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Recalling the Maxwell Equations

In order to present some examples of PDE problems that can be

treated by suitable Finite Element spaces, and wanting to avoid too

many changes in the field of application, I will concentrate in PDE

problems coming from electromagnetism.

Electromagnetic phenomena are governed by Maxwell Equations

which involve four fields: the electric and magnetic fields E, H, and

the electric and magnetic inductions D, B, respectively.
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The Maxwell equations

∂B

∂t
+ ∇× E = 0, (1)

∂D

∂t
−∇× H = −J, (2)

∇ · D = ρ, (3)

∇ · B = 0; (4)

ρ denotes the charge density and J the current density. It is easy to

see that taking the divergence of (2) and comparing with the time

derivative of (3) one gets the charge conservation equation

∂ρ

∂t
+ ∇ · J = 0

as a necessary condition for the existence of a solution.
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∂B

∂t
+ ∇× E = 0,

∂D

∂t
−∇× H = −J,

∇ · D = ρ, ∇ · B = 0.

Fields and inductions are related to each other by constitutive

laws:

E = εD, B = μH,

where ε and μ are the electric permittivity and the magnetic

permeability , respectively, that we assume to be scalar constants.

Finally we have boundary conditions. Here we consider the perfect

conducting case:

E× n = 0 B · n = 0 on ∂Ω.

where n denotes the outward unit vector on ∂Ω.
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The low frequency approximations

We consider now some typical simplified cases of Maxwell equations,

that can be obtained in the so-called ”low frequency” case. The fields

are assumed to be slowly varying in time and the terms with time

derivatives are dropped. In this case, the equations decouple:

∇× E = 0, ∇× H = J,

∇ · D = ρ, ∇ · B = 0,

E = εD, B = μH,

E × n = 0. B · n = 0.
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Electrostatics

We assume that the electric charge density ρ is given. From

∇× E = 0 we have that the electric field can be represented in terms

of a scalar potential p:

E = −∇p.

We then have the following equations, called the mixed

formulation of the electrostatic problem:

divD = ρ, D = −ε∇p in Ω; p = 0 on ∂Ω

and, after elimination of the the electric induction D, we obtain the

so-called primal formulation of the electrostatic problem

−div(ε∇p) = ρ in Ω; p = 0 on ∂Ω.
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Magnetostatics

We assume that we are given a divergence free current density J.

Then the equations and boundary conditions are

curlH = J, B = μH, divB = 0 in Ω; B · n = 0 on ∂Ω.

This time the absence of magnetic charges (divB = 0) implies that B

can be represented in terms of a magnetic vector potential u:

B = curlu in Ω; curlu · n = 0 on ∂Ω.

We then have the following equations in Ω

curlu = μH, curlH = J,

and, after elimination of the magnetic field H, we find:

curlμ−1curlu = J in Ω, u× n = 0 on ∂Ω.
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Functional spaces in 3 dimensions

Let Ω be a Lipschitz continuous polyhedral domain. We will need the

following spaces in order to write the variational formulation of the

previous equations.

• L2(Ω) and (L2(Ω))3, that we assume to be known.

• H(div; Ω) := {τ ∈ (L2(Ω))3 such that div τ ∈ L2(Ω)}

• H(curl; Ω) := {ϕ ∈ (L2(Ω))3 such that curlϕ ∈ (L2(Ω))3}

• H(grad; Ω) := {v ∈ L2(Ω) such that grad v ∈ (L2(Ω)3} ≡ H1(Ω)
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Polynomial spaces

The following polynomial spaces are typically used, element by

element, in order to approximate the above spaces:

• P0 := { constants} (1 d.o.f.)

• RT0 := {τ = a + cx} with a ∈ R
3 and c ∈ R (4 d.o.f.)

• N0 := {ϕ = a + c ∧ x} with a ∈ R
3 and c ∈ R

3 (6 d.o.f.)

• P1 := {polynomials of degree ≤ 1} (4 d.o.f.)

Note that we could have written, as well,

• P1 := {v = a + c · x} with a ∈ R and c ∈ R
3 (4 d.o.f.)

Note also that P
3
0 ⊂ RT0 ⊂ P

3
1 and P

3
0 ⊂ N0 ⊂ P

3
1
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Finite Element Spaces in 3 dimensions

Let Th be a decomposition of Ω in tetrahedra. We consider the

following finite element approximations.

• L2(Ω) ∼ {b ∈ L2(Ω) such that b|T ∈ P0 ∀T ∈ Th}

• H(div; Ω) ∼ {τ ∈ H(div; Ω) such that τ |T ∈ RT0 ∀T ∈ Th}

• H(curl; Ω) ∼ {ϕ ∈ H(curl; Ω) such that ϕ|T ∈ N0 ∀T ∈ Th}

• H(grad; Ω) ∼ {v ∈ H(grad; Ω) such that v|T ∈ P1 ∀T ∈ Th}
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.

Degrees of Freedom for discrete n-forms

P
0

Integral over the element T
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.

Degrees of Freedom for discrete (n − 1)-forms

RT
0 Integral on each face of T
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.

Degrees of Freedom for discrete 1-forms

N 0
Integral on each edge of T
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.

Degrees of Freedom for discrete 0-forms

P1
Value at each vertex of T
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Discrete n-forms on a triangular decomposition

Piecewise-constant functions
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Discrete 0-forms on a triangular decomposition

Piecewise-linear functions
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Discrete 1-forms on a triangular decomposition

Piecewise-N0 vector valued functions
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Discrete (n − 1)-forms on a triangular decomposition

Piecewise-RT0 vector valued functions
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Discrete n-forms on a general decomposition

Piecewise-constant functions
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Discrete 0-forms on a general decomposition

No shape-functions inside the elements
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Discrete (n − 1)-forms on a general decomposition

No shape-functions inside the elements
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Discrete 1-forms on a general decomposition

No shape-functions inside the elements
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Variational formulations of the electrostatic problem

The electrostatic problem in mixed formulation can now be written

as:⎧⎪⎪⎨⎪⎪⎩
Find D ∈ H(div; Ω) and p ∈ L2(Ω) such that

(ε−1D, δD) + (p, div δD) = 0 ∀ δD ∈ H(div; Ω)

(divD, δp) = (ρ, δp) ∀ δp ∈ L2(Ω)

whereas the variational form of the primal formulation reads:{
Find p ∈ H1

0 (Ω) such that

(ε∇p,∇δp) = (ρ, δp) ∀ δp ∈ H1
0 (Ω).
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Variational formulation of the magnetostatic problem

The variational formulation of the magnetostatic problem, using the

vector potential u with the gauge divu = 0, assuming for simplicity

that ε is constant, is:⎧⎪⎪⎨⎪⎪⎩
Find u ∈ H0(curl, Ω) and p ∈ H1

0 (Ω) such that :

(μ−1curlu, curl δu) − (∇p, εδu) = (J, δu) ∀δu ∈ H0(curl; Ω)

(εu,∇δp) = 0 ∀ δp ∈ H1
0 (Ω).
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Given the domain Ω, we consider a partition Th of Ω into polyhedra

(with the usual nondegeneracy assumptions) having, in total,

N vertices V 1, V 2, ...V N,

E edges e1, e2, ..., eE,

F faces f1, f2, ..., fF,

and P elements P 1, . . . , PP.

Note that the same element can have faces with a different number of

vertices from one another. Similarly, two different elements can have

a different number of faces, and so on.
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Generality of the approach

In the previous and in the following discussion, many figures will be

2-dimensional. This is due to a limitation of the speaker, not of the

method. Indeed, the method works in very general situations, and has

actually been conceived in a three-dimensional framework.

Here you can see two possible elements that are perfectly allowed in

our theory. In our decomposition we shall then, in a natural way,

consider four types of unknowns:
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• node unknowns, whose values are attached to vertices and are to be

interpreted as the value of a scalar function at each node

No shape-functions inside the elements
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• edge unknowns, whose values are attached to edges and are to be

interpreted as the work of a vector field along each edge;

No shape-functions inside the elements
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• face unknowns, whose values are attached to faces and are to be

interpreted as the flux of a vector field across each face

No shape-functions inside the elements
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• element unknowns, whose values are attached to elements and are

to be interpreted as the integral of a scalar function over each

element.

Piecewise constants
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Accordingly, we denote by

• N the space of all node unknowns. Its dimension will be equal to

the total number of vertices N.

• E the space of all edge unknowns. Its dimension will be equal to

the total number of edges E.

• F the space of all face unknowns. Its dimension will be equal to the

total number of faces F.

• P the space of all element unknowns. Its dimension will be equal to

the total number of elements P.

The sign of the elements in E and F will depend on the orientation

of edges and faces, respectively. We will consider that such an

orientation is fixed once and for all.
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Cochains as Discrete differential Forms

• N is the natural discretization space for 0−forms as the scalar

potential p .

• E is the natural discretization space for 1−forms, as the magnetic

field H, or the electric field E .

• In its turn, F is the natural discretization space for 2−forms as the

electric displacement D or the magnetic induction B.

• Finally, the right candidate to discretize 3−forms (as the charge

density ρ), is clearly P.
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In our formulations, however, these spaces are also used in a

different way. For instance P is also used as a discretization space

for the electric potential p in the mixed formulation of the

electrostatic problem. To be precise, however, p is approximated by

the dual space of P. Along the same lines, we might use

• the dual of N to discretize 3−forms (as the charge density ρ);

• the dual of E to discretize 2−forms as the electric displacement D

or the magnetic induction B;

• the dual of F to discretize 1−forms, as the magnetic field H or the

electric field E,

• the dual of P to discretize 0−forms as the scalar potential p.
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From the point of view of algebraic topology, N , E , F , and P are

cochain spaces and form a complex (a cochain complex) together

with the co-boundary operator. (See also Matiussi, Tonti,

Christiansen, Bochev-Hyman, etc.)

The co-boundary operator is a collection of operators linking our

spaces one to the other. When cochains are interpreted as discrete

differential forms, then the co-boundary operator can be seen as a

discretization of the standard differential operator d, that is, in our

simplified setting, as grad, curl, or div depending on the space on

which it acts. Here we adopt a self evident notation (as it is

nowadays standard in MFD):
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• The GRADh operator, from N to E , defined as follows: for each

edge e with vertices (V 1, V 2) and oriented from V 1 to V 2(
GRADhu

)⏐⏐⏐
e

= u|V 2
− u|V 1

.
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• The CURLh operator, from E to F , defined as follows:

for each element ϕ ∈ E and for each face f we denote by e1, e2, ..., eEf

the edges sharing the face f and we suppose they are endowed with

the orientation induced by the orientation of f . We consider the

corresponding values ϕ1, ϕ2, ..., ϕEf
of ϕ with the sign corresponding

to the orientation just chosen. Then CURLhϕ on the face f is

defined as (
CURLhϕ

)⏐⏐⏐
f

=

Ef∑
i=1

ϕi.
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• The DIVh operator, from F to P, defined as follows:

let f1, ..., fFP
be all the faces of an element P , and for each σ ∈ F let

σ1, ..., σFP
be its values on each face that we assume to be oriented

outward with respect to P . Then DIVhσ is defined as(
DIVhσ

)
|P =

FP∑
k=1

σk.
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It is interesting to note that, taking in the spaces N , E , F , P the

obvious canonical basis (after choosing an orientation of the edges,

faces and elements in an arbitrary way, but once and for all), then

the matrices associated with the operators GRADh, CURLh, and

DIVh are the incidence matrices (and their elements are either 0 or 1

or −1).

42



We shall now define interpolation operators ΠN , ΠE , ΠF , and ΠP

from spaces of smooth enough scalar or vector valued functions to

the discrete spaces N , E , F , and P, respectively. In particular for

each smooth scalar function u and for each smooth vector valued

function θ we can set
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• ΠNu ∈ N defined by: (ΠNu)|V = u(V ) ∀ vertex V ;

• ΠEθ ∈ E defined by: (ΠEθ)|e =
∫

e
θ · tds ∀ edge e

where the unit tangent vector t indicates the orientation of e;

• ΠFθ ∈ F defined by: (ΠFθ)|f =
∫

f
θ · ndS ∀ face f

where the unit normal outward vector n indicates the orientation

of f ;

• ΠPu ∈ P defined by: (ΠPu)|P =
∫

P
udP ∀ element P .
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Note that the interpolation operators and the differential operators

introduced above have interesting commuting properties. Namely

GRADhΠN = ΠE grad

CURLhΠE = ΠF curl

DIVhΠF = ΠP div.

These properties reproduce, on general polyhedral meshes, the

commuting properties linking finite element spaces which are

fundamental for a correct discretization of mixed formulations. In

particular they can be represented by a commuting diagram.
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The commuting diagram

grad
−−−→

curl−−→ div−−→C∞(P)
(
C∞(P)

)3 (
C∞(P)

)3

C∞(P)

↓ ΠN ↓ ΠE ↓ ΠF ↓ ΠP

GRADh

−−−−−→
CURLh

−−−−−→ DIVh

−−−→N E F P
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Scalar products in N , E , F , and P

When using the variational formulation of a PDE problem, however,

we typically encounter integrals to be computed on the domain Ω,

that, in a finite-element-like approach, we write as a sum over the

elements of integrals on each element.

Most of these integrals actually involve material dependent

coefficients (like ε and μ in the Maxwell equations).

Hence we need to define, in a proper way, the right material

dependent scalar product in each of the spaces N , E , F , and P.
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Scalar products and *Hodge operators

The problem of finding the right material dependent scalar product in

each of the spaces N , E , F , and P can obviously be seen as the

problem of finding a suitable discretization of the *Hodge operator

(which maps k-forms (k = 0, 1, .., n) into (n − k)-forms).

The only trivial case is that of P: in each element, you know the

integral over the element of your 0-form. It is immediate to associate

a piecewise constant function having, in each element, the prescribed

integral.

Then you easily pass (in an almost canonical way) from discretized

0-forms to piecewise constant functions (and we actually did that

already). Once you have functions, you can easily integrate them as

you like.
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Scalar Products in F

To start with, consider first the case when the decomposition is made

of tetrahedra. Hence, in each element, we can use the values of the

integral of the normal component on each face in order to determine

a reconstruction of the vector field inside the element, assuming that

it is an RT0 polynomial. More precisely for each element P and for

each G ∈ FP we reconstruct a vector field RF (G) in P such that:

1) RF (G) ∈ RT0

2) On each face f we have
∫

f
RF (G) · nf ≡ Gf

3) For every constant vector c, setting for all faces Gc

|fi
:=

∫
f i

c · n|f i

(that is, taking Gc := ΠFc) we have that RFP (Gc) ≡ c
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Scalar products in RT spaces

Once you have a reconstruction of the fluxes, you can introduce the

inner product in F ,

[F,G]F :=

∫
Ω

RF (F) · RF (G)dV.

In most applications however, as we have seen already, we will have a

material dependent tensor K. To fix the ideas, imagine that (in three

dimensions) K is a given tensor that physically maps 1-forms into

2-forms (as for instance E → D). It will then be convenient to use a

material dependent scalar product of the form

[F,G]F :=

∫
Ω

K
−1RF (F) · RF (G)dV.

In a similar way you deal with E or N using N0 or P1 (respectively).
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WHAT TO DO FOR COMPLEX GEOMETRIES

In more complex geometries, simple spaces (as RT ) to be used for

the reconstruction are not available. Hence to build a suitable

reconstruction operator becomes cumbersome.

A very good idea to deal with the problem was proposed by Y.

Kuznetsov-S. Repin (2004) and generalized by S.H. Christiansen

(2006). It amounts to construct a subgrid made of triangles or

tetrahedra and reconstruct the vector according to the following rules

• In each triangle/tetrahedron the vector is an RT0 field.

• The divergence of the vector is constant on the whole element.
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RECONSTRUCTION USING A SUBGRID

For each G ∈ F and for each element P , we use the subgrid to

construct a MFE (RT0-P0) approximate solution (τh, φh) of the

Neumann problem

−divK∇φ = DIVhGP in P − K∇φ · next = (GP )ext on ∂P

where DIVhGP is a constant function over P and (GP ) is a

piecewise constant function over ∂Ω. Finally we set RFP (GP ) := τh.

52



THE BASIC ”ALTERNATIVE” IDEA

The idea of reconstructing a piecewise polynomial function (or

vector-valued function) can obviously be applied to the spaces E and

N as well (mutatis mutandis). It is a good idea, and it has several

advantages. Here, however, we consider a different (and often

cheaper) strategy.

The name of the game is to guess how a ”scalar product based

on reconstructions” should be, and then invent (or rather, cook up)

a scalar product without actually building a reconstruction

operator. And to get away with it.
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Our scalar product in F will be defined as the sum of scalar products

[·, ·]FP
on individual elements P . To fix ideas, we assume that we are

in 2 dimensions, that P has 7 edges, and that KP is constant in P .

P

1

 2

 3

 4

 5

6

 7

f

f

f

f

f

f

f

Assume that you represent the elements of FP in the canonical basis

E(1),E(2), ...E(7) by prescribing E(i)
|fj

= δi,j . Then every element G

in F |P will be represented as an element of R
7 with G =

7∑
i=1

GiE
(i).
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ASSOCIATED MATRIX

P

1

 2

 3

 4

 5

6

 7

f

f

f

f

f

f

f

Every possible reconstruction RFP will produce a scalar product

[F,G]FP
=

∫
P

K
−1
P RFP (F) · RFP (G)dV

which, in turn, will be representable as a 7 × 7 matrix MP , namely

[F,G]FP
=

∑
i,j MP i,jFiGj , with

MP i,j :=

∫
P

K
−1
P RFP (E(i)) · RFP (E(j))dV.
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P0-COMPATIBLE RECONSTRUCTIONS IN F

We shall now restrict our attention to reasonable reconstructions

(that we shall call P0-compatible reconstructions). These are linear

mappings RFP defined on FP and having the following properties:

• For every G ∈ FP , we have that RFP (G) ∈ (H1(P ))3.

• For every G ∈ FP , we have that divRFP (G) is constant in P .

• For every G ∈ FP and for every face f i of ∂P , we have∫
f i

RFP (G)|f i
· n|f i

= G|f i
(hence divRFP (G) = DIVhG).

• For every constant vector c, taking for all faces Gc

|fi
:=

∫
f i

c ·n|f i

(that is, taking Gc := ΠFc) we have that RFP (Gc) ≡ c. Note

the difference between c ∈ R
2 and Gc ∈ R

7 !!!
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SCALAR PRODUCTS ASSOCIATED WITH

P0-COMPATIBLE RECONSTRUCTIONS

We claim now that: if c is a constant vector and Gc ≡ ΠFc has

been constructed as before, and if RFP is a P0-compatible

reconstruction, then for every G ∈ FP the result of∫
P

K
−1
P RFP (Gc) · RFP (G)dV

depends on P , K, c and G, but not on the choice of the

reconstruction (among all possible P0-compatible reconstructions).

Indeed...
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Set q1(x) := (K−1
P c) · (x− xB) (where xB is the barycenter of P ).

Then we have∫
P

K
−1
P RFP (Gc) · RFP (G)dV =∫

P

K
−1
P c · RFP (G)dV =

∫
P

∇q1 · RFP (G)dV =

−

∫
P

div RFP (G) q1dV +

∫
∂P

q1 RFP (G) · next dS =

−

∫
P

DIVhG q1dV +

∫
∂P

q1 Gext dS

= 0 +

∫
∂P

(K−1
P c) · (x − xB)Gext dS.
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Let us summarize the previous result. We found that if the scalar

product in FP is obtained through a P0-compatible reconstruction,

and if Gc is associated to a constant vector, c, then

[Gc,G]FP
=

∫
∂P

(K−1
P c) · (x− xB)Gext dS.

It is also simple to check that taking two constant vectors in the

canonical basis of R
2 , e1 = (1, 0) and e2 = (0, 1), then we must have

[Ge
i

,Ge
j

]FP
=

∫
P

K
−1
P RFP (Ge

i

) · RFP (Ge
j

)dV =∫
P

K
−1
P ei · ejdV = (K−1

P )i,j |P |.
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It seems now natural to change the basis in FP . We take

Ẽ1 := Ge
1

, Ẽ2 := Ge
2

,

and then we complete the basis with vectors in R
7

Ẽ3, Ẽ4, ... Ẽ7

such that

[Ge
i

, Ẽj ]FP
=

∫
∂P

(K−1
P ei)·(x−xB) Ẽj

ext dS = 0 (i = 1, 2 j = 3, .., 7)

Note that all this does not depend on the choice of the reconstruction.
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In the new basis Ẽ1, ..., Ẽ7 the matrix associated to any scalar

product obtained with any P0-compatible reconstruction will always

have the form

PK 0

0 ?

−1

with the 5 × 5 diagonal block ”?” depending on the reconstruction.
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Theorem. There exists an α0 > 0 such that: for every symmetric

and positive definite 5 × 5 matrix S with smallest eigenvalue ≥ α0

there exists a P0-compatible reconstruction whose associated scalar

product corresponds, in the basis Ẽ1, ..., Ẽ7, to the matrix

0K

0

−1
P

S

In other words: I know that the matrix comes from a reconstruction.

I don’t care to know ”which one”.
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In all our experiments we took the matrix as

I

K

0

−1
P 0

α

with α = |P |trace(K−1), and we got very good results.
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P0-COMPATIBLE RECONSTRUCTIONS IN F

We got the previous miracle by restricting our attention to

P0-compatible reconstructions. In order to generalize the idea, we

must however re-phrase their definition: They are linear mappings

RFP defined on FP and having the following properties:

• For every G ∈ FP , we have that RFP (G) ∈ (H1(P ))3.

• For every G ∈ FP and for every constant vector c, we have that

divRFP (G) is orthogonal to c · (x − xB) in P .

• For every G ∈ FP and for every face f i of ∂P , we have∫
f i

RFP (G)|f i
· n|f i

= G|f i
(hence divRFP (G) = DIVhG).

• For every constant vector c, taking for all faces Gc

|fi
:=

∫
f i

c ·n|f i

(that is, taking Gc := ΠFc) we have that RFP (Gc) ≡ c.
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P0-COMPATIBLE RECONSTRUCTIONS IN E

In a similar way we can define P0-compatible reconstructions in E .

These will be linear mappings REP defined on EP and having the

following properties:

• For every Ψ ∈ EP , we have that REP (Ψ) ∈ (H2(P ))3.

• For every Ψ ∈ EP and for every constant vector c, we have that

curlREP (Ψ) is orthogonal to c ∧ (x − xB) in P .

• For every Ψ ∈ EP and for every edge ei of ∂P , we have∫
ei

REP (Ψ)|ei
· t|ei

= Ψ|ei
.

• For every constant vector c, taking Ψc := ΠEc we have that

REP (Ψc) ≡ c.
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P0-COMPATIBLE RECONSTRUCTIONS IN N

Finally we can define P0-compatible reconstructions in N . These will

be linear mappings RN P defined on NP and having the following

properties:

• For every U ∈ NP , we have that RN P (U) ∈ H2(P ).

• For every U ∈ NP and for every constant c, we have that

gradRN P (U) is orthogonal to c(x− xB) in P .

• For every U ∈ NP and for every vertex V i of P , we have

RN P (U)|V = U|V i
.

• For every constant c, setting Uc := ΠN c we have that

RN P (Uc) ≡ c.
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General Philosophy - 1

Assume that we consider one of the spaces N , E,F and a material

dependent constant (or symmetric tensor) A. On each element P we

consider the scalar product

(∗) (u, v)P :=

∫
P

A RP u RP udP

where RP is any P0-compatible reconstruction operator (that can be

either an RN P , or an REP or an RFP according with the space we

are considering). Afterwards we will use the scalar product on Ω

obtained by summing the scalar products (*) over P . Then

• if u is constant on P , then: the scalar product (∗) depends on P ,

on A, and on u and v, but is independent of the choice of the

reconstruction operator R among all the (infinitely many)

P0-compatible reconstructions.
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General Philosophy - 2

• As a consequence, the rows and columns (of the local ”stiffness”

matrix) corresponding to constants (or constant vectors) are

known, independently of the choice of the reconstruction

operator (i.e. without knowing the shape functions).

• We then complete the local stiffness matrix in an (almost)

arbitrary way (provided it is SPD...).

• Then there exists a (guardian angel)-reconstruction R such

that: the corresponding scalar product (∗) is exactly the one we

chose at the previous point (i.e the g. a. provides some shape

functions of his own)

• This is enough to ensure linear convergence (and we got away

without the shape functions).
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Summary

• Cochain approximations of differential forms can be introduced

on almost arbitrary decompositions.

• However they require scalar products (or ”discrete *Hodge

operators”) in order to be usable for PDE problems

• The canonical way to get *Hodge operators is through the

construction of shape functions, that provide reconstruction

operators in a natural way.

• Shape functions are easily available only on very simple

geometries.

• However we can easily construct local scalar products that are

generated by some shape functions that ”reproduce the

constants”.

• This is sufficient to insure some kind of patch test.
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Conclusions

• Cochain approximations are a valuable numerical instrument,

allowing the use of very general decompositions.

• The local material properties can be described with a certain

freedom.

• The best use of such freedom is, in most cases, still to be

determined.

• The extension to cochains of most properties satisfied by

compatible FE discretizations is still to be done.

• The passage from De Rham complex to Bernstein - Gelfand -

Gelfand complex seems feasible, but so far it has been done only

in very special cases.

• Please note that the general philosophy presented before is indeed

a philosophy and not a theorem.

70


