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Abstract 
 
Predicting failure in complex systems, such as satellite network systems, is a challenging 
problem.  A satellite earth terminal contains many components, including high-powered 
amplifiers, signal converters, modems, routers, and generators, any of which may cause system 
failure.  The ability to estimate accurately the probability of failure of any of these components, 
given the current state of the system, may help reduce the cost of operation.  Probabilistic 
graphical models, in particular Bayesian networks, provide a consistent framework in which to 
address problems containing uncertainty and complexity.  Building a Bayesian network for 
failure prediction in a complex system such as a satellite earth terminal requires a large quantity 
of data.  Software monitoring systems have the potential to provide vast amounts of data related 
to the operating state of the satellite earth terminal.  Measurable nodes of the Bayesian network 
correspond to states of measurable parameters in the system and unmeasurable nodes represent 
failure of various components.  Nodes for environmental factors are also included.  A description 
of Bayesian networks will be provided and a demonstration of inference on the Bayesian 
network, such as the calculation of the marginal probability of failure nodes given measurements 
and the maximum probability state of the system for failure diagnosis will be given.  Using the 
data to learn local probabilities of the network will also be covered. 
 
 
Introduction 
 
Probabilistic graphical models, in particular Bayesian networks, provide a consistent framework 
in which to address problems containing uncertainty and complexity, such as failure prediction 
and diagnosis in a complex system [Ghahramani, 2001, Jensen, 2001, Neapolitan, 2004].  
Probabilistic inference in high-dimensional problems only becomes tractable when the system 
can be made modular by imposing meaningful conditional independence assumptions [Cowell, et 
al., 1999].  Bayesian networks provide a natural way to accomplish this.  As a combination of 
probability theory and graph theory, the probabilistic aspects of a graphical model provide a 
consistent way of connecting data to models, while graph theory provides an intuitively 
appealing interface to express independence assumptions as well as efficient computational 
algorithms [Jordan, 1998]. 
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A Bayesian network consists of a set of variables, a graphical structure connecting the variables, 
and a set of local conditional probability distributions.  A Bayesian network is commonly 
represented as a graph, which is a set of vertices and edges. The vertices, or nodes, represent the 
variables and the edges, or arcs, represent the conditional dependencies in the model.  For a 
graphical model to be a Bayesian network, it must be a directed acyclic graph (DAG).  The edges 
must be directed (the edges can be thought of as arrows) and there must be no cycles in the 
graph.  It is often useful to think of the child nodes as being causally related to the parent nodes 
(the arrows are directed from parent nodes into a child node), although this does not necessarily 
have to be the case.  In a Bayesian network, the joint probability distribution of all the nodes can 
be written as the product over all nodes of the conditional probability of each node given its 
parents.  Let V = {V1,…,VN} be the set of N nodes comprising a Bayesian network.  Then the 
joint probability distribution over all variables represented by the nodes in the graph is given by 
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where pa(Vi) is the set of all parent nodes of node Vi.  This expression for the joint probability 
distribution can be written down by inspection of the Bayesian network.  Given the joint 
probability distribution of a set of random variables, it is then possible, in principle, to determine 
all marginal and conditional probabilities over any subset of variables in the network. 
 
Efficient algorithms for conducting inference on the graph, usually calculating the marginal 
probability of a node given evidence on some or all of the observable nodes, are available [see 
Jordan, 2004, for a description of various inference algorithms].  Inferences on a Bayesian 
network are guaranteed to be consistent, meaning that all probabilities calculated are indeed 
probabilities (nonnegative numbers summing to one).  In a typical problem arising in failure 
prediction, there would be nodes on the graph representing the failures of the system as a whole 
and each piece of equipment, as well as nodes representing measurements obtained from each 
piece of equipment. 
 
There are three main problems associated with Bayesian networks [see Heckerman, 1998 and 
Neapolitan, 2004]: 1) Inference: given a model, to compute marginal probabilities on unobserved 
nodes, given evidence on some subset of other nodes.  2) Learning probabilities: given a model 
and some data, to estimate the unknown parameters for the local conditional probabilities.  3) 
Learning structure: given data, to estimate the unknown structure of the graph as well as the 
underlying local probabilities.  These problems are listed in increasing order of difficulty.  The 
remainder of this paper will concern itself mostly with inference on a Bayesian network for a 
specific monitoring and control system for a satellite earth terminal.  We also briefly discuss 
parameter estimation for the local probabilities.  The graphical structure is determined using 
expert knowledge and physical reasoning.  Heckerman [1998] and Neapolitan [2004] discuss 
constructing Bayesian networks using data only. 
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Satellite Earth Terminals 
 
The basic building blocks of a typical satellite earth terminal are shown in Figure 1 [Inetdaemon, 
2007].  The satellite system consists of two series of equipment, called the uplink chain and the 
downlink chain.  The uplink chain, shown on the left side of Figure 1, consists of the sequence of 
components that produces a radio frequency signal from data—typically digital—to be 
transmitted to the satellite.  The description given here is not precise, as the exact configuration 
of a specific system can vary widely.  The downlink chain, which refers to those components that 
convert the incoming radio frequency signal from a satellite to (digital) data, uses almost the 
same series of equipment as the uplink chain, except in reverse order.  The downlink chain is 
shown on the right side of Figure 1. 
 
 

 
 

Figure 1.  Basic components of a satellite earth terminal link. 
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A digital satellite uplink chain works as follows: 
 

1. Digital data is sent to the modulator (often the same modem serves as both modulator and 
demodulator) where it is converted into a modulated signal at an intermediate frequency 
in the L band, centered on about 70–140 MHz. 

 
2. The intermediate frequency signal is then sent to an upconverter, usually through a 

shielded coaxial cable, where the frequency of the signal is converted to the higher 
frequency that will eventually be transmitted to the satellite.  These microwave 
frequencies are typically in the C, S, X, Ka, or Ku bands (frequencies above about 1000 
MHz).  Sometimes a block upconverter is used, which can accept a block of input 
frequencies that are then converted to the required carrier frequency. 

 
3. Noise is removed from the converted signal using a band pass filter or similar means and 

is then sent to a high-powered amplifier (HPA), such as a traveling wave tube amplifier 
(TWTA), a klystron, or a solid state amplifier, where the signal is amplified to power 
levels strong enough for transmission to the satellite. 

 
4. The final clean, amplified signal is sent down a waveguide to the satellite antenna dish. 

 
5. The feed horn at the focal point of the dish emits the high-frequency radio transmission, 

which the dish focuses in the direction of the satellite.  The direction of the dish is 
controlled by the antenna control unit (ACU). 

 
The steps in the downlink chain are essentially the reverse of the uplink chain: 
 

1. The satellite transmits a signal that contains the encoded data. 
 

2. The signal is received at the satellite antenna dish. 
 

3. The signal is amplified through a low noise amplifier (LNA) and fed to the 
downconverter. 

 
4. The downconverter converts the high-frequency signal to an intermediate frequency.  

Sometimes the LNA and downconverter are combined into one device called a low noise 
block amplifier (LNB). 

 
5. The intermediate frequency is fed into a demodulator and converted into a digital data 

signal. 
 

6. The data is sent to the network through a router. 
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Monitoring and Control of Satellite Earth Terminals 
 
It is possible to monitor a complicated network, like the satellite earth terminals just described, 
using appropriate software, such as MaxView network monitoring and control software available 
from DataPath, Inc. [DataPath, 2007].  Figure 2 shows a MaxView screenshot for the monitoring 
of some of the equipment in the uplink chain for a typical satellite earth station.  Monitoring and 
control software allows the user to systematically monitor the state of each piece of equipment in 
both the uplink and downlink chains.  Potentially, a wealth of data can be obtained that can assist 
in predictive maintenance and diagnostics of the system.  The software can not only monitor 
various measurements observed on each piece of equipment in the system, including all faults 
and alarms, it can also record the time history of each measurement on each piece of equipment 
in every system that has been fielded.  The amount of data that can be collected is potentially 
much more extensive than what can be obtained through typical reliability tests performed in the 
lab. 
 
 

 
 

Figure 2.  Monitoring the equipment in a satellite earth terminal. 
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For example, a typical traveling wave tube high-power amplifier includes the following 
monitoring points: 
 
Helix Voltage (kV) 
Helix Current (mA) 
Cathode Filament Current (A) 
Tube Temp (C) 
Power Supply Temp (C) 
 
The TWTA consists of an elongated vacuum tube with a heated cathode that emits electrons.  
There is also a helix coil wrapped around the beam.  Induced currents in this coil produce the 
amplified RF signal.  Often, when the cathode filament is about to burn out, the cathode current 
shows a noticeable drop over time.  Similarly, when the helix current begins to rise, it often 
indicates an imminent failure.  These precursors have been observed on DataPath earth 
terminals.  With enough data, estimates of the probability of failure of the HPA given the states 
of some of these measurable variables can be obtained.  These estimated probabilities can be 
used in a Bayesian network for failure prediction and diagnosis of the satellite earth terminal 
system. 
 
 
Bayesian Network for Satellite Earth Terminals 
 
A sample Bayesian network for failure prediction and diagnostics for a somewhat simplified 
satellite earth terminal system is shown in Figure 3.  This Bayesian network represents the uplink 
chain of the system.  Similar nodes can be added for the downlink chain, as well as any 
additional nodes for redundant components, such as the generator redundancy shown in the 
upper right of the figure.  The general design of this particular Bayesian network has been 
developed using expert knowledge and physically reasonable assumptions.  No attempt to use 
data-only methods to determine the graphical structure has been tried.  Most links between nodes 
have a reasonable causal connection and each individual component has been treated as 
physically independent of the others. 
 
For simplicity, each node on this Bayesian network is a discrete chance node, with a finite 
number of states.  We have used two types of nodes in this network, failure nodes and 
measurement nodes.  There are three types of failure nodes: component failure nodes, 
background failure nodes, and “intermediate failure” nodes.  Each failure node has two states, 
which can be labeled fail and no fail, or yes and no.  The probability of failure, that is, the 
probability of the state labeled fail, is the probability that the component in question, or the 
system as a whole for the “System Failure” node, will fail over a fixed period of time, say one 
week or one month.  Clearly, the probability that the component does not fail in the fixed period 
of time is one minus the probability of failure.  These probabilities depend on the evidence 
entered on the measurement nodes.  The measurement nodes include the helix and cathode 
currents, trends on these currents, and the temperature nodes.  If for some reason these 
measurements are not available, then prior probabilities on the states of these nodes will be used 
when propagating evidence in the network.  Notice that the measurement node for a particular 
piece of equipment is a parent only of the failure node for that piece of equipment.  The 
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background failure nodes allow for failure due to unmeasurable or unknown random events and 
are typically are not instantiated (a node is instantiated when evidence becomes known that it is 
definitely in one of its possible states).  The nodes labeled “Helix Current Failure” and the like 
are put in for calculational convenience.  They facilitate the calculation of what is called the 
“noisy or” [see Jensen, 2001], which is discussed below. 
 
 

 
 

Figure 3.  Bayesian network for failure prediction and diagnosis for a satellite earth 
terminal. 

 
 
The “System Failure” node has four parent nodes, corresponding to the failure of the individual 
components for the HPA, upconverter, modem, and router.  For these four components, the 
system will fail if any of the components fail.  Therefore, the state no fail can only occur if the 
state of all individual component failure nodes is no fail.  The conditional probability distribution 
for the “System Failure” node is then: 
 

P(SF=no fail | HF=no fail, CF=no fail, MF=no fail, RF=no fail) = 1 
P(SF=no fail | otherwise) = 0 

 
The probability P(SF=fail | HF,CF,MF,RF) is clearly 1 – P(SF=no fail | HF,CF,MF,RF), since 
there are only two failure states. 
 
The subgraph that includes the “HPA Failure” node implements the “noisy or” condition.  The 
assumption here is that any of the causes of the HPA failing are independent of one another.  
Therefore, if, for example, the probability is p1 that the HPA will fail given a high value of the 
helix current independent of knowledge of the other possible causal factors, and p2 is the 
probability that it will fail given a trend in the cathode current, then the noisy or assumption is 
that the probability of failure given that both have occurred is simply 1 – (1–p1)(1–p2).  A similar 
argument holds for any number of independent possible causes of failure.  The configuration that 
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includes the intermediate failure nodes implements this condition.  One only needs to know the 
probability of failure for each cause separately.  Without these intermediate nodes, one would 
have to calculate the entire probability distribution table for all combinations of states of each 
parent node.  The uninstantiated background failure node assures that the probability of failure, 
given that no known causes have been observed, is a constant. 
 
The subgraph of nodes in the upper right of Figure 3 can be thought of as the environmental 
nodes.  The states of these nodes potentially affect each component in the system.  The node 
labeled “Temp” is the indoor temperature of the system container and directly affects all 
components that are in the container through their background failure nodes (high temperatures 
do not affect in a known way the measurable quantities that might lead to failure).  Since the 
high-power amplifiers and generators are outside, only the “Outdoor Temp” is an ancestor for 
these nodes.  There are two generators, a main one and a backup.  Both must fail for the power to 
fail.  The generators are more likely to fail when the outdoor temperature is hot.  The indoor 
temperature depends on the outdoor temperature and whether the air conditioning unit is 
working.  The state of the air conditioner depends on the how hot it is outside and whether the 
power is working. 
 
 
Estimation of Parameters 
 
The problem of estimating the value of the parameters for the local conditional probability 
distributions in a Bayesian network, also referred to as learning the probabilities or parameter 
learning, is relatively straightforward if enough complete data samples, sometimes called cases, 
are available.  If some of the data samples are incomplete, or if there are some completely 
unobserved nodes, then this task becomes much more difficult [Heckerman, 1998].  Another 
difficulty that arises is when there are insufficient data samples to cover all possible 
combinations of parent states to estimate all of the parameters in some of the conditional 
probability tables.  When there is a lack of data, one often has to resort to using reasonable 
physical assumptions and prior knowledge to estimate the probabilities, or other subjective 
methods. 
 
For example, the node labeled “HPA Failure” in Figure 3 has six parent nodes, corresponding to 
the value of the helix current, the trend in the helix current, the value of the cathode current, the 
trend in the cathode current, and a power failure and background failure node.  Assuming for the 
moment that there are no intermediate failure nodes and that each of the parent nodes has only 
two states, then the conditional probability table would have 26 = 64 independent parameters to 
estimate.  For instance, to estimate the probability that the HPA would fail given that the helix 
current is high and the cathode current is trending and that the other four nodes are in states that 
usually do not lead to failure, we would have to observe the frequency that the HPA fails under 
these exact conditions certainly over 10 times to even begin to get a good estimate of this 
parameter.  However, it is very unlikely that the HPA fails because just these two conditions are 
present, so it is extremely unlikely we ever observe enough cases where these precise conditions 
are the case.  So the assumption we make, in order to fill out all 64 independent entries in the 
table, is that any known cause of failure for this particular piece of equipment is independent of 
any other cause.  This is the “noisy or” assumption, and it is incorporated into the Bayesian 
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network by using the intermediate failure nodes.  To fill out the table, we need only to estimate 
the probability that the HPA fails given any one of the known possible causes.  For example, if 
we have observed the helix current being high 100 times and the HPA failed 50 of those times in 
the next month, then we would set the probability that the HPA fails given the current is high and 
all other nodes are normal to be 0.5 (we might change this a bit if we had differing prior 
information on this occurrence from some other source, such as a lab test).  Similarly, if we 
observed that HPA fails 20% of the time when the cathode current is trending, we would set 
 

P(HF=fail | HC=normal, HCT=norm, CCF=norm, CCT=yes, BF=no, PF=no) = 0.2 
 
The noisy or assumption now allows us to set the probability that the HPA fails given both the 
helix current is high and the cathode current is trending by assuming that the probability that the 
HPA does not fail is just the product of the probabilities that each condition does not cause a 
failure.  That is, if 
 

p1 = P(HF=fail | HC=high, HCT=norm, CCF=norm, CCT=no, BF=no, PF=no) 
 

p2 = P(HF=fail | HC=normal, HCT=norm, CCF=norm, CCT=yes, BF=no, PF=no) 
 
then 
 

P(HF=no | HC=high, HCT=norm, CCF=norm, CCT=yes, BF=no, PF=no) = (1–p1)(1–p2) 
 
And, therefore, 
 

P(HF=fail | HC=high, HCT=norm, CCF=norm, CCT=yes, BF=no, PF=no) = 1 – (1–p1)(1–p2) 
 
A similar calculation can be made to fill in the rest of the table, although it gets slightly more 
complicated when considering the case when more than two possible modes of failure have 
occurred.  This complication in filling out a noisy or table can be avoided by placing 
intermediate failure nodes, as described above and shown in Figure 3, between the measurable 
nodes and the component failure node.  The conditional probability table for the “Helix Current 
Failure” node, for example, is given by 
 

P(HCF=fail | HC=normal) = 0    P(HCF=fail | HC=high) = 0.5 
P(HCF=no | HC=normal)   = 1   P(HCF=no | HC=high)   = 0.5 

 
and similarly for the other intermediate failure nodes. 
 
As mentioned earlier, the Bayesian network in Figure 3 computes the probability of failure over 
a fixed period of time, say one month.  Failure data, however, is usually not given in terms of a 
number of failures over a fixed period of time.  Rather, the data is usually in the form of the 
times to failure from a given start time for a number of presumably identical components.  Often 
there are components that have not failed up to the end of the testing period.  There are well-
known methods in the theory of reliability engineering that can be used to estimate the 
probability of failure over a fixed period of time, given a set of data consisting of times of failure 
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[Lawless, 2002].  Typically, it is assumed that the failure times are samples from a lifetime 
distribution, such as a Weibull or lognormal distribution [ReliaSoft, 2005], with unknown 
parameters to be determined from data.  In principle, there would be a different distribution (it 
may be the same type of distribution with a different set of parameters) for each parent state of 
each failure node.  Once the parameters have been estimated using sample data for an assumed 
distribution type, it is then a straightforward matter of determining the probability of failure over 
a fixed period of time, given that the piece of equipment under consideration has not yet failed.  
In the general case, this probability of failure will depend on how long the equipment has run 
without a failure, so this probability is a function of time.  Most components wear out over time 
and so the probability of failure over the next fixed period of time is generally an increasing 
function of time.  The Bayesian network would then have conditional probability tables whose 
parameters change with time, reflecting the characteristics of the particular distribution of the 
component lifetimes. 
 
 
Propagation of Probabilities in the Bayesian Network 
 
As an example of how probabilities are propagated in a Bayesian network, let us assume that we 
have observed that the indoor temperature is hot, so the state of the “Temp” node is hot (we have 
assumed for simplicity that the “Temp” node has two states, normal and hot).  If no nodes are 
instantiated, then the marginal probability that the system will fail in the next month is 12.7% 
and the probability that the HPA will fail is 6.4%.  (These probabilities are calculated using 
Hugin Expert graphical modeling software [Hugin, 2007].  The conditional probability tables 
have been estimated using available field data.  The topic of parameter estimation for failure 
prediction models is briefly discussed below.)  Although the indoor temperature is not a direct 
cause to the HPA failing (the “Temp” node is not an ancestor of the “HPA Failure” node), we 
nevertheless expect the probability of HPA failure to increase if the temperature goes up in the 
system container.  The Bayesian network will quantify this change in probabilities.  When the 
evidence that the indoor temperature is hot is entered into the Bayesian network and the evidence 
is propagated, the marginal probability that the HPA will fail in the next month increases to 
11.2% and the probability that the system will fail increases to 21.7%.  If the indoor temperature 
is hot, then the probability that the outdoor and temperature is hot and that the AC has failed has 
increased.  If the outdoor temperature is more likely to have risen, then the probability that there 
is a background failure due to the high outdoor temperature increases, which increases the 
likelihood of an HPA failure.  In addition, if it is more likely that it is hot outside, then it is more 
likely that one or both generators will fail, which increases the probability that the power has 
failed, which then increases the likelihood that the HPA will fail.  These two possible ways 
contribute to the increased probability of failure of the HPA, knowing just that the indoor 
temperature is hot.  The Bayesian network quantifies all these contributions to the calculation of 
the marginal probability of the “HPA Failure” node.  If the probability that the HPA will fail in 
the next month is high enough, then a decision can be made whether it is best to replace the part 
before the failure occurs. 
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Diagnosis 
 
If the system actually fails, it would be useful to know which component is most likely to have 
failed.  One way to diagnose which component is the one to have most likely failed is to compute 
the most probable configuration of all uninstantiated nodes.  The most probable configuration 
determines the most likely state of each uninstantiated node.  If the system has failed, then the 
evidence that the “System Failed” node is in state fail can be entered into the Bayesian network.  
Once the most probable configuration of the network has been found, it is often the case that just 
one component has fail as its most likely state.  It may be the case that no components have fail 
as its most likely state.  In that case one can still choose the most likely component to have failed 
by looking at how likely are the relative likelihoods of the fail and no fail states of each 
component.  It is also possible that more than one component has fail as its most likely state.  In 
this case one can use the relative likelihoods to choose the most likely component to have failed.  
In a realistic situation, the results serve as a guide for either choosing an order of replacing the 
pieces of equipment or checking the equipment that can be fixed.  If there is a greater cost for 
replacing one part compared to another part, then the order of replacement may change.  One 
would then attempt to maximize the utility. 
 
As a simple example, let us say that we know it is hot outdoors and have entered the evidence 
that the “Outdoor Temp” node is hot.  Now, if the system fails, we also enter the evidence that 
the “System Failed” node is in state fail.  We can calculate the most probable configuration using 
the “Max Propagation” feature in Hugin Expert.  It gives that the most likely state of the “HPA 
Failure” node is fail, while the most likely state of the other three component failure nodes is no 
fail.  This result can then serve as a guide to determining which component has actually failed. 
 
 
Conclusion 
 
Monitoring and control software, such as MaxView, has the potential of accumulating and 
storing vast amounts of data representing the time-varying state of extremely complex systems.  
This wealth of data can be exploited to assist in the building of models, like the Bayesian 
networks discussed here, which may be used for such applications as failure prediction and 
diagnosis and other inference problems. 
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