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Condition Numbers

General Definition

I Suppose we have a numerical computation problem

f : Rp → Rq, x 7→ y = f (x).

We fix norms ‖ ‖ on Rp, Rq.

I Suppose the input x has a small relative error ‖∆x‖/‖x‖. We want
to bound the relative error ‖∆y‖/‖y‖ of the output.

I This is done by the condition number κ(f , x) of x :

‖∆y‖/‖y‖ . κ(f , x) ‖∆x‖/‖x‖.

I Formal definition for differentiable f :

κ(f , x) := ‖Df (x)‖ ‖x‖
‖f (x)‖

where ‖Df (x)‖ denotes the operator norm of the Jacobian of f at x .
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Linear Equations

Linear Equations

I Consider matrix inversion

f : GL(m, R) → Rm×m,A 7→ A−1.

We measure errors with the operator norms (w.r.t. euclidean norm).

I A perturbation argument shows that the condition number of A with
respect to f equals the classical condition number of A:

κ(A) := κ(f ,A) = ‖A‖ ‖A−1‖.

I Note that κ(λA) = κ(A) for λ ∈ R.

I κ(A) was introduced by A. Turing in 1948.
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Linear Equations

Geometric Interpretation

I We call the set of singular matrices Σ ⊆ Rm×m the set of ill-posed
instances for matrix inversion. Clearly, A ∈ Σ ⇔ det A = 0.

I The Eckart-Young Theorem from 1936 states that

‖A−1‖ =
1

dist(A,Σ)
,

where dist either refers to operator or Frobenius norm.

I dist(A,Σ) equals the smallest singular value of A.

I Hence

κ(A) = ‖A‖ ‖A−1‖ =
‖A‖

dist(A,Σ)
.
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Linear Inequalities

I For A ∈ Rn×m, n > m, consider the system of linear inequalities

∃x ∈ Rm Ax < 0 (P)

and its dual problem ∃y ∈ Rn yTA = 0, y > 0. (D)

I Let IP and ID denote the set of instances where P and D is
solvable, respectively.

I It is well known that we have a disjoint union

Rn×m = IP ∪ ID ∪ Σn,m,

where the set of ill-posed instances Σn,m is the common boundary of
IP and ID .

I The Linear Programming Feasibility problem (LPF) is to decide for
given A, whether A ∈ IP or A ∈ ID .
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Condition Number for Linear Programming

J. Renegar defined the condition number of the linear programming
feasibility problem corresponding to A ∈ Rn×m as

CR(A) :=
‖A‖

dist(A,Σn,m)
.

Theorem (Renegar ’95)

The linear programming feasibility problem on input A ∈ Rn×m, n ≥ m,
can be solved by an interior point method with

O
(√

n log(n CR(A))

)
iterations (one requiring to solve a system of linear equations).
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Condition-based Complexity Analysis

I L. Khachian: for an integer matrix A, LPF can be solved in
polynomial time (in the bit size of A).

I Notorious open problem: can LPF be solved for real matrix A with a
number of arithmetic operations polynomial in m, n?

I Renegar’s analysis bounds the number of arithmetic operations by a
polynomial in both the

I dimension n of the problem
I logarithm of its condition number.

I log CR(A) is polynomially bounded in bitsize of A for integer
matrices A 6∈ Σn,m.

I Consequence: LPF can be solved in polynomial time for an integer
matrix A, counting bit operations.
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Condition-based Analysis

Role of Condition Numbers

Obvious: Condition numbers are a crucial issue for designing
“numerically stable” algorithms.

Less obvious, but true: Even when assuming infinite precision arithmetic,
the condition of an input often dominates the running time of iterative
algorithms.

Three important examples for this phenomenon:

I J. Renegar’s interior point method for linear optimization (see
before)

I conjugate gradient method for solving linear equations

I M. Shub and S. Smale’s Newton homotopy method to solve systems
of polynomial equations
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Average-Case Analysis

I An average-case analysis of the running time of a numerical
algorithm assumes a certain probability distribution on the set of
inputs.

I In many cases, the running time is dominated by the condition
number of the input.

I Thus the average-case analysis can be reduced to an analysis of the
distribution of the condition number for a random input.

I This general methodology was pioneered in an influential paper by
S. Smale (BAMS 1981).

I There are various papers by L. Blum, J. Demmel, A. Edelman,
E. Kostlan, J. Renegar, M. Shub, S. Smale and others elaborating
this approach.
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Examples for Average-Case Analysis

Let A ∈ Rn×m be a Gaussian random matrix, n ≥ m.

Classical condition number (n = m)
A. Edelman (1992) determined the exact distribution of a scaled variant
of the classical condition number κ(A).

Renegar’s condition number

I Prob{CR(A) ≥ ε−1} =?

I This is closely linked to the probability that n randomly chosen
spherical disks of of fixed radius α do not cover the sphere Sm.

I Strictly speaking, this holds for a scaled variant of Renegar’s
condition number, called GCC condition number.

I Sharpest results known so far due to B, F. Cucker and M. Lotz,
extending previous work by D. Cheung, F. Cucker, R. Hauser,
M. Wschebor. In particular E(log CR(A)) = O(log m).
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Smoothed Analysis (1)

Disadvantages of average-case analysis:

I assumption of normal distribution unrealistic

I dependence of results on choice of input distribution

Smoothed analysis is a new form of analysis of algorithms, that arguably
blends the best of both worst-case and average-case. It was proposed by
D. Spielman and S.-H. Teng,

I Spielman and Teng (2004) performed a smoothed analysis of the
running time of the simplex algorithm (for the shadow vertex rule).

I Dunagan, Spielman, Teng (2003) gave a smoothed analysis of
Renegar’s condition number of linear programming.
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Smoothed Analysis (2)

Let T : Rp → R+ ∪ {∞} be a function (running time, condition number).

Instead of showing

“it is unlikely that T (a) will be large”

one shows that

“for all a and all slight random perturbations a + ∆a, it is
unlikely that T (a + ∆a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a∈Rp

T (a) Ea∈DT (a)

sup
a∈Rp

Ea∈N(a,σ2)T (a)

D distribution on Rp, N(a, σ2) Gaussian distribution centered at a.
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Instead of showing

“it is unlikely that T (a) will be large”

one shows that

“for all a and all slight random perturbations a + ∆a, it is
unlikely that T (a + ∆a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a∈Rp

T (a) Ea∈DT (a)

sup
a∈Rp

Ea∈N(a,σ2)T (a)

D distribution on Rp, N(a, σ2) Gaussian distribution centered at a.



Smoothed Analysis of Condition Numbers

Smoothed Analysis

Smoothed Analysis (2)

Let T : Rp → R+ ∪ {∞} be a function (running time, condition number).

Instead of showing

“it is unlikely that T (a) will be large”

one shows that

“for all a and all slight random perturbations a + ∆a, it is
unlikely that T (a + ∆a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a∈Rp

T (a) Ea∈DT (a) sup
a∈Rp

Ea∈N(a,σ2)T (a)

D distribution on Rp, N(a, σ2) Gaussian distribution centered at a.



Smoothed Analysis of Condition Numbers

Conic Condition Numbers

Conic Condition Numbers



Smoothed Analysis of Condition Numbers

Conic Condition Numbers

Conic Condition Numbers: Definition
I Consider an abstract setting with input space Rp+1, together with a

symmetric cone Σ ⊆ Rp+1: a ∈ Σ ⇒ λa ∈ Σ for all λ ∈ R.

I Σ is interpreted as the set of “ill-posed problems”.

I Rp is endowed with the canonical inner product inducing the
euclidean norm, distance, and angles.

I We define the associated conic condition number C (a) of a ∈ Rp+1:

C (a) :=
‖a‖

dist(a,Σ)

I Since C (λa) = C (a) we restrict the input data a to the sphere
Sp := {a ∈ Rp+1 | ‖a‖ = 1} and set ΣS := Σ ∩ Sp.

I If distS denotes the angular distance on Sp:

C (a) =
1

dist(a,Σ)
=

1

sin distS(a,ΣS)
.
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Conic Condition Numbers

Conic Condition Numbers: Examples

I Σ = {A ∈ Rm×m | det A = 0} is a symmetric cone. The scaled
condition number κF (A) is conic by the Eckart-Young:

κF (A) = ‖A‖F ‖A−1‖ =
‖A‖F

distF (A,Σ)
,

where dist refers to the Frobenius norm ‖A‖F := (
∑

ij a2
ij)

1/2.

I κF (A) differs from κ(A) at most by a factor of
√

m.

I The set Σn,m of ill-posed instances for LPF is a symmetric cone.
Instead of Renegar’s condition number we may consider its conic
modification:

CF (A) :=
‖A‖F

distF (A,Σ)
.
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Conic Condition Numbers

Uniform Smoothed Analysis

Choose a uniformly at random in the ball B(a, σ) ⊆ Sp with center a and
radius arcsinσ.

Uniform smoothed analysis of conic condition number C : provide good
upper bounds on

sup
a∈Sp

Prob
a∈B(a,σ)

{C (a) ≥ ε−1}.

This was proposed by B, F. Cucker and M. Lotz (2006). Note

I σ = 0 yields worst-case analysis

I σ = 1 yields average-case analysis
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Conic Condition Numbers

Uniform Smoothed Analysis (2)

Let T (ΣS , ε) denote the neighborhood (or tube) of ΣS of radius arcsin ε.

Prob
a∈B(a,σ)

{C (a) ≥ ε−1} = Prob
a∈B(a,σ)

{sin distS(a,ΣS) ≤ ε}

= Prob
a∈B(a,σ)

{a ∈ T (ΣS , ε)} =
vol(T (ΣS , ε) ∩ B(a, σ))

vol(B(a, σ))

Uniform smoothed analysis means to provide relative bounds on the
volume of tubes intersected with small balls!
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A General Result

Theorem (B, F. Cucker, M. Lotz, Math. Comp. 2008)

Let C be a conic condition number with set Σ of ill-posed inputs.

Assume that Σ is contained in a real algebraic hypersurface, given as the
zero set of a homogeneous polynomial of degree d .

Then, for all σ ∈ (0, 1] and all t ≥ (2d + 1) p
σ ,

sup
a∈Sp

Prob
a∈B(a,σ)

{C (a) ≥ t} ≤ 26 dp
1

σt
.

sup
a∈Sp

Ea∈B(a,σ)(lnC (a)) ≤ 2 ln(dp) + 2 ln
1

σ
+ 4.7.

For average-case analysis (σ = 1), similar bounds have been given by
J. Demmel (1988) and, over C, by C. Beltrán & L.M. Pardo (2005).
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Applications

Linear Equations

I Problem: Solving the system of equations Ax = b, A ∈ Rm×m

I Set of ill-posed inputs: Σ = {A ∈ Rm×m | det A = 0} is the zero set
of the determinant polynomial of degree d = m

I Condition number: κF (A) = ‖A‖F ‖A−1‖

Corollary

For all A ∈ Rm×m of Frobenius norm one and 0 < σ ≤ 1 we have

EA∈B(A,σ)(lnκF (A)) ≤ 6 ln m + 2 ln
1

σ
+ 4.7.

M. Wschebor (2004) and A. Sankar, D. Spielman and S.-H. Teng (2006)
derived similar bounds for Gaussian perturbations by direct methods
(2004).
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Applications

Eigenvalue Computations

I Problem: Compute the (complex) eigenvalues of a matrix
A ∈ Rm×m

I Set of ill-posed inputs: Set Σ of matrices A having multiple
eigenvalues. This is the zero set of the discriminant polynomial of
the characteristic polynomial, which has degree d = m2 −m.

I Condition number (Wilkinson): Satisfies κeigen(A) ≤
√

2 ‖A‖F

dist(A,Σ)

Corollary

For all A ∈ Rn×n of Frobenius norm one and 0 < σ ≤ 1 we have

EA∈B(A,σ)(lnκeigen(A)) ≤ 8 lnm + 2 ln
1

σ
+ 5.1.
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Applications

Complex Polynomial Systems
I Fix d1, . . . , dn ∈ N \ {0}. We denote by Hd the vector space of

polynomial systems f = (f1, . . . , fn) with fi ∈ C[X0, . . . ,Xn]
homogeneous of degree di . Hd carries a Hermitian product invariant
under the action of the unitary group.

I In a seminal series of papers, M. Shub and S. Smale studied the
problem of, given f ∈ Hd, computing an approximation of a complex
zero of f . They proposed an algorithm and studied its complexity in
terms of a nonlinear condition number µnorm(f ) for f .

Corollary

For all f ∈ Hd of norm one we have

Ef∈B(f ,σ)(lnµnorm(f )) ≤ 2 lnN + 4 lnD + 2 ln n + 2 ln
1

σ
+ 6.1.

where N = dimHd − 1 and D = d1 · · · dn is the Bézout number.

S. Smale and M. Shub obtained similar estimates for average complexity.
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Applications

Linear Inequalities

I Our general result gives bad bounds for LFP: the set of ill-posed
inputs Σn,m is semialgebraic, but far from being algebraic.

I Our general bound on the volume of tubes also holds, when Σ is the
boundary of a convex set in a sphere (set of “degree” two).

I We interpret Σn,m as a subset of (Sm)n and work with the
GCC-condition number C (A) instead of Renegar’s condition number.

I Using the fact that certain “sections” of Σn,m are boundaries of
convex set in Sm, it is possible to show:

Theorem (B, Amelunxen)

For all A ∈ (Sm)n and 0 < σ ≤ 1 we have

EA∈B(A,σ)(lnC (A)) = O(ln
nm

σ
).

Dunagan, Spielman, Teng got similar bounds for Gaussian perturbations.
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Proof of General Result

Main Tools

T (ΣS , ε) is the tube of radius arcsin ε around ΣS in Sp.

Proba∈B(a,σ){C (a)≥ε−1}= vol(T (ΣS ,ε)∩B(a,σ))

vol(B(a,σ))

Need to bound the (relative) volume of tubes intersected with balls.

Ingredients:

I Bézout’s theorem

I H. Weyl’s formula on the volume of tubes

I Integral geometry:
the principal kinematic formula (W. Blaschke, S.S. Chern)
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Proof of General Result

On the Volume of Tubes

The volume of tubes is a rich and thoroughly studied mathematical area.

I Let K ⊂ Rp be a compact convex set with boundary ∂K . Denote by
T (∂K , ε) the ε-tube w.r.t. euclidean distance. J. Steiner’s formula
says

vol(T (∂K , ε)) =

p∑
i=1

µi−1(K ) εi

where the coefficients µi (K ) are, up to a scaling factor,
H. Minkowski’s cross-sectional measures (Quermassintegrale). For
instance, µ0(K ) = 2 volp−1(∂K ).

I If ∂K is a smooth hypersurface, the cross-sectional measures can be
expressed as integrals of mean curvature.

I H. Weyl (1939) extended Steiner’s formula for the volume of tubes
to arbitrary smooth hypersurfaces M of euclidean space or spheres.
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Crofton’s Formula from Integral Geometry

Integral geometry allows to reduce the estimation of volumes to counting
points and thus to “degree arguments”.

We denote by dG the invariant volume element on the orthogonal group
G = O(p + 1) (compact Lie group), normalized such that the volume of
G equals one. G operates on Sp in the natural way.

Crofton’s formula
Let M be a submanifold of Sp with dim M = p − 1. Then

volp−1(M)

vol(Sp−1)
=

1

2

∫
g∈G

#(M ∩ gS1) dG (g).

If M is given by a homogeneous equation of degree d , then the right
hand side is bounded by d .
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Estimating the volume of tubes

I Suppose we want to apply Weyl’s tube formula of the form

vol(T (M, ε)) =

p∑
i=1

µi−1(M) εi

to a smooth hypersurface M ⊂ Sp. Think of M = Σ ∩ B(a, σ).

I The first coefficient µ0(M) equals the volume of M and can be
estimated with Crofton’s formula.

I For estimating the other coefficients µi (M), we use a far reaching
generalization of Crofton’s formula, the so-called principal kinematic
formula of integral geometry (Blaschke, Chern).

I For this, one studies intersections of M with random linear
subspaces of a certain dimension.
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Technical Difficulties

For implementing the above plan for bounding the volume of patches of
tubes, several problems have to be adressed:

I Weyl’s formula requires a smooth hypersurface, but our sets of
ill-posed instances usually have singularities.
This difficulty can be dealt with by a perturbation argument.

I Weyl’s formula only holds for sufficiently small radius ε.
However, one can upper bound the volume of tubes by using larger
coefficients, the so-called integrals of absolute curvature.

I The principle kinematic formula does not hold for integrals of
absolute curvature.

All of these technical difficulties can be overcome with some effort!
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Thank you!
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