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Central Dogma of Molecular Evolution
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Modelling

-

Modelling is an essential part of Bioinformatics.
Almost every computation/prediction/estimation is
based on a model of nature.

What makes a good model?

Must capture the essence of the process
As simple as possible, but not simpler
Realistic in terms of the application
Analyzable

~
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Modelling: big picture (ll)
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Modelling: big picture (ll)
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Modelling: Closed form vs computational

Simple models may allow closed form solutions,
more realistic (complicated) models may only allow
numerical solutions

A closed form solution gives you insight!

Numerical computation gives you results which can
be used.
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Modelling: where the best contributions happen

We are very comfortable with abstractions

Good understanding of powers and limits of
modelling

Can do the math

Can do the computations
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Mistakes happen during DNA replication

Most mistakes are harmful, give the organism a
disadvantage and it does not survive/compete.

Some mistakes are irrelevant, i.e. do not cause any
difference. They rarely remain in the population.

Some mistakes are helpful, they either improve the

\_

organism or adapt it better fo the environment.
These are very likely to survive in the population.

J




Mistakes modeled as a Markovian process

4 )

The occurrence and complicated acceptance of
DNA mutations is modeled as a Markov process

This is known to be flawed, but still is the best
model for DNA/protein evolution

A C G T
0.93 | 0.0l | 0.07 | 0.01
0.02 | 0.95| 0.02 | 0.02
0.03 | 0.01 | 0.88 | 0.01
0.02 | 0.03 | 0.03 | 0.96
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f is the eigenvector with

eigenvalue 1 of M
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Eigenvalue/eigenvector
decomposition of Q

~

M = Uedry—1
M =0, U =] |
A\ <0, i>1 |




Mutation matrices (ll)

-

O is the rate (differential

‘equations of transitions) matrix

-

\_

Eigenvalue/eigenvector
decomposition of Q

~

M = UerU—1!

M=0, U =Ff

A <0, 2>1
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Mutation matrices (ll)

-

O is the rate (differential

‘equations of transitions) matrix

-

\_

Eigenvalue/eigenvector
decomposition of Q

~

M = UerU—1!

M=0, U =Ff

A <0, 2>1

{ from Mf=f

]

[ reaches steady state
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Tree of mammals

B Frhinops_telfalriECHTE

B Tanis_familiaris CANFA

W Celis_catus FELCA

B Fouus_cakallus HORSE

B Myetis lucifugus MYOLU

8 Fos taurus BOVIN

B Sprex_araneus SORAR

B Frinaceus_eurcpaeus ERIEU

B Qchotona_prin c_eg.“‘ PR

B Qryctolagus_cunicolus RABIT / Yt

B Mus musculus MOUL%Eg

B Rattus_norvegicus RATNO

B Cavia_porcellus CAVPO

B Spermophilus_tridecemlineatus SPETR

Home_sapiens HUMAN

Pan_troglodytes PANTR

Pongo_pyomaeus_abelll PONPA

Macaca_mulatta MACMU

B Otolemur_garnettliOTOCA

8 Microcebus_murinus MICMU

B Tupaia_kelangeri TUPGE

8 Dasypus_novemcinctus DASNO



Probabilities vs likelihoods




Probabilities vs likelihoods

Some event




Probabilities vs likelihoods

Some event

Over all X, A

and B defines

a probability
space

\_




Probabilities vs likelihoods

Over all X, A

and B defines

a probability
space

\_

Some event

o For particular
data, as a
function of d,
defines a

likelihood

J




Maximum likelihood ()

How fo estimate parameters by Maximum
likelihood?

Compute the likelihood, or log of the likelihood
and maximize

L(6) = Prob{event depending on 6}
L(0) =[], Prob{i"*event depending on 6}

In(L(#)) = >_. In(Prob{i""event depending on 6})

/

J




Maximum likelihood (1)

max(L(6))
L'(6) _
L(O)

L// (Aé) _ 1 A
L(6) c2(0)

Also applicable to vectors with the usual
matrix interpretations




Maximum likelihood (IIl)

The maximum likelihood estimators are:
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Maximum likelihood (IIl)

The maximum likelihood estimators are:

Unbiased

Most efficient (of the unbiased estimators,
the ones with smallest variance)

Normally distributed
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Maximum likelihood (V)

This is ideal for symbolic/numeric
computation

Complicated problems/models can be
stated in their most natural form

The literature usually warns against the
difficulty of computing derivatives and solving
non-linear equations (maximum) 22?27
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Inter sequence distance estimation by ML

In(L(d)) = >2; In((M)s,.+,)

This is normally called the score of an
alignment and it is used (with some
normalization) by the dynamic programming
algorithm for sequence alignment




Inter sequence distance estimation by ML

Score (likelihood) vs PAM distance for a
particular protein alignment




Estimation of deletion costs by ML

-

The Zipfian model of indels postulates that
indels have a probability given by:

Pr{ indel of length k } = ¢o(d)

1
C(0)k?

where the first term is the probability of
opening an indel and the second gives the
distribution of indels according fo length

~




Estimation of deletion costs by ML (ll)

Empirically:

In(co(d)) = do + dq In(d)

which means that the score of an indel is
modeled by the formula:

In(Pr{indel length k}) = dy 4+ dy In(d) — 0 1n k

a model with 3 unknown parameters




Estimation of deletion costs by ML (lll)

Collecting information from gaps in real
alignments (thousands of them) we can fit
these parameters by maximum likelihood




Input (part of 108 Mb of it)

ML := ML + In( 1-Ps(27.3) ) * 8312 +In( Ps(27.3) ) * 441+In(PI(6))+In(PI(3))+In(PI(7))+In(PI1(10))+
(14))+In(P1(1))+In(P1(24))+In(P1(2))+In(PI(14))+In(P1(18))+In(PI(4))+In(PI(11))+In(PI(3))+In(PI(7))+ (10))+In(P1(12))+In(P1(4))+In(P1(2))+In
(PI(27))+In(PI(7))+In(PI(1))+In(PI(8))+In(PI(12))+In(PI(1))+In(PI( 0))+In(PI1(6))+In(P1(24))+In(P1(24))+In(PI(3))+In(PI(1))+In(PI1(2))+In(PI(7))
+In(P1(5))+In(P1(36))+In(PI(42))+In(P1(4))+In(P1(27))+In(PI(1))+In(PI(11))+In(PI(1))+In(PI1(9))+In(PI(1))+In(PI(20))+In(PI(2))+In(PI(21))+In(P!I
(14))+In(PI(1))+In(P1(17))+In(P1(3))+In(PI(13))+In(PI(34))+In(PI1(3))+In(P1(4))+In(PI(4))+In(PI(2))+In(PI1(2))+In(P1(3))+In(PI(11))+In(PI(3))+In
(P1(5))+In(PI(3))+In(PI(4))+In(PI(11))+In(P1(9))+In(PI(1))+In(PI(3))+In(PI(9))+In(P1(9))+In(PI(1))+In(PI(5))+In(PI(3))+In(P1(39))+In(P1(24))+In
(P1(27))+In(PI(10))+In(P1(6))+In(PI(10))+In(P1(43))+In(PI(3))+In(PI(3)) +In(PI1(5))+In(PI(1))+In(PI(3))+In(P1(4))+In(PI(2))+In(PI(1))+In(PI(2))+In
(P1(19))+In(PI(1))+In(P1(5))+In(PI(3))+In(PI(3))+In(P1(9))+In(PI(23))+In(P1(15))+In(PI(10))+In(P1(45))+In(PI(7))+In(PI(12))+In(PI(16))+In(PI(2))
+In(P1(2))+In(PI1(3))+In(PI(3))+In(PI(8))+In(P1(9))+In(PI(1))+In(PI(12))+In(PI(23))+In(PI(1))+In(PI(1))+In(PI(1))+In(PI(4))+In(P1(21))+In(PI(5))
+In(P1(21))+In(PI(7))+In(PI(6))+In(P1(4))+In(P1(6))+In(PI(27))+In(P I( 5))+In(PI1(2))+In(P1(4))+In(PI(5))+In(PI(11))+In(PI(14))+In(PI(10))+In(P!I
(11))+In(P1(11))+In(P1(6))+In(PI(2))+In(P1(24))+In(PI1(7))+In(PI(8))+In(PI(24))+In(PI1(15))+In(P1(29)) +In(P1(52))+In(P1(9))+In(P1(31))+In(PI(10))
+In(P1(4))+In(PI1(3))+In(P1(26))+In(PI(11))+In(PI1(1))+In(P1(2))+In(PI(1))+In(PI(15))+In(PI1(6))+In(PI(3))+In(PI(15))+In(PI(12))+In(PI1(13))+In(P!I
(16))+In(P1(4))+In(PI(2))+In(P1(1))+In(PI(1))+In(PI(8))+In(P1(43))+
n(PI1(5))+In(P1(31))+In(PI(7))+In(PI(4))
(P1(28))+In(PI1(9))+In(PI(18))+In(PI(6
1(2))+In(P1(2))+In(P1(2))+In(PI(1))
PI1(6))+In(P1(7))+In(P1(4))+In(PI1(4))
7))+In(P1(15))+In(PI(5))+In(P
)

(

PI(1))+In(PI(5))+In(PI1(2))+In(PI(6))+In(PI
(P
I

In(PI
In(PI
)

)+

))+In(PI(17))+In(P1(19))+In(PI(39))+In(PI(3))+In
1(2))+In(P1(9))+In(P1(3))+In(P1(4))+In(PI(37))+In
(P1(5))+In(P1(2))+In(PI(1))+In(PI1(2))+In(PI(1))+In
( 14))+In(PI(1))+In(PI(1))+In(P1(25))+In(P1(4))+In
(P1(5))+In(P1(6))+In(PI1(4))+In(PI(1))+In(P1(6))+In(PI
1 1(5 ))+In(P1(9))+In(P1(3))+In(PI(1))+In(PI(1))+In(PI(5))+In(P1(4))+In(P1(6))+In(PI(10))+In(PI
1))+In(PI(1))+In(PI(1))+In(PI(3) +In(PI(5))+In(P1(2))+In(P1(12))+In(PI(13)) In(P1(24))+In(P1(14))+In(PI(6))+In(P!I
18))+In(P1(4))+In(P1(4))+In(P1(19))+In(P1(19))+In(PI(2))+In(PI(68))+In(PI1(15))+In(P1(2))+In(PI(8))+In(PI(12))+In(PI1(12))+In(PI(7))
+In(P1(14))+In(PI(1))+In(PI(5))+In(PI(11))+In(PI(18))+In(P1(6))+In(P1(25))+In(PI(8))+In(PI1(9))+In(P1(4))+In(PI(20))+In(PI(22))+In(PI
(18))+In(P1(27))+In(PI1(6))+In(P1(22))+In(PI(7))+In(PI(3))+In(PI(2))+In(PI1(3))+In(PI(7))+In(PI(14))+In(PI(1))+In(PI1(3))+In(PI(5)) +In(PI
(2))+In(PI1(5))+In(P1(5))+In(P1(30))+In(P1(30))+In(PI(6))+In(P1(4))+In(P1(17))+In(P1(6))+In(PI(30))+In(PI(17))+In(PI(17))+In(P1(21))
In(PI(15))+In(P1(1))+In(P1(3))+In(P1(2))+In(PI(3))+In(PI1(1))+In(PI(17))+In(PI(1))+In(PI(1))+In(PI(1))+In(PI(10))+In(PI(11))+In(PI(1))
In(P1(9))+In(P1(2))+In(PI(24))+In(P1(2))+In(P1(10))+In(P1(6))+In(PI(1))+In(PI(7))+In(PI(1))+In(PI(3))+In(PI(1))+In(PI1(4))+In(PI(1))+In
(1))+In(P1(5))+In(PI(1))+In(P1(48))+In(PI(3))+In(PI(1))+In(PI(1))+In(PI(3))+In(PI(1))+In(P1(9))+In(PI(2))+In(P1(203))+In(PI1(4))+In(PI(6))+In
(2))+In(PI(5))+In(PI(7 ))+In(PI(16))+In(PI(1))+In( 1(21))+In(P1(2))+In(P1(2))+In(PI(4))+In(PI(3))+In(P1(14))+In(P1(6))+In(PI(14))+In(PI(5))+In
(2))+In(PI(7))+In(P1(41))+In(PI(1))+In(PI(3))+In(PI(4))+In(PI(1))+In(P1(37))+In(PI(10))+In(PI(24))+In(PI1(2))+In(P1(9))+In(PI(15))+In(PI(1))
P1(26))+In(P1(2))+In(PI(15))+In(PI(19))+In(PI1(1))+In(PI1(7))+In(PI(10))+In(PI(1))+In(PI1(6))+In(PI(3))+In(PI(2))+In(PI(3))+In(PI(1))+In(PI(9))
PI(1))+In(P1(4))+In(PI(1))+In(PI(10))+In(PI(5 ))+In(PI( ))+In(P1(2))+In(P1(2))+In(P1(17))+In(PI(18))+In(PI(18))+In(PI1(6))+In(PI(3))+In(
)+In (PI(18))+In(PI(10))+In(PI( ))+In(PI( 5) ( I(17))+In(PI(5))+In(PI(14))+In(PI(1))+In(PI(17))+In(PI(16))+In(PI(18))+In(PI(18))+In(PI

(7
+In(PI(8))+In(PI(21))+In(PI(6))+In(PI(7))+In(P
))+In(PI(17))+In(PI(8))+In(PI(11))+In(PI(1))+In
IN(P1(6))+In(PI1(2))+In(PI(3))+In(PI(93))+In(PI(
IN(P1(4))+In(PI(51))+In(PI(55))+In(PI(1))+In

1))+
In(PI(5))+In(P1(9))+In(PI
)+In( )

n

)+
)+INn
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Evolution happens at very different speeds

-

Some proteins in bacteria are 80% identical to
those in humans (3,000,000,000 years)

Most proteins in mammals are about 80%
identical (200,000,000 years)

Humans and chimpanzees are about 99%
identical at the protein level (5,000,000 years)

Mitochondrial DNA is more than 99% identical
in all humans (200,000 vyears)

The HIV virus has mutated about 10% in the
last 20 years

~




Variable evolution rates ()

It is recognized as biologically appropriate that
different positions evolve at different rates

d; € F(k, (9)
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Variable evolution rates ()

It is recognized as biologically appropriate that
different positions evolve at different rates

Modeled with a gamma distribution (no particularly
good reason, but not a terrible idea either)

d; € F(k, (9)

A A CTT G




Variable evolution rates (ll)

The Gamma distribution is only defined over
positive values and has two parameters

It can be shaped from an exponential distribution to
an almost normal one
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Variable evolution rates (lll)

-

The expected transitions rates are the result of the
combined event of selecting a distance (with gamma
distribution) and an evolution transition

~




Molecular weight fingerprinting

~

Protein identification by the mass of its digested parts

In the lab Protein |Identification Strategy

o
1 o,
| t-"'Lt_-.

Tissue or organism of interest non-redundant
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The model for comparison

How fto model the approximate match of k of
the weights
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k boxes, each of length eps

Pr{k,n,eps} = Probability of k boxes with at least one ball each




The model for comparison - generating function

All the distribution events are captured in
the generating function:

Gine = (a1€ + aze + ... + are + b(1 — ke))"

a; corresponds to a ball falling in box i and b
corresponds to a ball falling outside all boxes

We want to find the coefficient of all terms
having all the a; to some positive power




The model for comparison - generating function

For example, for k=2

Gon.e = (a1€ + ase + b(1 — 2¢))"
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The model for comparison - generating function
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(recently solved by Daniele Gardy with a much
better expansion)
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How diverse are humans?

A SNP (pronounced snip) is a position in our DNA
where at least 1% of the population shows a
difference. (Single Nucleotide Polymorphism)

SNPs are responsible for most of the human diversity.
They are also the cause all of the genetic diseases.

There are about 300,000 SNPs in the human
population.

Easy-to-find SNPs are called markers. Some
easy to test markers are the main tool for
genetic fingerprinting (e.g. paternity tests)




Paternity testing

Locus
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Ancestry testing

Simplest model: each locus has its own
probability, independent of the others

good for simple paternity festing

More realistic model: loci which are close to
each other are highly correlated

necessary for more complicated cases




Ancestry testing (ll)

Example: do Alice and Bob share one
grandparent?
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DHL founder, Larry Hillblom’s case

-

Died in a seaplane crash.

No family, University of California to
receive his estate

Various women in several different countries
made claims that he was the father of their
children.

4 Children were proven to come from the same
father and they received their rightly share.
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the END



