analytical solution and its adaptation
to derive ensemble averaged solutions; in Section 3 an exact analyt-
ical solution for the ensemble average beach position is presented for
a simplified case; in Section 4 the study site and wave conditions
used for the Monte Carlo simulation are introduced; results are de-
scribed in Section 5 and a discussion and conclusions are provided
in Section 6.

2. Mathematical background

If, in Eq. (1), we treat the shoreline position and wave conditions as
random variables, with y = <y> + y’ and K = <K> + K’ where <>
denotes an ensemble average and ’ denotes the fluctuation about the en-
semble average then we may write the ensemble average of Eq. (1) as:

oy) .0 0%y
T +<1< W> )

where it is understood that <y’> = <K’> = 0, <y> = <y> and
<K> = <K>.

Eq. (2) shows that the time evolution of the ensemble average
shoreline configuration depends not only on the ensemble averaged
wave forcing, <K>, but also on the correlations between the fluctuations
in wave forcing and the second derivative of the beach plan shape; in
essence a form of ‘morphodynamic turbulence’. It is quantifying this
second term that is difficult and which is analogous to the ‘turbulence
closure problem’ in fluid mechanics. An obvious approximation is to
neglect the correlation term, setting it equal to zero, or to parameterise
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it in terms of the ensemble quantities (eg. replacing it by a term propor-
tional to <y> or its spatial gradient).

Neither of these approximations is entirely satisfactory, so alter-
natives have been sought. A probabilistic theory which accounts for
temporal correlation in the wave climate was developed by Reeve
and Spivack (2004) who presented solutions for the moments of
the shoreline position for the case of a bell-shaped nourishment on
an otherwise straight beach. The presence of random fluctuations
in the diffusion coefficient was found to accelerate the dispersion
of nourishment in comparison to the case where there were no
fluctuations.

Consider the solution of Eq. (1) for the case of an impermeable
groyne located at x = 0. The boundary conditions in this instance are
dy /0x = h(t) atx = 0and y — 0 as x — =+, For an impermeable
groyne there is zero transport across the groyne, so h(t) = tan(ay(t)),
where oy (t) is the wave angle at breaking and the second boundary con-
dition corresponds to the condition that there is an undisturbed beach
far from the groyne. The wave conditions are taken to be a random func-
tion of time, so that the diffusion coefficient, K, is also a random function
of time. Assuming an initially straight beach (y = 0 att = 0), Reeve
(2006) showed that the solution may be written as,

t

¢ —172
1 x
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w
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with w being a dummy variable of integration running from time 0 to
arbitrary time t. Although this is an analytical solution its evaluation
for any realistic sequence of wave conditions requires numerical inte-
gration. Hence we term this a semi-analytical solution in what follows.
Given a sequence of wave conditions (Hp, T and ay(t)) it is possible to
construct a corresponding sequence of K(t), and h(a,(t)) = tan(ay(t)),
and then evaluate the solution at any particular time using numerical
integration.

The closed-form nature of this solution provides two options to
determine the statistics of the beach position. These are:

1. Use the solution to generate ‘Monte Carlo’ simulations of shoreline
evolution, from which statistics can be computed, and

2. Derive the ensemble solution directly from the semi-analytical
solution.

Both procedures require long sequences of wave data. In the first
case, the route to the Monte-Carlo solution is straightforward once
we have established a suitable wave climate and means to create sta-
tistically accurate realisations of this. This step is not always straight-
forward. For example, Vrijling and Meijer (1992) and Dong and Chen
(1999) noted that it is often necessary to make some assumptions
about the statistics of the waves which restrict the application of
this method to more general situations. In the second case, the data
are used to specify the distribution function and correlation function
of the waves.

We now consider the second option. The semi-analytical solution
given in Eq. (3) yields the temporal evolution of the shoreline position
in the vicinity of a groyne. If we ensemble average this equation over
all possible sequences of wave conditions the first moment (the mean
of the solution) will be written as

Cor 2 T K
w=-r] <( / K(u)du) A\ K(w>h<<w>>>>dw
0

(4)

where (f) denotes the ensemble average of the stochastic function fand
0 o 21

is the triple integral ff _[ fp(oy,, T,H)doy,dTdH over all possible values
000

and combinations of wave direction, period and height, and p(«y, T, H)

is their joint distribution function. This is difficult to treat analytically

because it involves a cross-correlation of three terms. Furthermore,

we require the joint distribution function of wave height, period and

direction. We return to this problem in Section 4 but first consider an

analytical solution to Eq. (4) for a simpler case. Finally, it is helpful to

reprise some of the main the assumptions in deriving Eq. (3):

(i) the small angle assumption, that the angle between wave crests
and the shoreline is small and that the angle between the local
shoreline and the datum line is small

(ii) the effects of diffraction are ignored.

Note that (i) doesn't exclude large changes in shoreline position,
only that the angle of the shoreline does not vary greatly in doing so.
As an example, an accumulation of 100 m updrift of a groyne will lead
to a change in beach angle of 0.1 rad if the beach realigns over a frontage
of 1 km. Sharp changes in beach angle, particularly those associated
with localised wave angle change due to diffraction, cannot be
modelled.

3. Analytical ensemble mean solution

In what follows we drop the ‘b’ suffix on the wave angle. For
simplicity's sake we consider o small, so that tan(a) =~ . Further, con-
sider wave conditions that are constant in height and period and vary
randomly only in direction. To solve Eq. (4) the probability distribution
of the wave angle is required. Here, we write @« = <a> + a = § where
<o~ is a constant mean value of ¢, 6 is a random variable with zero
mean and unit variance (so Var(c) = «*2), density function ps(5) and
autocorrelation function p(§), where § is the time lag. Now, the ensemble
average of an arbitrary function of a stochastic variable 6, f(6), can be
written as

0

max

) = / Fpo(6)d6. (5)

0

min

Hence, the ensemble average solution for the beach position may be
written as

Y(x.£) = <—a@{e‘$—%erc(¢%«ﬂ > = (—aG(x,1). (6)

In Eq. (6) it should be noted that the function G(x,t), although a
function of time, is not randomly varying. Hence,

2

Y(x,6) = —Glx,0 { ap,(@)dar 7
= —G(x,t){).

That is, in this very constrained situation, the ensemble average
shoreline may be found by substituting the mean wave direction in
the deterministic solution.

The variance of the shoreline position is defined by:

Y )= 0D = (yx,tr. ) ) = )’ ®)
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which requires the second moment of the shoreline to be determined
(see eg. Papoulis, 1987). The second moment function, with respect to
time, is defined as:

VX, 1) ¥(x, 0)) = G (x) (et )e))
= G () + od(e) (@(t) +@0()) - o
= G0 ({altn))ex(ty) + @ (8(,)8(85)) )
= G (x.0) () (k) + & *p(§))

where § = t; — t;, and the last line follows from the definition of the
autocorrelation function. Substituting Eqgs. (7) and (9) into Eq. (8) gives:

W D=y 0)* =G (x,H)e?p(E). (10)

The variance of the beach position at any alongshore point, x, and
time t can be obtained from Eq. (10) by setting t; = t, = t,or § = 0.
More generally, Eq. (10) gives us the autocorrelation function of the
beach plan shape over time. For forms of autocorrelation function that
are often used to describe physical processes (negative exponential or
Gaussian forms), a common trait is that p — 0 as § — «. The character-
istic timescale over which the autocorrelation function falls from a max-
imum to a small fraction is termed the ‘correlation period’. In this case
the correlation period will be of the same order as the typical storm
duration. That is, the beach plan shape will, on average, show some sim-
ilarity to itself over small periods of time, but that this similarity is ex-
pected to vanish as the period of time increases. The beach plan shape
will thus exhibit some ‘memory’ of antecedent conditions dependent
upon the autocorrelation properties of the wave angle. Put another
way, sequences of ‘storms’ are anticipated to lead to chronology effects
in beach plan shape over periods several times the duration of the storm
grouping. Eq. (10) also indicates that the greatest variance in shoreline
position is expected to be close to the groyne; this variance decreases
as one moves away from the groyne; and the ‘memory’ of the beach
shape is dependent on the autocorrelation of the incoming wave condi-
tions. This provides the theoretical underpinning, in a special case, for

the computational findings of Southgate (1995) and Dong and Chen
(1999).

It is also interesting to compare these findings with the results of
Reeve and Spivack (2004) who found, in the case of small angle waves
impinging on a nourishment scheme, that any beach memory arose
from the correlation in the diffusion coefficient which, in the majority
of transport formulations, does not depend on wave direction. In the
current case, the presence of a structure promotes the importance of
wave direction in its vicinity, despite the small wave angle assumption.

In the above, ‘storms’ have been defined in terms of their direction
only in order to make the analysis tractable. In reality, storms will be
characterised by changes in wave period and wave height too. The influ-
ence of these additional parameters is the focus of the remainder of the
paper.

4. Case study

The site chosen for our study is Aberystwyth, a town on the Welsh
coast of the United Kingdom. Offshore wave conditions covering a peri-
od of four years have been furnished by Royal Haskoning and Aberyst-
wyth City Council and correspond to hourly offshore hindcast wave
heights, wave periods and directions at a point in a water depth of
32 m. Fig. 1 shows the location of the bay and the offshore point at
which waves were hindcast.

The purpose of the case site is not to attempt to simulate in detail the
beach at Aberystwyth, but rather: to employ the type and quality of data
that might be used in the design; to transform this wave data to a shal-
low water, thereby allowing for changes in wave statistics that might be
expected in real applications; to drive a semi-analytical model of the
beach response near a groyne with time varying but uniform wave con-
ditions and thereby investigate the statistics of the beach changes. This
procedure includes the main wave transformation and beach response
processes but specifically excludes the local tidal variations and local-
ised diffraction effects that might lead to sharp changes in beach orien-
tation very close to the groyne. In order to construct a continuous time

Fig. 1. Location of the case study and offshore wave climate point.
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series of nearshore wave climate, the sequence of hourly offshore wave
conditions were transformed inshore to a fixed water depth contour
(2 m) using the wave transformation model SWAN (see Booij et al.,
1999; Ris et al,, 1999). In this process the mean water level (+2 m rel-
ative to the local datum), has been used for the SWAN computations.
The choice of inshore location is arbitrary but is informed by (a) the
need to use a contour that will evolve under the local wave conditions
and (b) the largest inshore wave height in the transformed series is ap-
proximately equal to 1.6 m, which is close to the water depth times the
breaker index of 0.78. A further assumption is required. Random waves
will break at different points but the beach model requires the broken
wave angle at the particular contour. This issue occurs whether you
have an analytical or numerical model. The assumption is made that
waves that have not broken by the 2 m depth contour will have com-
paratively little impact on the sediment transport and can be
disregarded, while for waves that have already broken any change in di-
rection that occurs between the breaker point and the chosen depth
contour will be small. Bathymetric data was obtained from Admiralty
charts, and interpolated onto a regular grid using kriging. The left
panel in Fig. 2 shows the resulting bathymetry and the right panel
shows a sample output illustrating the propagation of wave into the
bay from westnorthwest.

A time series of wave conditions on the 2 m depth contour at
Aberystwyth were constructed from the results extracted from the
SWAN model output. Fig. 3 shows probability density functions (PDFs)
for wave height (middle panel) and period (right panel), as well as the
wave rose for the wave directions (left panel).

It is clear from this figure that the PDF of wave heights does not
resemble a Rayleigh distribution, i.e. does not have a bell shape; a result
of wave breaking. In contrast, the PDF for wave periods has an approxi-
mately bell-shape distribution.

5. Generation of realisations

In order to estimate ensemble averaged quantities from Monte Carlo
simulation numerous wave sequences are required. The four years of
hindcast waves are considered a single realisation of wave conditions.
This can be used to generate more sequences with similar statistical

Fig. 2. Left panel—bathymetry for Ceredigion Bay in Wales, UK. Right panel—wave trans-
formation sample output for waves approaching from WNW (the black dot represents
the position of Aberystwyth).

properties, in order to generate an ensemble of solutions. Here, we
employed the method proposed by Walton and Borgman (1990), fur-
ther elucidated in Borgman and Sheffner (1991), to generate wave se-
quences with the same statistical properties as the input data set. The
method consists of a piecewise, month-by-month, multivariate, station-
ary simulation approach, which preserves the marginal distributions
and the first and second order moment properties that describe the in-
tercorrelations of the data sequences. Seasonal changes are imposed by
simulating each month separately based on the information of the orig-
inal time series for each month and then a square-root interpolation
scheme is carried out in order to force a smooth transition in the time
series and intercorrelations from month to month. The procedure uses
as a basis an empirical normal score transformation which maintains
the first-order multivariate and higher order univariate moments of
the data.

We have used this technique to generate 600 sequences, each with a
length of 4 years, of wave height, period and direction which preserve
the statistical properties of the original time series shown in Fig. 3. The
marginal densities of wave height and period, as well as the wave
rose, were computed for all the wave sequences, to check the statistical
properties of the synthetic data. Fig. 4 presents an example of these
results, where the wave rose and marginal densities of 5 synthetic time
series are illustrated. Left panels show the wave rose and the middle
and right panels show the probability density functions for wave heights
and periods respectively. Comparing these plots against those obtained
for the original data (Fig. 3), it is evident that the technique preserves
the distributional properties reasonably well.

As an additional check on the simulated sequences, a comparison of
the autocorrelation function of the detrended diffusion coefficient K was
performed. Fig. 5 presents the results of this comparison at different
time scales, from one year to four days. It shows that for all of these
scales a reasonable reproduction of the temporal auto-correlation func-
tion is achieved. The annual cycle is captured as well as the e-folding
time at shorter lags; although the shape of the autocorrelation function
atvery short lags (<10 h) is slightly more bell-like in the synthetic data.

6. Ensemble average of the semi-analytical solution
6.1. Hypothesis

We take as a hypothesis that, when wave height and period are
allowed to vary in time as well as wave direction, the contributions to
the beach response from wave direction are largely uncorrelated with
wave height and wave period. If this is the case then the expression
for the ensemble average beach position given in Eq. (4) will be well ap-
proximated by the expression in Eq. (11). That is, the ensemble average
of the product of the terms in the integrand can be approximated as the
product of the ensemble averages of the individual terms, thus:

t t —1/2
1 " '
Y=—— < K(u)du expy — | —— ><K(w)>(h(w))dw.
\/ﬁ{ </ ) 4 / K(u)du

w

(11)

Equivalently, this is a statement that the cross-correlations be-
tween the terms are negligible. We introduce some terminology
here to allow some abbreviation in the discussion. Eq. (4) can be
written as

W =-r

= (T, - T, T3)dw (12)

o —
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Fig. 3. Left panel—wave rose for transformed waves at the 2 m depth contour. Middle and right panels—corresponding probability density functions for wave height and period respectively.

where and the hypothesis is that
t
1
x| )T s)aw. (13)
t —1/2 ) 0
X
T, / Kwdu| — expd —| —
(,W 4 [ kdu 6.2. Ensemble averages of key terms
w
T, = 5 (w) For the purpose of testing the hypothesis we consider the situation
T3 = h(w)

where there is an impermeable groyne situated at x = 0 m on an

Fig. 4. Wave rose and probability distribution functions for wave angles, wave heights and periods for 5 samples of simulated data. Left panel—wave rose for directions; middle and right
panels—probability distribution functions for wave height and period.
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Fig. 5. Autocorrelation function of the detrended time series of K: (a) over ~1 year, (b) ~1 month, (c) ~1 week, and (d) 4 days; (solid line—calculated directly with the nearshore trans-
formed time series; dotted line—calculated from the synthetic time-series using the Borgman & Sheffner technique).

otherwise straight beach coinciding with the line y = 0. For each reali-
sation of wave conditions the beach evolution over a period of four year
is computed using Eq. (3). In addition, for each realisation the individual
terms Ty, T, and T3 are stored for later processing.

One of the issues arising in Monte Carlo simulation is how to deter-
mine a suitable number of realisations from which to compute ensem-
ble statistics. While there is some guidance from statistical sampling
theory on the least number, there is not much guidance as to an upper

limit on the number of realisations required that should be generated.
We start by examining the behaviour of the ensemble averages of
each of the terms T; and T, and Ts. This will provide information on
the variability of each of these in the solution, as well as the convergence
or otherwise of their ensemble average with respect to the number of
realisations.

Fig. 6 is a colour-scale plot of the exponential term in T; over the first
two years. The top panel shows this term for the first realisation, and

Fig. 6. (a) T, for one realisation; (b) ensemble average of T; over 10 realisations and (c) ensemble average of T; over 50 realisations.
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separate realisations.

thus no averaging is involved; whereas the second and third panels
show the ensemble averages computed over 10 and 50 realisations
respectively.

From the examination of this figure, two features are clear. First, the
general trend of this term is shown even for the single realisation result
(top panel). Second, it is also evident that relatively few realisations are
needed in order to compute the ensemble average of this term to a rea-
sonable degree of accuracy; this is illustrated in the small differences

between the middle and bottom panels of this figure. Fig. 7 shows the
values of Ty at several different points along the shoreline as a function
of realisation number after 1500 h have elapsed. The selected positions
are at 100, 200, 500, 600, 700, 800 and 950 m. No trend is expected as
the realisation number increases as the realisations should be indepen-
dent. However, when following each line the range in values with the
realisation number gives an immediate indication of the variability in
the value of Ty at a particular position along the shoreline. A feature
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Fig. 8. Ensemble averages of H with a different number of realisations.
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Fig. 9. Ensemble averages of h(t) over 10,000 h computed with 10, 100, 300 and 600 realisations.

that is evident from the figure is that the range in value of T; is much
larger in the vicinity of the groyne.

The second term, T, is the diffusion coefficient K, which is a function
of the wave climate (H and T, and indirectly 6 through the refraction
processes). The trend in K is very similar to that of wave height due to
the nature of the CERC transport formula. Sequences of the significant
wave height have been determined for all the time series. Ensemble
averages determined from 10, 100, 300 and 600 realisations are
shown in Fig. 8 over a time period of 10,000 h (=14 months). The sea-
sonal trend of the wave climate is evident in the bottom two panels,
which correspond to the averages with 300 and 600 simulations. It is
clear that oscillations shown in the top panel are smoothed as the number
of realisations used to compute the ensemble average increases, which is
as expected. Moreover, the general trend that is observed in the signifi-
cant wave heights is achieved when the ensemble average is evaluated
with 100 realisations.

The third term T, is a function of the wave angle. Ensemble averages
of T3 are illustrated in Fig. 9, which shows that a long term trend is

identifiable in the ensemble average for 100 simulations and results
using 300 and 600 realisations appear to be similar. However, the differ-
ence between seasons is not great.

6.3. Test of the hypothesis

In the previous sections the preparation of realisations of the full
solution (Eq. (3)) and corresponding realisations of separate terms of
the solution has been described. The hypothesis (Eq. (13)) can now be
investigated by comparing the ensemble average of the full solution
and the ensemble average of the approximate solution. Fig. 10 shows,
in the top panel, the result of the ensemble average of the integrand
<T,;T,T5>, calculated with 600 realisations. The bottom panel is the cor-
responding ensemble average, again using 600 realisations, calculated
from the ensemble averages of each of the terms separately, that is,
<T;> <T»><T3>.

To obtain the solution of the shoreline position requires an evalua-
tion of the integral over time of the functions shown in Fig. 10, which

Fig. 10. The quantity <T;T>T5> (top panel); the quantity <T;> <T>> <T3> (bottom panel).
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is performed numerically. Fig. 11 displays the mean shoreline position
at the end of four years. This demonstrates that the results are very
close, although there is a small underestimate of the mean shoreline
position using the approximate form of the solution.

This result suggests that an assumption of no correlation between
the terms in the integrand can provide a very good approximation to
the full solution. A potential side benefit is that the ensemble averaging
can be performed separately for each term in the integrand, thereby
simplifying the calculation procedure. This also provides some opportu-
nity to develop analytical solutions for idealised cases that could provide
an independent check on Monte Carlo solutions obtained using numer-
ical procedures. Further, as one of the terms, T3, depends solely on wave
direction it may be inferred that the lack of correlation arises largely due
to the decoupling between wave direction on the one hand and the
wave height and period on the other. That is, any temporal similarity
in the wave conditions in terms of their height and/or period is not
matched by like behaviour in wave direction.

7. Conclusions and discussion

The question of how wave chronology can affect beach shape, some-
times cast as whether our shorelines exhibit ‘beach memory’, has
received continuing discussion in the literature. In this paper we have
addressed this question from the perspective of treating the shoreline
as a random variable, driven by random waves. Expressions for the
ensemble average beach position and variance have been derived for a
highly constrained situation in which waves vary with direction only.
The solutions exhibit several features observed in the field or in numer-
ical studies such as the large variability of beach position near groynes
and temporal correlation in beach shape over the period of storm
groups which reduces over longer periods.

To relax some of the restrictions of the analytical solution a semi-
analytical solution for shoreline evolution under wave conditions in
which wave height, wave period and wave direction all vary in time
has been used as the basis for investigating the direct evaluation of
the evolution of the ensemble average shoreline near a groyne. Site-
specific wave conditions have been used to generate statistically similar
wave sequences in order to create an ensemble of forecasts of beach
evolution near a groyne over a four year period. The ensemble of fore-
casts has been used to investigate the contribution of different terms
to the overall ensemble average beach plan shape. Terms involving
the wave direction that arise principally from the presence of the groyne
have negligible correlation with terms dependent on wave height and
period. The lack of correlation suggests a statistical decoupling between

the two sets of wave parameters. One explanation for this is the short
autocorrelation period of wave direction.

Other constraints of the analytical solution, such as the treatment of
diffraction, the small angle assumption and the influence of tides remain
outstanding and efforts to remove the associated assumptions are the
subject of continuing research.

Finally, the site chosen in this study is on an open coast, but sheltered
from distant swell. For sites with a stronger temporal correlation in
wave direction, such as those with restricted fetch directions or those
dominated by swell, the level of decoupling would be expected to be
less. For situations similar to the open coast site used in this study, the
decoupling of the terms in the semi-analytical solution suggests that
analytical solutions for ensemble quantities in a range of simplified
situations can be developed in order to provide checks for Monte Carlo
numerical models.
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