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Central Dogma of Molecular Evolution



Double stranded DNA is reproduced
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Modelling

Modelling is an essential part of Bioinformatics.  
Almost every computation/prediction/estimation is 

based on a model of nature.

What makes a good model?
Must capture the essence of the process

Realistic in terms of the application
Analyzable

As simple as possible, but not simpler



Modelling: big picture

design a model

Process Math description

model has parameters α,φ, [a0, a1, a2, ...]



Modelling: big picture (II)

model describes some real data

α,φ, [a0, a1, a2, ...]

parameters are set to fit the 
data in the best possible way

Usually by Maximum Likelihood
In closed form or numerically



Modelling: big picture (III)

model and parameters are 
validated with independent data

model is ready for prediction/
computation
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Modelling: Closed form vs computational

Simple models may allow closed form solutions, 
more realistic (complicated) models may only allow 

numerical solutions

A closed form solution gives you insight!

Numerical computation gives you results which can 
be used.
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Modelling: where the best contributions happen

We are very comfortable with abstractions

Good understanding of powers and limits of 
modelling

Can do the math

Can do the computations
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Mistakes happen during DNA replication

Most mistakes are harmful, give the organism a 
disadvantage and it does not survive/compete.

Some mistakes are helpful, they either improve the 
organism or adapt it better to the environment.  

These are very likely to survive in the population.

Some mistakes are irrelevant, i.e. do not cause any 
difference.  They rarely remain in the population.



Mistakes modeled as a Markovian process

The occurrence and complicated acceptance of 
DNA mutations is modeled as a Markov process
This is known to be flawed, but still is the best 

model for DNA/protein evolution

A C G T
A 0.93 0.01 0.07 0.01
C 0.02 0.95 0.02 0.02
G 0.03 0.01 0.88 0.01
T 0.02 0.03 0.03 0.96

M =



Mutation matrices
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M∞p = f

Mf = f
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Mutation matrices

M defines a unit of mutationMp0 = p1

M∞p = f Infinite mutation results in the 
natural (default) frequencies

Mf = f
f is the eigenvector with 

eigenvalue 1 of M



Mutation matrices (II)

Q = UΛU−1

Md = edQ

Md = UedΛU−1

λ1 = 0, U1 = f
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Mutation matrices (II)

Q is the rate (differential 
equations of transitions) matrix

from Mf=f

Eigenvalue/eigenvector 
decomposition of QQ = UΛU−1

Md = edQ

Md = UedΛU−1
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Mutation matrices (II)

Q is the rate (differential 
equations of transitions) matrix

from Mf=f

Eigenvalue/eigenvector 
decomposition of QQ = UΛU−1

Md = edQ

Md = UedΛU−1

λ1 = 0, U1 = f

λi < 0, i > 1 reaches steady state
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The principle of Molecular evolution

Dog DNA  
aactgagcggtt...

Elephant DNA  
aactgacccggtt...

Rabbit DNA  
aactgaccggtt...



Tree of mammals
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Probabilities vs likelihoods

Some event

Over all X, A 
and B defines 
a probability 

space

For particular 
data, as a 

function of d, 
defines a 
likelihood



Maximum likelihood (I)

How to estimate parameters by Maximum 
likelihood?

Compute the likelihood, or log of the likelihood, 
and maximize

L(θ) = Prob{event depending on θ}

ln(L(θ)) =
∑

i ln(Prob{ithevent depending on θ})

L(θ) =
∏

i Prob{ithevent depending on θ}



Maximum likelihood (II)

max(L(θ)) = L(θ̂)

L′(θ̂)

L(θ̂)
= 0

L′′(θ̂)

L(θ̂)
= − 1

σ2(θ̂)

Also applicable to vectors with the usual 
matrix interpretations



Maximum likelihood (III)

The maximum likelihood estimators are:
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Maximum likelihood (III)

The maximum likelihood estimators are:

Unbiased

Normally distributed

Most efficient (of the unbiased estimators, 
the ones with smallest variance)
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Maximum likelihood (IV)

This is ideal for symbolic/numeric 
computation

Complicated problems/models can be 
stated in their most natural form

The literature usually warns against the 
difficulty of computing derivatives and solving 

non-linear equations (maximum) ????



Inter sequence distance estimation by ML

A     A     C     T     T     G     C     G     G
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s

t

d

L(d) =
∏

i(M
d)si,ti

ln(L(d)) =
∑

i ln((Md)si,ti)



Inter sequence distance estimation by ML

ln(L(d)) =
∑

i ln((Md)si,ti)

This is normally called the score of an 
alignment and it is used (with some 

normalization) by the dynamic programming 
algorithm for sequence alignment



Inter sequence distance estimation by ML
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Score (likelihood) vs PAM distance for a 
particular protein alignment



Estimation of deletion costs by ML

The Zipfian model of indels postulates that 
indels have a probability given by:

Pr{ indel of length k } = c0(d) 1
ζ(θ)kθ

where the first term is the probability of 
opening an indel and the second gives the 
distribution of indels according to length



Estimation of deletion costs by ML (II)

Empirically:

which means that the score of an indel is 
modeled by the formula:

ln(c0(d)) = d0 + d1 ln(d)

a model with 3 unknown parameters

ln(Pr{indel length k}) = d0 + d1 ln(d)− θ ln k



Estimation of deletion costs by ML (III)

Collecting information from gaps in real 
alignments (thousands of them) we can fit 
these parameters by maximum likelihood



Input (part of 108 Mb of it)

ML := ML + ln( 1-Ps(27.3) ) * 8312 +ln( Ps(27.3) ) * 441+ln(Pl(6))+ln(Pl(3))+ln(Pl(7))+ln(Pl(10))+ln(Pl(1))+ln(Pl(5))+ln(Pl(2))+ln(Pl(6))+ln(Pl
(14))+ln(Pl(1))+ln(Pl(24))+ln(Pl(2))+ln(Pl(14))+ln(Pl(18))+ln(Pl(4))+ln(Pl(11))+ln(Pl(3))+ln(Pl(7))+ln(Pl(10))+ln(Pl(12))+ln(Pl(4))+ln(Pl(2))+ln
(Pl(27))+ln(Pl(7))+ln(Pl(1))+ln(Pl(8))+ln(Pl(12))+ln(Pl(1))+ln(Pl(10))+ln(Pl(6))+ln(Pl(24))+ln(Pl(24))+ln(Pl(3))+ln(Pl(1))+ln(Pl(2))+ln(Pl(7))
+ln(Pl(5))+ln(Pl(36))+ln(Pl(42))+ln(Pl(4))+ln(Pl(27))+ln(Pl(1))+ln(Pl(11))+ln(Pl(1))+ln(Pl(9))+ln(Pl(1))+ln(Pl(20))+ln(Pl(2))+ln(Pl(21))+ln(Pl
(14))+ln(Pl(1))+ln(Pl(17))+ln(Pl(3))+ln(Pl(13))+ln(Pl(34))+ln(Pl(3))+ln(Pl(4))+ln(Pl(4))+ln(Pl(2))+ln(Pl(2))+ln(Pl(3))+ln(Pl(11))+ln(Pl(3))+ln
(Pl(5))+ln(Pl(3))+ln(Pl(4))+ln(Pl(11))+ln(Pl(9))+ln(Pl(1))+ln(Pl(3))+ln(Pl(9))+ln(Pl(9))+ln(Pl(1))+ln(Pl(5))+ln(Pl(3))+ln(Pl(39))+ln(Pl(24))+ln
(Pl(27))+ln(Pl(10))+ln(Pl(6))+ln(Pl(10))+ln(Pl(43))+ln(Pl(3))+ln(Pl(3))+ln(Pl(5))+ln(Pl(1))+ln(Pl(3))+ln(Pl(4))+ln(Pl(2))+ln(Pl(1))+ln(Pl(2))+ln
(Pl(19))+ln(Pl(1))+ln(Pl(5))+ln(Pl(3))+ln(Pl(3))+ln(Pl(9))+ln(Pl(23))+ln(Pl(15))+ln(Pl(10))+ln(Pl(45))+ln(Pl(7))+ln(Pl(12))+ln(Pl(16))+ln(Pl(2))
+ln(Pl(2))+ln(Pl(3))+ln(Pl(3))+ln(Pl(8))+ln(Pl(9))+ln(Pl(1))+ln(Pl(12))+ln(Pl(23))+ln(Pl(1))+ln(Pl(1))+ln(Pl(1))+ln(Pl(4))+ln(Pl(21))+ln(Pl(5))
+ln(Pl(21))+ln(Pl(7))+ln(Pl(6))+ln(Pl(4))+ln(Pl(6))+ln(Pl(27))+ln(Pl(15))+ln(Pl(2))+ln(Pl(4))+ln(Pl(5))+ln(Pl(11))+ln(Pl(14))+ln(Pl(10))+ln(Pl
(11))+ln(Pl(11))+ln(Pl(6))+ln(Pl(2))+ln(Pl(24))+ln(Pl(7))+ln(Pl(8))+ln(Pl(24))+ln(Pl(15))+ln(Pl(29))+ln(Pl(52))+ln(Pl(9))+ln(Pl(31))+ln(Pl(10))
+ln(Pl(4))+ln(Pl(3))+ln(Pl(26))+ln(Pl(11))+ln(Pl(1))+ln(Pl(2))+ln(Pl(1))+ln(Pl(15))+ln(Pl(6))+ln(Pl(3))+ln(Pl(15))+ln(Pl(12))+ln(Pl(13))+ln(Pl
(16))+ln(Pl(4))+ln(Pl(2))+ln(Pl(1))+ln(Pl(1))+ln(Pl(8))+ln(Pl(43))+ln(Pl(5))+ln(Pl(9))+ln(Pl(7))+ln(Pl(17))+ln(Pl(19))+ln(Pl(39))+ln(Pl(3))+ln
(Pl(3))+ln(Pl(5))+ln(Pl(31))+ln(Pl(7))+ln(Pl(4))+ln(Pl(8))+ln(Pl(21))+ln(Pl(6))+ln(Pl(7))+ln(Pl(2))+ln(Pl(9))+ln(Pl(3))+ln(Pl(4))+ln(Pl(37))+ln
(Pl(5))+ln(Pl(28))+ln(Pl(9))+ln(Pl(18))+ln(Pl(6))+ln(Pl(17))+ln(Pl(8))+ln(Pl(11))+ln(Pl(1))+ln(Pl(5))+ln(Pl(2))+ln(Pl(1))+ln(Pl(2))+ln(Pl(1))+ln
(Pl(1))+ln(Pl(2))+ln(Pl(2))+ln(Pl(2))+ln(Pl(1))+ln(Pl(6))+ln(Pl(2))+ln(Pl(3))+ln(Pl(93))+ln(Pl(14))+ln(Pl(1))+ln(Pl(1))+ln(Pl(25))+ln(Pl(4))+ln
(Pl(6))+ln(Pl(6))+ln(Pl(7))+ln(Pl(4))+ln(Pl(4))+ln(Pl(4))+ln(Pl(51))+ln(Pl(55))+ln(Pl(1))+ln(Pl(5))+ln(Pl(6))+ln(Pl(4))+ln(Pl(1))+ln(Pl(6))+ln(Pl
(6))+ln(Pl(17))+ln(Pl(15))+ln(Pl(5))+ln(Pl(5))+ln(Pl(3))+ln(Pl(9))+ln(Pl(3))+ln(Pl(1))+ln(Pl(1))+ln(Pl(5))+ln(Pl(4))+ln(Pl(6))+ln(Pl(10))+ln(Pl
(1))+ln(Pl(1))+ln(Pl(1))+ln(Pl(1))+ln(Pl(3))+ln(Pl(2))+ln(Pl(5))+ln(Pl(2))+ln(Pl(12))+ln(Pl(13))+ln(Pl(2))+ln(Pl(24))+ln(Pl(14))+ln(Pl(6))+ln(Pl
(8))+ln(Pl(18))+ln(Pl(4))+ln(Pl(4))+ln(Pl(19))+ln(Pl(19))+ln(Pl(2))+ln(Pl(68))+ln(Pl(15))+ln(Pl(2))+ln(Pl(8))+ln(Pl(12))+ln(Pl(12))+ln(Pl(7))
+ln(Pl(8))+ln(Pl(14))+ln(Pl(1))+ln(Pl(5))+ln(Pl(11))+ln(Pl(18))+ln(Pl(6))+ln(Pl(25))+ln(Pl(8))+ln(Pl(9))+ln(Pl(4))+ln(Pl(20))+ln(Pl(22))+ln(Pl
(4))+ln(Pl(18))+ln(Pl(27))+ln(Pl(6))+ln(Pl(22))+ln(Pl(7))+ln(Pl(3))+ln(Pl(2))+ln(Pl(3))+ln(Pl(7))+ln(Pl(14))+ln(Pl(1))+ln(Pl(3))+ln(Pl(5))+ln(Pl
(1))+ln(Pl(2))+ln(Pl(5))+ln(Pl(5))+ln(Pl(30))+ln(Pl(30))+ln(Pl(6))+ln(Pl(4))+ln(Pl(17))+ln(Pl(6))+ln(Pl(30))+ln(Pl(17))+ln(Pl(17))+ln(Pl(21))
+ln(Pl(2))+ln(Pl(15))+ln(Pl(1))+ln(Pl(3))+ln(Pl(2))+ln(Pl(3))+ln(Pl(1))+ln(Pl(17))+ln(Pl(1))+ln(Pl(1))+ln(Pl(1))+ln(Pl(10))+ln(Pl(11))+ln(Pl(1))
+ln(Pl(1))+ln(Pl(9))+ln(Pl(2))+ln(Pl(24))+ln(Pl(2))+ln(Pl(10))+ln(Pl(6))+ln(Pl(1))+ln(Pl(7))+ln(Pl(1))+ln(Pl(3))+ln(Pl(1))+ln(Pl(4))+ln(Pl(1))+ln
(Pl(1))+ln(Pl(5))+ln(Pl(1))+ln(Pl(48))+ln(Pl(3))+ln(Pl(1))+ln(Pl(1))+ln(Pl(3))+ln(Pl(1))+ln(Pl(9))+ln(Pl(2))+ln(Pl(203))+ln(Pl(4))+ln(Pl(6))+ln
(Pl(2))+ln(Pl(5))+ln(Pl(7))+ln(Pl(16))+ln(Pl(1))+ln(Pl(21))+ln(Pl(2))+ln(Pl(2))+ln(Pl(4))+ln(Pl(3))+ln(Pl(14))+ln(Pl(6))+ln(Pl(14))+ln(Pl(5))+ln
(Pl(2))+ln(Pl(7))+ln(Pl(41))+ln(Pl(1))+ln(Pl(3))+ln(Pl(4))+ln(Pl(1))+ln(Pl(37))+ln(Pl(10))+ln(Pl(24))+ln(Pl(2))+ln(Pl(9))+ln(Pl(15))+ln(Pl(1))
+ln(Pl(26))+ln(Pl(2))+ln(Pl(15))+ln(Pl(19))+ln(Pl(1))+ln(Pl(7))+ln(Pl(10))+ln(Pl(1))+ln(Pl(6))+ln(Pl(3))+ln(Pl(2))+ln(Pl(3))+ln(Pl(1))+ln(Pl(9))
+ln(Pl(1))+ln(Pl(4))+ln(Pl(1))+ln(Pl(10))+ln(Pl(5))+ln(Pl(5))+ln(Pl(2))+ln(Pl(2))+ln(Pl(17))+ln(Pl(18))+ln(Pl(18))+ln(Pl(6))+ln(Pl(3))+ln(Pl
(22))+ln(Pl(18))+ln(Pl(10))+ln(Pl(1))+ln(Pl(25))+ln(Pl(17))+ln(Pl(5))+ln(Pl(14))+ln(Pl(1))+ln(Pl(17))+ln(Pl(16))+ln(Pl(18))+ln(Pl(18))+ln(Pl
(12))+ln(Pl(3))+ln(Pl(4))+ln(Pl(4))+ln(Pl(34))+ln(Pl(7))+ln(Pl(7))+ln(Pl(1))+ln(Pl(6))+ln(Pl(22))+ln(Pl(1))+ln(Pl(7))+ln(Pl(2))+ln(Pl(13))+ln(Pl
(1))+ln(Pl(2))+ln(Pl(10))+ln(Pl(6))+ln(Pl(5)):
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Evolution happens at very different speeds

Some proteins in bacteria are 80% identical to 
those in humans (3,000,000,000 years)

Most proteins in mammals are about 80% 
identical (200,000,000 years)

Humans and chimpanzees are about 99% 
identical at the protein level (5,000,000 years)
Mitochondrial DNA is more than 99% identical 

in all humans (200,000 years)
The HIV virus has mutated about 10% in the 

last 20 years



Variable evolution rates (I)
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Variable evolution rates (I)

A     A     C     T     T     G

A     C     C     T     G     G

di ∈ Γ(k, θ)

d1 d2 d3 d4 d5 d6

It is recognized as biologically appropriate that 
different positions evolve at different rates

Modeled with a gamma distribution (no particularly 
good reason, but not a terrible idea either)



Variable evolution rates (II)

The Gamma distribution is only defined over 
positive values and has two parameters

It can be shaped from an exponential distribution to 
an almost normal one

E[x] = kθ

σ2(x) = kθ2

p(x) = xk−1e−x/θ

Γ(k)θk

= (1− θt)−k

mgf(t) =
∫ ∞

0
etxp(x)dx



Variable evolution rates (III)

The expected transitions rates are the result of the 
combined event of selecting a distance (with gamma 

distribution) and an evolution transition 

E[Mx] =
∫∞
0 p(x)Mxdx

= U(I − θΛ)−kU−1

= U mgf(Λ) U−1

= U(
∫ ∞

0
p(x)eΛxdx)U−1



Molecular weight fingerprinting

Protein identification by the mass of its digested parts



The model for comparison

How to model the approximate match of k of 
the weights



The model for comparison - generating function

All the distribution events are captured in 
the generating function: 

Gk,n,ε = (a1ε + a2ε + ... + akε + b(1− kε))n

  corresponds to a ball falling in box i and b 
corresponds to a ball falling outside all boxes
ai

We want to find the coefficient of all terms 
having all the    to some positive powerai



The model for comparison - generating function

For example, for k=2

G2,n,ε = (a1ε + a2ε + b(1− 2ε))n

G∗
2,n,ε = G2,n,ε −G2,n,ε|a1=0

= (a1ε + a2ε + b(1− 2ε))n − (a2ε + b(1− 2ε))n

G∗∗
2,n,ε = G∗

2,n,ε −G∗
2,n,ε|a2=0

P2,n,ε = 1− 2(1− ε)n + (1− 2ε)n



The model for comparison - generating function

Pk,n,ε = (1− e−nε)k(1 +
knε(enε − k)
2(enε − 1)2

ε + O(ε2))

Pk,n,ε =
k∑

i=0

(−1)i

(
k

i

)
(1− iε)n

(recently solved by Daniele Gardy with a much 
better expansion)
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How diverse are humans?

A SNP (pronounced snip) is a position in our DNA 
where at least 1% of the population shows a 
difference. (Single Nucleotide Polymorphism)

SNPs are responsible for most of the human diversity.  
They are also the cause all of the genetic diseases.

There are about 300,000 SNPs in the human 
population.

Easy-to-find SNPs are called markers.  Some 
easy to test markers are the main tool for 
genetic fingerprinting (e.g. paternity tests)



Paternity testing

Mom DadChild

D8S1179 13/14 14/16 13/16

THO1 7/9 8/9 7/8

CSF1PO 10/11 7/10 7

AR21UY 7/11 11/17 18/21

...

Locus



Ancestry testing

Simplest model: each locus has its own 
probability, independent of the others

good for simple paternity testing

More realistic model: loci which are close to 
each other are highly correlated

necessary for more complicated cases



Ancestry testing (II)

Example: do Alice and Bob share one 
grandparent? 

Alice Bob

oma

dadmom dad mom

oma oma omaopaopa opa
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Various women in several different countries 
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DHL founder, Larry Hillblom’s case

Various women in several different countries 
made claims that he was the father of their 
children.

Died in a seaplane crash.

No family,  University of California to 
receive his estate

4 Children were proven to come from the same 
father and they received their rightly share.





the END


