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Abstract

This paper extends the parabolic integral equation method, which is very effective for
forward scattering from rough surfaces, to include backscatter. This is done by applying left-
right splitting to a modified two-way governing integral operator, to express the solution as a
series of Volterra operators; this series describes successively higher-order surface interactions
between forward and backward going components, and allows highly efficient numerical evalu-
ation. This and equivalent methods such as ordered multiple interactions have been developed
for the full Helmholtz integral equations, but not previously applied to the parabolic Green’s
function. In addition, the form of this Green’s function allows the mean field and autocorre-
lation to be found analytically to second order in surface height. These may be regarded as
backscatter corrections to the standard parabolic integral equation method.
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1 Introduction

Wave scattering from irregular surfaces continues to present formidable theoretical and computa-
tional challenges [1–7], especially with regard to analytical treatment of statistics, and numerical
solution for wave incidence at low grazing angles [8–13], where the insonified/illuminated region
may become very large. Computationally, the cost of the necessary matrix inversion scales badly
with wavelength and domain size and can rapidly become prohibitive; this is compounded by the
large number of Green’s function evaluations, whose overall cost is therefore sensitive to the form
which this function takes.

Under the assumption of purely forward-scattering, a successful approach has been the parabolic
integral equation method (PIE) [14–16]. This makes use of a ‘one-way’ parabolic equation (PE)
Green’s function, leading to the replacement of the Helmholtz integral equations by their small-
angle analogue. For 2D problems this Green’s function takes a particularly tractable form; this,
together with the Volterra (one-sided) form of the governing integral operator, affords the key
advantage of high numerical efficiency, and in the perturbation regime allows derivation of analyt-
ical results [17–20]. Nevertheless, the method yields no information about the field scattered back
towards the source.

On the other hand, where backscatter is required, operator series solution methods such as left-
right splitting and method of ordered multiple interactions [21–27] have proved highly versatile, in
both 2 and 3 dimensions. These use the full free-space Green’s function and proceed by expanding
the surface fields about the dominant ‘forward-going’ component, and thereby circumvent the
difficulties of tackling the full Helmholtz equations.

In this paper we combine these approaches, extending the standard PIE description to a ‘two-way’
method, thus allowing for both left- and right-travelling waves. This is obtained in the obvious
way by replacing the parabolic equation Green’s function by a form symmetrical in range. The
integral operator can be split into left- and right-going parts; under the assumption that forward
scattering dominates, the solution can then be written as a series and truncated. Every term of
this series is a product of Volterra operators and is therefore treated as efficiently as the standard
PIE method, which corresponds approximately1 to truncation at the first term.

In the second part of the paper we impose the additional restriction to the perturbation regime of
small surface height σ, within which analytical expressions for the mean field and autocorrelation
function are obtained. This extends the corresponding results [17, 18] derived under the PIE
method. The approach there was first to obtain the scattered field to second order in σ at the
mean surface plane, and find the far-field under the assumption that propagation outwards from
the surface is governed by the full Helmholtz equation. In the standard PE case, this modification
allows a small amount of backscatter, but precludes any backscatter enhancement which can be
thought of as due to coherent addition of reversible paths [29–31], because interactions at the
surface are assumed to be take place in the forward direction only. The formulation presented here
allows one to remove this restriction, and separate the forward and backward going interactions
to various orders, although this aspect is not explored in detail here. In particular this method

1Note however that in contrast to standard PIE the first term includes ‘direct backscatter’ without additional
effort.
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Figure 1: Schematic view of scattering geometry

produces a correction term, whose statistics can be obtained in the perturbation regime.

The paper is organised as follows: The standard parabolic integral equation method and pre-
liminary results are given in section 2. In section 3 the full two-way parabolic integral equation
method is set out, and the iterative solution explained. Analytical results for the statistics under
the extended method are derived in section 4.

2 Parabolic integral equation method and preliminaries

We consider the problem of a scalar time-harmonic wave field p scattered from a one-dimensional
rough surface h(x) with a pressure release boundary condition. (Equivalently, p is an electromag-
netic s or TE polarised wave and h is a perfectly conducting corrugated surface whose generator is
in the plane of incidence.) The wavefield has wavenumber k and is governed by the wave equation
(∇2 + k2)p = 0. The coordinate axes are x and z where x is the horizontal and z is the vertical,
directed out of the medium (see Fig. 1). Angles of incidence and scatter are assumed to be small
with respect to the positive x-direction. It will be assumed that the surface is statistically station-
ary to second order, i.e. its mean and autocorrelation function are translationally invariant. We
may choose coordinates so that h(x) has mean zero. The autocorrelation function < h(x)h(x+ξ) >
is denoted by ρ(ξ), and we assume that ρ(ξ)→ 0 at large separations ξ. (The angled brackets here
denote the ensemble average.) Then σ2 ≡ ρ(0) is the variance of surface height, so that the surface
roughness is of order O(σ).

Since the field components propagate predominantly around the x-direction, we can define a slowly-
varying part ψ by

ψ(x, z) = p(x, z) exp(−ikx). (1)
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Slowly varying incident and scattered components ψi and ψs are defined similarly, so that ψ =
ψi+ψs. It may be assumed that ψi(x, h(x)) = 0 for x ≤ 0, so that the area of surface insonification
is restricted, as it would be for example in the case of a directed Gaussian beam. The governing
equations for the standard parabolic equation method [14,15] are then

ψi(rs) = −
∫ x

0

Gp(rs; r
′)
∂ψ(r′)

∂z
dx′ (2)

where both rs = (x, h(x)), r′ = (x′, h(x′)) lie on the surface; and

ψs(r) =

∫ x

0

Gp(r; r′)
∂ψ(r′)

∂z
dx′ (3)

where r′ is again on the surface and r is an arbitrary point in the medium. Here Gp is the parabolic
form of the Green’s function in two dimensions given by

Gp(x, z;x
′, z′)

{
= α

√
1

x−x′ exp
[
ik(z−z′)2
2(x−x′)

]
for x′ < x

= 0 otherwise

where α = 1
2

√
i/2πk. This asymmetrical form gives rise to the finite upper limit of integration in

(2) and (3). It is derived under the assumption of forward-scattering, and that the field obeys the
parabolic wave equation,

ψx + 2ikψzz = 0 (4)

which holds provided the angles of incidence and scattering are fairly small with respect to the
x-direction. (Gp can also be obtained directly from the full free space Green’s function under the
small-angle approximation.) Equation (2) must be inverted to give the induced source ∂ψ/∂z at
the surface, which is then substituted in (3) to determine the field elsewhere.

Now, equations (2) and (3) do not apply to plane wave scattering at small or negative x because
of the truncated lower limit of integration, equivalent to the restricted surface insonification. Nev-
ertheless, we can formally apply the integral equation to a plane wave, to obtain a solution which
will be physically meaningful and asymptotically accurate at large values of x. This procedure has
been used [17,18] to derive the field statistics; where necessary we will assume that x is sufficiently
large for this to hold.

Consider an incident plane wave p = exp(ik[x sin θ+ z cos θ]), where θ is the angle with respect to
the vertical. The grazing angle is then denoted µ = π/2 − θ (see Fig. 1). This plane wave has
slowly-varying component ψθ = exp(ik[Sx+ z cos θ]), where

S = sin θ − 1, (5)

which we refer to as the reduced plane wave.

4



3 Two-way parabolic integral equation method

In this section the two-way version of the PIE method will be described, and the iterative solution
will be given. This provides an efficient means of calculating the back-scattered component at
small angles of scatter.

3.1 The modified governing equations

The governing equations (2), (3) must first be modified to take into account scattering from the
right. To do this, we simply replace Gp by its symmetrical analogue G. This form arises if we
apply the small angle approximation described in section 2 to the full free space Green’s function
without requiring G(x, z;x′, z′) to vanish when x′ ≥ x. We thus obtain

G(x, z;x′, z′)

 = α
√

1
x−x′ exp

[
ik(z−z′)2
2(x−x′)

]
, x′ < x

= α
√

1
x′−x exp

[
ik(z−z′)2
2(x′−x)

]
exp [2ik(x′ − x)] x′ ≥ x

(6)

The factor exp[−2ik(x′ − x)] arises for x′ ≥ x because we are solving for the reduced wave ψ.

Applying this Green’s function to the reduced wave ψ we obtain

ψs(x, z) =

∫ ∞
0

G(r, r′)
∂ψ(r′)

∂z
dx′ (7)

where r = (x, z), r′ = (x′, h(x′)). This is the analogue of equation (2), effectively containing a
back-scatter correction. Taking the limit of (7) as z → h(x) yields an integral equation relating
the incident field to the scattered field at the surface:

ψi(x, h(x)) = −
∫ ∞
0

G(rs, r
′)
∂ψ(r′)

∂z
dx′ (8)

where now rs = (x, h(x)), r′ = (x′, h(x′)) both lie on the surface. (Note that the addition of
a correction to the parabolic equation is closely related to a method proposed by Thorsos [14].)
Equations (7), (8) can be written in operator notation:

ψs(x, z) = −(L+R)
∂ψ

∂z
(9)

ψi(x, h(x)) = (L+R)
∂ψ

∂z
(10)

where L, R are defined by

Lf(x, z) =

∫ x

0

G(r, r′)f(x′)dx′, Rf(x, z) =

∫ ∞
x

G(r, r′)f(x′)dx′

and r = (x, z), r′ = (x′, h(x′)). These integral operators and their inverses are Volterra, or ‘one-
sided’ in an obvious sense.
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3.2 Solution of the modified equations

The main computational task in any such boundary integral method is the inversion of the integral
equation (10). One of the principal advantages of the standard forward-going PIE method (equa-
tions (2)-(3)) is that its one-way form allows Gaussian elimination to be used, so that inversion
is highly efficient. In the above two-way formulation this advantage is initially lost, since direct
inversion of L+R in eq. (10) offers no benefit compared with solving the full Helmholtz equations.
However, the computational advantage can be regained by forming an iterative series solution, in
which each term is a product of Volterra integral operators.

Integral equation (10) has formal solution

∂ψ

∂z
= (L+R)−1ψi (11)

which can be expanded in a series

∂ψ

∂z
=
[
L−1 − L−1RL−1 +

(
L−1R

)2
L−1 − ...

]
ψi (12)

Under the assumption that R is small in the following sense the series (12) is convergent, as is
already required implicitly for the standard PIE solution; the series can then be truncated after
finitely many terms. By ‘small’ we mean that Rφ/||φ|| is small for all terms φ in the series. It can
be shown that this assumption is indeed justified at low grazing angles for surfaces whose slopes
are not too large, since the kernel of R oscillates rapidly especially at small wavelengths. It is
nevertheless difficult to give this a precise range of validity, and we will not attempt to do so here.

Solution for the field can therefore be obtained by truncating the series (12) and substituting into
the integral (7). The first term L−1ψi in series (12) corresponds to the solution for ∂ψ/∂z under
the standard PIE method (e.g. [15]). Denote this first approximation by ψ̃, i.e.

∂ψ

∂z
∼= ψ̃ = L−1ψi. (13)

Note however that the integral (7) allows for outgoing components scattered to the left, unlike its
PIE analogue (3), so even this lowest order truncation gives backscatter. This can be considered
the direct backscatter component.

Truncation of (12) at the second term gives:

∂ψ

∂z
∼= ψ̃ + C (14)

where C is a correction term,
C = L−1RL−1ψi. (15)

The above expression will be used in section 4 to obtain some statistical measure of the backscat-
tered component in the perturbation regime of small surface height. We remark that this is the
lowest-order truncation consistent with reversible ray paths.
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3.3 Numerical evaluation

The general term of (12) is a product of the operators L−1 and R. Evaluation of the integral R is
straightforward. For computational purposes we assume that the incident wave insonifies only a
finite region of the rough surface; the source may for example be a Gaussian beam. A finite upper
limit of integration xmax, say, may then be assumed.

Numerical inversion of L is also highly efficient since discretization of L gives rise to a lower-
triangular matrix. This has been described elsewhere (e.g. [15]) and will only be summarized
here.

Consider the equation L∂ψ/∂z = ψi obtained by truncating (12) at the first term. This equation
is discretized with respect to range x using, say, N equally spaced points xj . This then yields a
matrix equation A∂ψ/∂z = ψi in which the matrix A is lower-triangular. Numerical inversion of
this expression is carried out by Gaussian elimination, requiring O(N2) operations, which compares
with O(N3) operations required to treat the full Helmholtz integral equation.

The solution is thereby obtained for the first term, ψ̃. Typically only one further term, L−1Rψ̃,
will be required. The simplest way to obtain this is to discretize the integral R, evaluate Rψ̃
numerically, and then to solve

L−1Rψ̃ =
∂ψ

∂z
− ψ̃

by Gaussian elimination as before. The evaluation of the integral R also requires O(N2) operations.
Subsequent terms in the series may be obtained similarly.

The computation can be simplified further in the perturbation regime of small scaled surface
height kσ, if the operators L and R are replaced by the flat surface forms in the calculation of the
correction term C. This is described in the section 4.

4 Perturbation solution and statistics of backscatter

4.1 Perturbation solution

The mean field and higher moments based on the standard parabolic equation approximation were
obtained elsewhere [17,18] to second order in surface height in the case of pure forward scattering.
In this section the statistics of the backscatter correction (eq. (14)) due to the two-way PIE method
will be derived.

Suppose that a reduced plane wave ψθi = exp(ik[xS + z cos θ]) is incident on the rough surface at
an angle θ measured from the normal. We first summarize the perturbational calculation used to
obtain the scattered field statistics previously. Suppose that a plane z = z1, say, can be chosen
‘close’ to every point on the surface. The scattered field is obtained to second order in surface
height along this plane, for a given incident plane wave, and the statistics are found from this.
Statistical results obtained in this way do not depend on the choice of z1 so for convenience we
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may set z1 = 0. An expression is thus found for the scattered field

ψs(x, 0) = − ψθi (x, h)− h
[
∂ψ

∂z
− ∂ψi

∂z

]
− 1

2
h2
∂2ψi(x, 0)

∂z2
+ O(σ3). (16)

The only term here which is not known a priori is ∂ψ/∂z. The standard PIE solution ψ̃ for ∂ψ/∂z
is given [17,18] to second order in σ by:

∂ψ

∂z
∼= ψ̃ = − 1

π

d

dx

∫ x

0

ψθi (x′, h(x′))

α
√
x− x′

dx′. (17)

This arises from (13) by substitution of the flat surface form of L (see (20) below). Denote by ψ̃s
the approximation to ψs obtained by substituting (17) in (16), so that

ψ̃s(x, 0) ≡ − ψθi (x, h) + h

[
1

π

d

dx

∫ x

0

ψθi (x′, h(x′))

α
√
x− x′

dx′ +
∂ψθi (x, h)

∂z

]
− h2

2

∂2ψθi (x, 0)

∂z2
.

(18)

We wish to calculate the backscatter correction to this expression due to the replacement of ∂ψ/∂z
in (16) by the corrected two-way PE solution (ψ̃ +C) (equations (14), (15)). We therefore repeat
the above derivation replacing (13) by (14), to obtain

ψs(x, 0) = ψ̃s(x, 0) + h(x)C(x). (19)

Since the correction term C appears here with a factor h, it is necessary to evaluate it only to
order O(σ).

Expanding L and R (eqs. (9)-(10)) in surface height h(x), it is seen that L = L0 + O(σ2),
R = R0 + O(σ2), where L0, R0 denote the deterministic (i.e. flat surface) forms of the operators
L and R respectively:

L0 = α

∫ x

0

1√
x− x′

dx′, R0 = α

∫ ∞
x

1√
x′ − x

dx′ (20)

In evaluating C (eq. (15)) to order O(σ) we may thus ignore fluctuating parts of the operators,
and replace L, R by L0, R0 respectively. We can therefore write

C = L−10 R0ψ̃ +O(σ2). (21)

An expression of the form f = L−10 g is Abel’s integral equation, which has the well-known solution
[28]

g(x) =
1

απ

d

dx

∫ x

0

1√
x− y

f(y)dy.

Now to first order in h, ψ̃ in (21) is given [17] by

ψ̃(r) ∼= −π
[
Dθ(r) +

dI(r)

dr

]
. (22)
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where, for large r, D takes the form (see eq. (15) of [17])

Dθ(r) ∼ −2ikπ
√

2− 2 sin θeikSr (23)

and I is an integral

I(r) =

∫ r

0

ikh(r′) cos θ
eikSr

′

α
√
r − r′

dr′. (24)

Therefore D and dI/dr are O(1) and O(h) respectively, so that in eq. (21) C becomes

C(x) =
1

α2π

d

dx

[∫ x

0

1√
x− y

∫ ∞
y

exp(ikr)√
y − r

ψ̃(r) dr dy

]
. (25)

To second order in surface height the scattered field ψs(x, 0) at the mean surface is therefore
described by eq. (19), with C given by (25).

4.2 Mean field

The effect of the correction term C on the scattered field statistics can now be examined. We first
find the mean field < ψs(x, z) >. It is sufficient to obtain this quantity on the mean surface plane
z = 0, using equation (19), i.e.

< ψs(x, 0) > = < ψ̃s(x) > + < h(x)C(x) > .

The solution for < ψ̃s > has been obtained previously [17], and we can restrict attention to finding
the correction < hC > to this. Denote the correlation < h(X)C(x) > by E for any X, x, i.e.

E(X,x) =< h(X)C(x) > .

Consider first the function < hψ̃ >. Since < hDθ > vanishes, eq. (22) gives

< hψ̃ >= −π < h
∂I

∂x
> . (26)

Now from eq. (25)

E(X,x) =

〈
h(X)

α2π

d

dx

∫ x

0

1√
x− y

∫ ∞
y

exp(ikr)√
y − r

ψ̃(r) dr dy

〉
.

The term h(X) can be taken under the integral signs as part of the operand of d/dx. The order
of integration and averaging can then be reversed so that, by (26),

E(X,x) = − 1

α2

[
d

dx

∫ x

0

1√
x− y

∫ ∞
y

eikr√
y − r

〈
h(X)

∂I(r)

∂r

〉
dr dy

]
. (27)

Consider the term < h(X)dI/dr > in the inner integrand. By (24),〈
h(X)

∂I(r)

∂r

〉
=

〈
h(X)

d

dr

∫ r

0

ikh(r′) cos θ
eikSr

′

α
√
r − r′

dr′

〉

=ik cos θ
d

dr

[ ∫ r

0

eikSr
′

α
√
r − r′

ρ(X − r′) dr′
] (28)
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This may be substituted into (27) to give an analytical expression for the correlation< h(X)C(x) >.
We can simplify this expression by evaluating the derivatives explicitly. The term ρ(X − r′) is in-
dependent of r, so writing

eikSr
′

α
√
r − r′

= f(r, r′) (29)

the expression (28) becomes〈
h(X)

∂I(r)

∂r

〉
= ik cos θ

d

dr

[ ∫ r

0

f(r, r′)ρ(X − r′) dr′
]

=ik cos θ lim
ε→0

1

ε

[∫ r+ε

0

f(r + ε, r′)ρ(X − r′)dr′ −
∫ r

0

f(r, r′)ρ(X − r′)dr′
]

(30)

=ik cos θ lim
ε→0

1

ε
[K1 +K2 −K3]

where

K1 =

∫ ε

0

f(r + ε, r′)ρ(X − r′)dr′

K2 =

∫ r+ε

ε

f(r + ε, r′)ρ(X − r′)dr′ (31)

K3 =

∫ r

0

f(r, r′)ρ(X − r′)dr′

Consider these three integrals in detail. The first gives

1

ε
K1 =

1

ε

∫ ε

0

f(r + ε, r′)ρ(X − r′)dr′ ∼=
1

ε
ρ(X)

∫ ε

0

1√
r + ε− r′

dr′

=
2

αε
ρ(X)

[√
r + ε−

√
r
]

(32)

∼=
ρ(X)

α
√
r

using a Taylor expansion in ε. Changing variables, K2 in can be written∫ r+ε

ε

f(r + ε, r′)ρ(X − r′)dr′ =

∫ r

0

f(r + ε, r′′ + ε)ρ(X − r′′ − ε)dr′′. (33)

Now

f(r + ε, r′′ + ε) =
eikS(r

′′+ε)

α
√
r − r′′

= eikSεf(r, r′′

so from (33) ∫ r+ε

ε

f(r + ε, r′)ρ(X − r′)dr′ =

∫ r

0

eikSεf(r, r′)ρ(X − r′ − ε)dr′. (34)
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Thus the difference K2 −K3 in (30) becomes∫ r

0

f(r, r′)
[
eikSερ(X − r′ − ε)− ρ(X − r′)

]
dr′

∼=
∫ r

0

f(r, r′)ε

[
ikSρ(X − r′)− dρ(X − r′)

dX

]
dr′

(35)

where ρ, which may be assumed to be differentiable, has been expanded to leading order in ε.
Substituting (32) and (35) in (28), we obtain〈

h(X)
∂I(r)

∂r

〉
=
ik

α
cos θ

{
ρ(X)√
r

+

∫ r

0

eikSr
′

√
r − r′

[
ikSρ(X − r′)− dρ(X − r′)

dX

]
dr′

}
. (36)

This removes the derivative with respect to x in (27), and indeed for several important autocor-
relation functions eq. (36) can be written in closed form. The term ρ(X)/

√
r is an artifact of the

finite lower bound of integration and can be dropped, as we can assume the range variable X to
be large. Equation (27) therefore becomes

E(X,x) ≡ 〈h(x)C(x)〉 = − ik
α3

cos θ×[
d

dx

∫ x

0

1√
x− y

∫ ∞
y

eikr√
y − r

∫ r

0

eikSr
′

√
r − r′

R(X, r′)dr′ dr dy

]
(37)

where

R(X, r′) = ikSρ(X − r′)− dρ(X − r′)
dX

. (38)

The derivative with respect to x in (37) can be evaluated similarly, and after further manipulation
(see Appendix) the required expression can be written, setting X = x,

〈h(x)C(x)〉 = − ik
α3

cos θ ×[
2√
x

∫ ∞
y

eikr√
y − r

∫ r

0

eikSr
′

√
r − r′

R(X, r′)dr′dr

−
∫ x

0

1√
x− y

∫ ∞
y

eikr√
y − r

∫ r

0

eikSr
′

√
r − r′

F(X, r′) dr′ dr dx

]
X=x

(39)

where

F =

{
(1 + ik sin θ)R(X, r′) +

dR

dr′

}
. (40)
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4.3 Autocorrelation and angular spectrum

The main quantity of interest is the angular spectrum of intensity, which may be defined as
the Fourier transform of the autocorrelation function (i.e. the second moment) of the scattered
field. This remains essentially unchanged with distance from the surface, so that we may again
concentrate on obtaining the form on the mean surface plane, z = 0.

Denote the second moment
m2(x, y) = 〈ψs(x, 0)ψ∗s (y, 0)〉

where ∗ indicates the complex conjugate, and denote its approximation using the standard parabolic
equation method by

m̃2(x, y) ≡
〈
ψ̃s(x, 0)ψ̃∗s (y, 0)

〉
.

The perturbational solution of m̃2 was obtained in ref. [13]. It is relatively straightforward to
express m2, to second order in surface height under the present two-way PIE method, as the sum
of m̃2 and correction terms. These additional terms, which are expected to be small, represent the
‘indirect’ contribution to the backscatter.

From (19) we have

ψs(x)ψ∗s (y) = ψ̃s(x)ψ̃∗s (y) + ψ̃s(x)h(y)C∗(y) + ψ̃∗s (y)h(x)C(x) + h(x)h(y)C(x)C∗(y). (41)

We can write ψ̃s and C to zero and first order in surface height,

ψ̃s = ψ0 + ψ1 +O(σ2)

where [17]
ψ0(x) = −eikSx

ψ1(x) = −2ikh(x)
√

2− 2 sin θeikSx ≡ h(x)Dθ(x),
(42)

and
C = C0 + C1 (43)

where

C0 = −πL−10 R0Dθ

C1 = −πL−10 R0
dI

dx
.

Therefore to O(σ2) the second moment can be written

m2(x, y) = m̃2(x, y) + ψ0(x) 〈h(y)C∗1 (y)〉+ 〈ψ1(x)h(y)〉C∗0 (y)

+ ψ∗0(y) 〈h(x)C1(x)〉+ 〈ψ∗1(y)h(x)〉C0(x) + ρ(x− y)C0(x)C∗0 (y).
(44)

Since E =< hC >=< hC1 >, equation (44) can be expressed as

m2(x, y) = m̃2(x, y) + ψ0(x)E∗(y) + ψ∗0(y)E(x)

+ ρ(x− y)C0(x)C∗0 (y) + 〈ψ1(x)h(y)〉C∗0 (y) + 〈ψ∗1(y)h(x)〉C0(x).
(45)
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In this equation, only the last two terms remain to be determined. From (42),
< ψ1(x)h(y) > is just

〈ψ1(x)h(y)〉 = ρ(x− y)Dθ (46)

and similarly for 〈ψ∗1(x)h(y)〉 so that (45) becomes

m2(x, y) = m̃2(x, y) + ψ0(x)E∗(y) + ψ∗0(y)E(x)

+ ρ(ξ)
[
C0(x)C∗0 (y) +Dθ(x)C∗0 (y) +D∗θ(y)C0(x)

] (47)

where ξ = x− y.

5 Conclusions

The parabolic integral equation method has been extended here to allow the calculation of backscat-
ter of due to a scalar wave impinging on a rough surface at low grazing angles. The solution is
written in terms of a series of Volterra operators, each of which is easily evaluated, and which
allows examination of multiple scattering resulting from increasing orders of surface interaction.
Truncation at the first term the leading forward- and back-scattered components; higher-order
multiple scattering are available from subsequent terms. The parabolic Green’s function is ap-
plicable for wave components at low angles of incidence and scatter, which imply small surface
slopes, but without restriction on surface heights. With the additional assumption of small surface
heights, analytical solutions have then been obtained, to second order in height, for the mean
field and its autocorrelation. These provide backscatter corrections to the solutions given in the
purely forward-scattered case [17,18] with the potential for further insight into the role of different
orders of multiple scattering. (Small height perturbation theory derived directly from Helmholtz
equation has of course been well established for many years and yields particularly simple single
scattering results. The results here are from a different perspective; the first term already in-
cludes ’multiple-forward-scattering’, and subsequent terms incorporate back- and forward-scatter
contributions systematically at higher orders.)

In the context of long-range propagation at low grazing angles, parabolic equation methods re-
main very widely used. In this regime the form of the Green’s function together with the series
decomposition provide computational efficiency and the means to extend existing PE methods to
include backscatter, in addition to yielding tractable analytical results for statistical moments.
These benefits should, nevertheless, be put in context. The computational advantages of the PE
Green’s function over the full free space Green’s function are lost in fully 3-dimensional problems
(since evaluation of the 3D PE Green’s function is computational expensive), or those for which
wide-angle scatter needs to be taken into account. On the other hand there remains a need for
further theoretical understanding of the mechanisms of enhanced and multiple backscatter, and
the approach here may be applied in a more general setting. Computational and theoretical results
in application to long-range propagation over rough sea surfaces will appear in a separate paper.
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Appendix

We can write the expression (34) as

E(X,x) = − ik
α3

cos θ
d

dx

∫ x

0

g(x, y)H(X, y)dy (48)

where

g(x, y) =
1√
x− y

, (49)

H(X, y) =

∫ ∞
y

eikr√
y − r

∫ r

0

eikSr
′

√
r − r′

R(X, r′)dr′ dr , (50)

and R is given by (35). Differentiation with respect to x is carried out as for the r-derivative
(equations (27)-(33)): The x-derivative is thus expressed as a limit of a finite difference, and the
integral split into three parts,

E(X,x) = − ik
α3

cos θ lim
ε→0

1

ε
[L1 + L2 − L3] (51)

where

L1 =

∫ ε

0

g(x+ ε, y)H(X, y)dy

L2 =

∫ x+ε

ε

g(x+ ε, y)H(X, y)dy

L3 =

∫ x

0

g(x, y)H(X, y)dy

We thereby obtain

d

dx

∫ x

0

g(x, y)H(X, y)dy =
2√
x
H(X, y) +

∫ x

0

g(x, y)

[
dH(X, y)

dy
−H(X, y)

]
dy. (52)

The term dH/dy is then
dH(X, y)

dy
=

d

dy

∫ ∞
y

a(y, r)J(X, r)dr (53)

where

a(y, r) =
eikr√
y − r

, (54)

J(X, r) =

∫ r

0

eikSr
′

√
r − r′

R(X, r′)dr′ (55)

Treating the derivative as before gives

dH

dy
= −

∫ ∞
y

a(y, r)

(
dJ(X, r)

dr
+ ikJ(X, r)

)
dr. (56)
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Finally,
dJ

dr
=

d

dr

∫ r

0

eikSr
′

√
r − r′

R(X, r′)dr′ (57)

from which we similarly get

dJ

dr
=
R(X, 0)√

r
+

∫ r

0

eikSr
′

√
r − r′

{
ikSR(X, r′) +

dR

dr′

}
dr′. (58)

As before (see (34)) the expression R(X, 0) vanishes for large X and can be dropped. Successively
substituting (56), (58), (50) and (52) into (48), we eventually obtain

〈h(X)C(x)〉 = − ik
α3

cos θ × (59)

[
2√
x

∫ ∞
y

eikr√
y − r

∫ r

0

eikSr
′

√
r − r′

R(X, r′)dr′dr (60)

−
∫ x

0

1√
x− y

∫ ∞
y

eikr√
y − r

∫ r

0

eikSr
′

√
r − r′

F(X, r′) dr′ dr dx

]
(61)

where

F =

{
(1 + ik[1 + S])R(X, r′) +

dR

dr′

}
. (62)

In this expression, R is given by (35), so that

dR

dr′
= ikS

dρ(X − r′)
dr′

− d2ρ(X − r′)
dx2

. (63)

It is clear then that the correction term introduces a higher-order dependence on the correlation
function.
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