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Outline of the talk

• linear subdivision schemes refining control points

schemes generating curves

few words on schemes generating surfaces

• three families of non-linear subdivision schemes

subdivision schemes on surfaces

geometrically parametrized subdivision schemes

subdivision schemes refining curves

1



Linear subdivision schemes for the refinement of control points

Efficient computational methods for the generation of smooth

curves/surfaces from discrete sets of points with topological

relations

Subdivision schemes for curves:

• the data is a polygonal line called the control polygon P0

• the scheme generates a sequence of finer control polygons

P0 −−−−−−→
refinement

step

P1 −−−−−−→
refinement

step

· · · −−−−−−→
refinement

step

Pk −−−−−−→
refinement

step

· · ·

Pk+1 = SPk

• the limit of the sequence {Pk} is the curve generated by the scheme
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Corner Cutting

The control polygon

The limit curveA control point



• the subdivision scheme is defined by the operator S

• S is linear and local

Pk = {P ki ∈ R
d : i ∈ Ik} , |Ik| ∼ 2k

Pk+1 = SPk ⇐⇒ P k+1
i =

∑

j

ai−2jP
k
j

a = {ai : i ∈ σ(a)}, |σ(a)| <∞, is the mask of the scheme

• two rules:

P k+1
2i =

∑

j

a2jP
k
i−j, P k+1

2i+1 =
∑

j

a2j+1P
k
i−j

Sa – the subdivision with the mask a
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Convergence

• for geometrical applications – uniform convergence

S∞
a P0 denotes the limit curve

• analysis of convergence by parametrization of the control polygons

Pk(t) is the piecewise linear interpolant to the data {(i2−k, P ki ) : i ∈ Ik}

the convergence of the components of {Pk(t)} is investigated

• d = 1: special initial data δ = {δi = δi,0}

For a convergent scheme Sa

φa = S∞
a δ, S∞

a P0 =
∑

i∈I0
P0
i φa(• − i)
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B-spline curves

a B-spline curve:

C(t) =
∑

i∈I
PiBm(t− i)

• Bm(t) −B-spline of degree m with integer knots:

supp (Bm) = [0,m+ 1], Bm

∣∣∣∣
[i,i+1]

∈ πm, Bm ∈ Cm−1(R)

• by properties of Bm, C(t) “has the shape” of P = {Pi : i ∈ I}

• B-spline curves are a design tool

• B-spline curves are rendered by B-spline subdivision schemes
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B-spline subdivision schemes

• the refinement step for a B-spline curve of degree m

P k+1 =
∑
j a

[m]
i−2jP

k
j , can be decomposed into one trivial

refinement step followed by m repeated averaging steps

(Lane and Riesenfeld, 1980)

P
k+1,0
2i = P

k+1,0
2i+1 = P ki ,

P
k+1,`+1
i =

1

2

(
P
k+1,`
i−1 + P

k+1,`
i

)
, ` = 0, . . . ,m− 1

P k+1
i = P

k+1,m
i

• the case m = 2 corresponds to Chaikin’s algorithm

(Chaikin, 1974)

P k+1
2i =

3

4
P ki−1 +

1

4
P ki , P k+1

2i+1 =
1

4
P ki−1 +

3

4
P ki
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Construction of subdivision schemes by local approximation

A local polynomial approximation

(Af)(x) =
∑̀

i=−`+1

f(i)wi(x) , x ∈ [0,1] , wi(x) ∈ πn

A is shift invariant and scale invariant

• interpolatory scheme:

P k+1
2i = P ki , P k+1

2i+1 =
∑̀

j=−`+1

wj(
1

2
)P ki+j

• “approximating” scheme:

P k+1
2i =

∑̀

j=−`+1

wj(
1

4
)P ki+j , P k+1

2i+1 =
∑̀

j=−`+1

wj(
3

4
)P ki+j

• Chaikin’s algorithm: Af(x) the linear interpolant (` = 1)
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Approximation Result

A convergent subdivision scheme S, based on local polynomial

approximation (Af)(x) =
∑̀

i=−`+1
f(i)wi(x),

with the property Ap = p, p ∈ πn

• reconstructs polynomials of degree ≤ n from their samples

• has approximation order n+ 1,

P0 = {P0
i = f(ih)} , f ∈ Cn+1

∣∣∣(S∞P0)(t) − f(t)
∣∣∣ ≤ Mhn+1
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Examples

(I) Af interpolation polynomial of degree 2`− 1, based on 2` points

• interpolatory schemes (Deslauriers and Dubuc, 1986, 1989)

closely related to compactly supported, orthonormal wavelets

(Daubechies, 1988)

• approximating schemes (Dyn, Floater and Hormann, 2005)

higher smoothness for the same `, ` ≤ 5

(II) Af convex combination of linear and cubic interpolants

the interpolatory 4-point scheme

P k+1
2i = P ki , P k+1

2i+1 = −w(P ki−1 + P ki+2) +

(
1

2
+ w

)
(P ki + P ki+1)

(Dyn, Gregory and Levin, 1987)

w is a shape parameter

convergence for |w| < 1
4, C

1 limit curves for 0 < w < 1
8
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The 4-point scheme

The control polygon

The limit curveA control point



Subdivision curves

Non interpolatory subdivision schemes

• Corner Cutting

Interpolatory subdivision schemes

• The 4-point scheme



Subdivision schemes and the construction of wavelets

The subdivision refinement rule: fk+1
i =

∑
j ai−2jf

k
j

The basic limit function φa = S∞
a δ

For any initial data f0 = {f0
i : i ∈ Z}

(S∞
a f0)(x) =

∑

i

f0
i φa(x− i) ⊆ V0

V0 = span{φa(· − i) : i ∈ Z}
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(Saδ)i =
∑

j

ai−2jδj = ai

φa(x) = (S∞
a δ)(x) = S∞

a (Saδ) =
∑

i

aiφa(2x− i)

The function φa is a scaling function

The function φa defines a sequence of nested spaces

Vj = span{φa(2
j(x− i) : i ∈ Z}, j ∈ Z,

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .
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Convergence analysis

P k+1
2i =

∑

j

a2jP
k
i−j, P k+1

2i+1 =
∑

j

a2j+1P
k
i−j, Pk(2−ki) = P ki

A necessary condition for convergence to non-zero limits

∑

j

a2j =
∑

j

a2j+1 = 1

⇒ the symbol a(z) =
∑

j∈σ(a)
ajz

j vanishes at z = −1

a(z) = (1 + z)q(z)

Sa converges ⇐⇒ lim
k→∞

Skq = 0

The condition lim
k→0

Skq = 0 can be checked by algebraic manipulations

on q(z)

Sa converges =⇒ S∞
a P is continuous
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Smoothness analysis

• if a(z) = 1+z
2 b(z) and Sb is a convergent scheme

then Sa generates C1 curves: S∞
a P ∈ C1

Example

B-spline subdivision scheme of degree m ≥ 1

a[m](z) =
(1 + z)m+1

2m

q(z) =

(
1 + z

2

)m
, ‖Sq‖∞ =

1

2
=⇒ convergence

a[m](z) =

(
1 + z

2

)m−1

a[1](z) =⇒ S∞
a[m]P ∈ Cm−1
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Subdivision schemes for surfaces

• the topological relations between the control points are richer than

in the curve case

• refinement of control nets N(V,E, F)

V –the vertices

E–the edges (pairs of vertices)

F–the faces (cyclic lists of edges)

N(V,E, F) −−−−−−→
refinement

step

N ′(V ′, E′, F ′)

face
edge

vertex

a schematical control net
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The “butterfly” scheme: an interpolatory scheme

V ′ = V ∪ {v(e) : e ∈ E}

one rule for inserting a new e-vertex

(Dyn, Gregory and Levin, 1990)

2w

2w
-w

-w

-w-w

1

2

1

2

s

s

s

s

s0

1

2

3

3
4

K-1

The butterfly scheme generates C1 surfaces on general triangular nets

except at irregular vertices of valency 3 or of valency greater than 7,

for w ∈ (0, w∗), w∗ > 1
16.
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The original control net



After 1st iteration



After 2nd iteration



After 3rd iteration



The limit surface

The limit surfaces of the Butterfly subdivision are 
smooth but are nowhere twice differentiable.



Nonlinear subdivision schemes on surfaces

Methods apply also to manifold-valued data.

Requirement: to generate refined control points on a surface from a

given set of control points on the surface

Idea: to modify “good” linear schemes to refine points on a surface

First approach (Donoho et al. 2005)

Given control points {Pi}, execute a linear refinement step of a

scheme Sa on the projections of the points {Pj : ai−2j 6= 0} to a

tangent plane at a chosen point P ∗
i , and map it back to the surface:

(TP)i = ψ−1
P ∗
i

( ∑

j∈Z

ai−2jψP ∗
i
(Pj)

)

P ∗
i is some chosen “center” of the points {Pj : ai−2j 6= 0}

Analysis of convergence and smoothness (Yu et al. 2008).
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Other modifications (Wallner and Dyn, 2005)

• expressing the linear subdivision scheme in terms of repeated
linear binary averages

avλ(P,Q) = (1 − λ)P + λQ , λ ∈
(
−1

2
,
3

2

)

• replacing all the binary linear averages by

(i) geodesic averages on the surface

or

(ii) the projection of the linear binary averages to the surface

A geodesic average

gavλ(P,Q) = C(λτ)

C(t) is the geodesic curve on the surface from P to Q, such that
C(0) = P , C(τ) = Q.
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geodesic cubic B-spline scheme on a sphere
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Example: the 4-point scheme with w = 1
16

(SP)2i = Pi (SP)2i+1 = − 1

16
(Pi−1 + Pi+2) +

9

16
(Pi + Pi+1)

(SP)2i+1 = av1
2

(
av−1

8
(Pi, Pi+2), av−1

8
(Pi+1, Pi−1)

)

(SP)2i+1 = av−1
8

(
av1

2
(Pi, Pi+1), av1

2
(Pi−1, Pi+2)

)

The symbol of the scheme is factorizable into real linear factors:

a(z) = z−3
(
α+ βz

2

) (
β + αz

2

) (
1 + z

2

)3

(1 + z)

α = 1 +
√

3, β = 1 −
√

3
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One refinement step is equivalent to the following global elementary

steps:

(1 + z) ⇒ Q2i,0 = Q2i+1,0 = Pi (elementary refinement)

(
1+z
2

)3 ⇒ Qi,j+1 = 1
2(Qi,j +Qi−1,j), j = 0,1,2

(repeated symmetric averages)
α+βz

2 ⇒ Qi,4 = β
2Qi−1,3 + α

2Qi,3,
(non-symmetric averages)

β+αz
2 ⇒ Qi,5 = α

2Qi−1,4 + β
2Qi,4,

z−3 ⇒ (SP)i = Qi+3,5, (shift)

α

2
=

1

2
+

√
3

2
∼= 1.366,

β

2
=

1

2
−

√
3

2
∼= −0.366
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Analysis by proximity

• under the proximity condition:

‖SP − TP‖∞ ≤ C‖Pi+1 − Pi‖2∞
for P = {Pi} with ‖Pi+1 − Pi‖∞ small enough

(a) if the linear scheme S generates C0 limits so does T

(b) if S generates C1 limits in a “strong sense” then T generates

C1 limits

• a proximity condition guaranteeing C2 of T for S generating

C2-limits in a “strong sense” exists (Wallner, 2006)

• for smooth surfaces with bounded normal curvatures, the proximity

conditions are satisfied by the modifications of linear schemes,

based on repeated averaging
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Why nonlinear schemes in R
3?

The aim in the design of curves from control polygons is to obtain
curves without artifacts.

Artifacts are geometric features of a designed curve which do
not exist in the given control polygon, such as self-intersections
and inflection points.

Linear schemes generate curves without artifacts from initial polygons
with edges of similar lengths.

Linear schemes generate curves with artifacts from control polygons
with edges of significantly different lengths.

curves generated by the 4-point scheme
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Geometric subdivision schemes

Linear schemes are applied separately to each component of the Points

in R3,

P k+1
i =

∑

j

ai−2jP
k
j .

Geometric schemes are data dependent. Each refinement step

Pk+1 = TPk depends on the points {P ki }.

Example: 4-point subdivision scheme based on iterated centripetal

parametrization (Dyn, Floater and Hormann, preprint).

A good parametrization of a sequence of points {Pi} for interpolation

by a spline curve is the centripetal parametrization (Floater, 2006):

t0 = 0, ti = ti−1 + ‖Pi − Pi−1‖1/2
2 .
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The scheme

• for {P ki } define the parametrization

tk0 = 0, tki = tki−1 + ‖P ki − P ki−1‖
1/2
2

• the refinement step:

P k+1
2i = P ki , P k+1

2i+1 = πk,i



tki + tki+1

2




πi,k(t) – a cubic polynomial interpolating the data

{(tki+j, P
k
i+j), j = −1,0,1,2}
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Results:

• the scheme is well defined: P k+1
2i+1 6= P ki , P k+1

2i+1 6= P ki+1

• uniform convergence of {Pk} to a continuous curve passing through

the points {P0
i }

• tightness of the limit curve C relative to {P0}

haus
(
C|{P0

i ,P
0
i+1}

, [P0
i , P

0
i+1]

)
≤ 5

7
‖P0

i+1 − P0
i ‖2

in comparison with the bound

3

13
max

{
‖P0

`+1 − P0
` ‖2 : i− 2 ≤ ` ≤ i+ 2

}

for the linear 4-point scheme

Ad-hoc methods of analysis
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uniform chordalcentripetalcontrol polygon

comparison between 4-point schemes based on different parametrizations
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Geometric refinement of curves

Aim: given a finite sequence of curves, refine it repeatedly to generate

a surface

The linear approach:

• parametrize each curve (e.g. by arc length): {Ci(s)}ni=1

• apply S∞
a to the n points {Ci(s)}

• the limit curve is
∑n
i=1Ci(s)φa(t)

• ∑n
i=1Ci(s)φa(t) is the limit surface
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A geometric approach based on a correspondence between curves

(work in progress with Elber and our joint student Itai)

A map t = t(C, C̃) is a correspondence between the curves C, C̃,

if it maps C continuously onto C̃, and if it is one-to-one

T(C, C̃) is the collection of all correspondences between C and C̃

The correspondence used is a geometric correspondence:

t∗(C, C̃) = arg min
τ∈T(C,C̃)

max{‖τ(P) − P‖2 : P ∈ C}
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An extension of the linear Chaikin algorithm to curves

One refinement step of a set of curves {Ci}ni=1
(contained in a compact subset of R3)

• for i = 1, . . . , n− 1,

1. compute the geometric correspondence t∗(Ci, Ci+1)

(computed by dynamical programming)

2. for each P ∈ Ci, define

Qi(P) = 3
4P+1

4t
∗(Ci, Ci+1)(P), Ri(P) = 1

4P+3
4t

∗(Ci, Ci+1)(P)

3. define two refined curves

C2i = {Qi(P) : P ∈ Ci}, C2i+1 = {Ri(P) : P ∈ Ci}

• the refined curves are {Ci}2(n−1)
i=1
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Under mild conditions on the initial curves, the scheme is well defined

and convergent (also with 1
4,

3
4 replaced by µ,1 − µ with 0 < µ < 1

2).

Example:

initial curves curves after 2

refinement steps

curves after 3

refinement steps
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Subdivision schemes for compact sets

Motivation: approximating a 3D object from its parallel cross-sections.

t1 t2 t3 t4 t

4 parallel cross-sections

approach: refinement of the cross-sections

the cross-sections are 2D sets.

Refinement of compact sets in R
n based on Minkowski average

• A,B compact sets in R
n

1

2
A+

1

2
B = {

1

2
(a+ b) : a ∈ A, b ∈ B}
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• extension of B-spline subdivision schemes to compact sets

The refinement step

F k+1 = SmF
k , F k = {F ki }

consists of a trivial refinement followed by m repeated averages

F
k+1,0
2i = F

k+1,0
2i+1 = F ki ,

F
k+1,`+1
i =

1

2
F
k+1,`
i +

1

2
F
k+1,`
i+1 , ` = 0,1, ...,m− 1

F k+1
i = F

k+1,m
i−[m2 ]
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Results Dyn N., Farki E. (2000, 2004)

• the subdivision converges to the limit

S∞
mF

0(t) =
∑

i

〈F0
i 〉Bm(t− i)

with 〈A〉 denoting the convex hull of A.

• the limit has convex sets as images.

• approximation result:

for F0
i = G(ih), (h > 0) with G a Lipschitz continuous set-valued

function (haus(G(t), G(t+ ∆)) ≤ L∆), with convex images

haus(G(t), S∞
mF

0(t)) ≤ Ch

• no approximation result for G with general compact sets as images!
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Refinement of compact sets based on the metric average

A⊕1
2
B = {

1

2
(a+ b) : a ∈ A, b ∈ B, ‖a− b‖ = dist (a,B) or dist (b, A)}

Results Dyn, N., Farkhi E. (2001)

• convergence

• approximation result for a Lipschitz continuous G with general com-

pact sets as images.

• S∞
mF

0 is not known explicitly, it is a limit of a Cauchy sequence in

a complete metric space
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