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Differential equations with noise

Langevin used “noisy” differential equations to model the particle
dynamics of Brownian motion in the early 1900s:

dx

dt
= f(t, x) + g(t, x) ηt, noise: ηt

• Gaussian white noise: many mathematical problems finally resolved
by Itô in the 1940s with the introduction of stochastic calculus

=⇒ stochastic differential equations (SODEs)

dXt = f(t, Xt) + g(t, Xt) dWt, Wiener process: Wt

• more regular noise =⇒ random ordinary differential equations (RODEs)



Stochastic Differential Equations

Consider an Itô SDE in R
d for t ∈ [0, T ]

dXt = a(Xt) dt +
m

∑

j=1

bj(Xt)dW j
t ,

with

• drift and diffusion coefficients a, bj : R
d → R

d for j = 1, . . . , m

• an m-dimensional Wiener process Wt = (W 1
t , . . . , Wm

t )

This is really an Itô stochastic integral equation

Xt = X0 +

∫ t

0

a(Xs) ds +
m

∑

j=1

∫ t

0

bj(Xs)dW j
s .



Numerical approximation of solutions of SDE

Consider a partition 0 = t0 < t1 < . . . < tNT
= T of [0, T ] with step

sizes ∆n := tn+1 − tn > 0 and maximum step size ∆ := maxn ∆n.

Let Y
(∆)
n be an approximation of Xtn

for a solution Xt of an SDE.

In the literature one mainly considers average error criteria
Weak approximation of order β

∣
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∣
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∣

∣
≤ Kφ,T ∆β

for smooth test functions φ : R
d → R.

Strong approximation of order γ (usually just p = 1 or 2)
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The chain rule w.r.t. a solution x(t) of an ODE
dx

dt
= f(t, x) is

U(t, x(t)) = U(0, x(0)) +

∫ t

0

LU(s, x(s)) ds, LU :=
∂U

∂t
+ f

∂U

∂x

Apply this to the integrand of the ODE in integral form

x(t) = x(0) +

∫ t

0

f(s, x(s)) ds ⇐ U(t, x) = x

= x(0) +

∫ t

0

[

f(0, x(0)) +

∫ s

0

Lf(r, x(r)) dr

]

ds ⇐ U(t, x) = f(t, x)

= x(0) + f(0, x(0))

∫ t

0

ds +

∫ t

0

∫ s

0

Lf(r, x(r)) dr ds



Itô-Taylor Schemes

• Differential operators:

L0 =
d

∑

k=1

ak ∂

∂xk
+

1

2

d
∑

k,l=1

m
∑

j=1

bk,jbl,j ∂2

∂xk∂xl
, Lj =

d
∑

k=1

bk,j ∂

∂xk

for j = 1, . . . , m,

where ak, bk,j are the k-th components of a and bj

• Set of all multi-indices

Mm =
{

α = (j1, . . . , jl) ∈ {0, 1, 2, . . . , m}l : l ∈ N
}

⋃

{∅}

where

l(α): length of α, n(α): number of zero entries of α

∅: multi-index of length 0



• Iterated integrals and coefficient functions:

Iα(s, t) =

∫ t

s

· · ·

∫ τ2

s

dW j1
τ1

. . . dW jl
τl

fα(x) = Lj1 · · ·Ljl−1bjl(x)

with α = (j1, . . . , jl) with the notation dW 0
t = dt, b0 = a

Examples

I(0)(tn, tn+1) =

∫ tn+1

tn

dW 0
s = ∆n, I(1)(tn, tn+1) =

∫ tn+1

tn

dW 1
s = ∆W 1

n ,

and

I(1,1)(tn, tn+1) =

∫ tn+1

tn

∫ s

tn

dW 1
τ dW 1

s =
1

2

[

(∆W 1
n)2 − ∆n

]



Itô-Taylor scheme of strong order γ = 1
2 , 1, 3

2 , 2, . . .

Y γ
n+1 = Y γ

n +
∑

α∈Aγ\{∅}

fα(Y γ
n ) · Iα(tn, tn+1)

for n = 0, 1, 2, . . . ,, where Y γ
0 = X0 and

Aγ = {α ∈ Mm : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ + 1/2}

Itô-Taylor scheme of weak order β = 1, 2, 3,. . .

Y β
n+1 = Y β

n +
∑

α∈Aβ\{∅}

fα(Y β
n ) · Iα(tn, tn+1)

for n = 0, 1, 2, . . . ,, where Y γ
0 = X0 and Aβ = {α ∈ Mm : l(α) ≤ β}



Examples for a scalar SDE

dXt = a(Xt) dt + b(Xt) dWt

Euler-Maruyama scheme strong order γ = 1
2 , weak order β = 1

Yn+1 = Yn + a(Yn) ∆n + b(Yn) ∆Wn

Milstein scheme strong order γ = 1, weak order β = 1

Yn+1 = Yn+a(Yn) ∆n+b(Yn) ∆Wn+
1

2
b′(Yn)b(Yn)

[

(∆Wn)2 − ∆n

]



Proofs in the literature

e.g. in the monographs

P.E. Kloeden and E. Platen, The Numerical Solution of Stochastic Differential Equa-
tions, Springer, 1992.

G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer,

1995

assume that the coefficient functions fα in the Taylor scheme are uniformly

bounded on R
d

i.e., the partial derivatives of appropriately high order of the SDE coef-
ficient functions a, b1, . . ., bm are uniformly bounded on R

d

This assumption is not satisfied in many important applications.



Duffing-van der Pol oscillator with multiplicative noise

dX1
t = X2

t dt

dX2
t =

[

−X1
t + βX2

t − (X1
t )3 − (X1

t )2X2
t

]

dt + σX2
t dWt

Fisher-Wright type diffusions with Xt ∈ [0, 1]

dXt = [κ1(1 − Xt) − κ2Xt] dt +
√

Xt(1 − Xt) dWt

Cox-Ingersoll-Ross models in finance with Vt ≥ 0

dVt = κ (ϑ − Vt) dt + µ
√

Vt dWt



Restrictions on the dynamics

e.g. dissipativity, ergodicity

J.C. Mattingly, A.M. Stuart and D.J. Higham,
Ergodicity for SDEs and approximations: locally Lipschitz vector fields and
degenerate noise, Stochastic Processes Applns. 101 (2002), 185–232.

D.J. Higham, X. Mao and A.M. Stuart,
Strong convergence of Euler-type methods for nonlinear stochastic differential
equations, SIAM J. Num Anal., 40 (2002), 1041-1063.

G.N. Milstein and M.V. Tretjakov,
Numerical integration of stochastic differential equations with nonglobally
Lipschitz coefficients.SIAM J. Numer. Anal. 43 (2005), 1139-1154.

=⇒ order estimates without bounded derivatives of coefficients

Difficulties still with square roots in coefficients, positivity of solutions · · ·



Pathwise convergence

sup
n=0,...,NT

˛̨
˛Xtn (ω) − Y

(∆)
n (ω)

˛̨
˛ −→ 0 as ∆ → 0, ω ∈ Ω

Why?

• Numerical calculation of the approximation Y
(∆)
n is carried out path by path

• The theory of random dynamical systems is of pathwise nature

e.g. random attractors, stochastic bifurcations

• Solutions of the SDE may be non-integrable, i.e. E|Xt| = ∞ for some t ≥ 0

• . . . . . .

BUT recall that Ito calculus is a mean-square, i.e. L2, calculus !



Known results for pathwise approximation

• Milstein scheme for SDE with a scalar Wiener process (Talay, 1983):

sup
n=0,...,NT

˛̨
˛Xtn (ω) − Y

(∆)
n (ω)

˛̨
˛ ≤ K

(M)
ǫ,T (ω)∆

1
2
−ǫ,

for all ǫ > 0 and almost all ω ∈ Ω

• Euler scheme for a general SDE under weak assumptions (Gyöngy 1998, Fleury,
2005):

sup
n=0,...,NT

˛̨
˛Xtn (ω) − Y

(∆)
n (ω)

˛̨
˛ ≤ K

(E)
ǫ,T (ω)∆

1
2
−ǫ,

for all ǫ > 0 and almost all ω ∈ Ω

Wiener process paths are Hölder continuous with exponent 1
2
− ǫ.

Is the convergence order 1
2
− ǫ “sharp” for pathwise approximation ?



An arbitrary pathwise order is possible

P.E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes
for stochastic differential equations, LMS J. Comp. Math. 10 (2007), 235-253.

Theorem 1 Under classical assumptions an Itô-Taylor scheme of strong order γ
> 0 converges pathwise with order γ − ǫ for all ǫ > 0, i.e.

sup
i=0,...,NT

˛̨
˛Xtn (ω) − Y

(∆)
n (ω)

˛̨
˛ ≤ Kγ

ǫ,T (ω) · ∆γ−ǫ

for almost all ω ∈ Ω.

⇒ The Milstein scheme has pathwise order 1 − ǫ

The proof is based on

1) Burkholder-Davis-Gundy inequality

E sup
s∈[0,t]

˛̨
˛̨
Z s

0
Xτ dWτ

˛̨
˛̨
p

≤ Cp · E

˛̨
˛̨
Z t

0
X2

τ dτ

˛̨
˛̨
p/2

2) a Borel-Cantelli argument in the following Lemma



Lemma 1 Let γ > 0 and cp ≥ 0 for p ≥ 1. If {Zn}n∈N is a sequence of random
variables with

(E|Zn|
p)1/p ≤ cp · n−γ

for all p ≥ 1 and n ∈ N, then for each ǫ > 0 there exists a finite non-negative random
Kǫ such that

|Zn(ω)| ≤ Kǫ(ω) · n−γ+ε a.s.

for all n ∈ N.

SDE without uniformly bounded coefficients

A. Jentzen, P.E. Kloeden and A. Neuenkirch, Convergence of numerical approxima-
tions of SDE under nonstandard assumptions, Numerische Mathematik (to appear)

Theorem 1 remains true if the SDE coefficients a, b1, . . .,bm ∈ C2γ+1(Rd; R
d), i.e.,

without uniform bounded derivatives, using a localization argument.

e.g. Theorem 1 applies to the Duffing-van der Pol oscillator with multiplicative noise.



Numerical Example I Duffing-van der Pol oscillator with multiplicative noise

β = 3, σ = 2, X1(0) = X2(0) = 1, T = 1
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Numerical Example II

dXt = −(1 + Xt)(1 − X2
t ) dt + (1 − X2

t ) dWt, t ∈ [0, 1], X(0) = 0
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SDE on restricted regions

e.g. Fisher-Wright and Cox-Ingersoll-Ross SDEs with square-root coefficients

• the numerical iterations may leave the restricted region, the algorithm may crash

Consider a domain D ⊆ R
d and suppose that the SDE coefficients a, b1, . . ., bm are

r-times continuously differentiable on D

Define E := {x ∈ R
d : x /∈ D}.

Choose auxiliary functions f , g1, . . ., gm ∈ Cs(E; R
d) for s ∈ N and define

ea(x) = a(x) · 1D(x) + f(x) · 1E(x), x ∈ R
d,

ebj(x) = bj(x) · 1D(x) + gj(x) · 1E(x), x ∈ R
d, j = 1, . . . , m.

For x ∈ ∂D define

ea(x) = lim
y→x; y∈D

ea(y), ebj(x) = lim
y→x;y∈D

ebj(y), j = 1, . . . , m.

if these limits exist. Otherwise, define ea(x) = 0, respectively ebj(x) = 0 for x ∈ ∂D.



Finally, define the “modified” derivative of a function h : Rd → Rd by

∂xlh(x) =
∂

∂xl
h(x), x ∈ D ∪ E, l = 1, . . . , d,

and for x ∈ ∂D define

∂xlh(x) = lim
y→x; y∈D

∂xlh(x).

if this limit exists — otherwise set ∂xlh(x) = 0 for x ∈ ∂D.

A modified Itô-Taylor scheme is the corresponding Itô-Taylor scheme for the SDE
with modified coefficients

dXt = ea(Xt) dt +
mX

j=1

ebj(Xt)dW j
t ,

with differential operators eL0, eL1, . . ., eLm using the above modified derivatives.

Note that this method is well defined as long as the coefficients of the equation are
(2γ − 1)-times differentiable on D and the auxiliary functions are (2γ − 1)-times
differentiable on E.



• Theorem 1 adapts to modified Itô-Taylor schemes for SDEs on domains in Rd

A. Jentzen, P.E. Kloeden and A. Neuenkirch, Convergence of numerical approxima-
tions of SDE under nonstandard assumptions, Numerische Mathematik (to appear)

Theorem 2 Assume that

a, b1, . . . , bm ∈ C2γ+1(D; R
d)

\
C2γ−1(E; R

d),

and let Y mod,γ
n be the modified Itô-Taylor scheme for γ = 1

2
, 1, 3

2
, . . ..

Then for all ǫ > 0 there exists a finite, non-negative random variable Kf,g
γ,ǫ such that

sup
i=0,...,n

˛̨
˛Xtn (ω) − Y mod,γ

n (ω)
˛̨
˛ ≤ Kf,g

γ,ǫ (ω) · ∆γ−ǫ

for almost all ω ∈ Ω and all n = 1, . . ., NT .

Remark: The auxiliary functions can be chosen to be zero.



Wright-Fisher type diffusions

dXt = [κ1(1 − Xt) − κ2Xt] dt +
p

Xt(1 − Xt) dWt

If min{κ1, κ2} ≥ 1
2

and X0 ∈ (0, 1), then

P(X(t) ∈ (0, 1) for all t ≥ 0) = 1

• However, standard Itô-Taylor schemes may leave [0, 1], so we use a modified scheme:

(1) choose new coefficients outside [0, 1], e.g.

auxiliary drift: f(x) = κ1(1 − x) − κ2x, x /∈ [0, 1]

auxiliary diffusion: g(x) = 0, x /∈ [0, 1]

(2) define the coefficients of the Itô-Taylor scheme “appropriately” for x ∈ {0, 1}

• the modified Itô-Taylor scheme of order γ converges pathwise with order γ − ǫ



Numerical Example III

κ1 = 0.5, κ2 = 1, X0 = 0.1, T = 1
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Numerical Example III (cont’d)

κ1 = 0.5, κ2 = 1, X0 = 0.1, T = 1
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Random ordinary differential equations (RODEs)

Let ζt be an m-dimensional stochastic process

Let f : R
m × R

d → R
d be smooth

A random ordinary differential equation on R
d

dx

dt
= f(ζt, x)

is pathwise an ordinary differential equation (ODE) on R
d

dx

dt
= Fω(t, x) := f(ζt(ω), x), ω ∈ Ω.

The mapping t 7→ Fω(t, x) is usually only continuous but not differentiable — no
matter how smooth the function f – since the paths of the stochastic process ζ are
often at most Hölder continuous

Example:
dx

dt
= −x + sin Wt(ω)



Why are RODEs interesting?

• RODEs occur in many applications

• RODEs may be more realistic than SDE with their idealized noise

i.e. noise in physical systems usual has a wide band spectrum, i.e. a ∆-correlated

stationary Gaussian process ζ
(∆)
t with a white noise limit as ∆ → 0

RODE
dx

dt
= a(x)+b(x) ζ

(∆)
t =⇒ Stratonovich SDE dXt = a(Xt)+b(Xt)◦dWt

e.g Wong & Zakai (1965), Godin & Molchanov (2007)

• RODEs with a Wiener process can be rewritten as stochastic differential equations

dx

dt
= −x + sin Wt(ω) ⇔ d

„
Xt

Yt

«
=

„
−Xt + sin Yt

0

«
dt +

„
0
1

«
dWt



• stochastic differential equations can be rewritten as RODEs

dXt = f(Xt) dt + dWt ⇔
dz

dt
= f(z + Ot) + Ot

where Ot is the stochastic stationary Ornstein-Uhlenbeck process satisfying the linear
SDE

dOt = −Ot dt + dWt and z(t) = Xt − Ot

To see this, note that by continuity and the fundamental theorem of calculus

z(t) = Xt − Ot = X0 − O0 +

Z t

0
[f(Xs) + Os] ds

= z(0) +

Z t

0
[f(z(s) + Os) + Os] ds

is pathwise differentiable

Doss, Sussmann (1970s), Imkeller, Lederer, Schmalfuß (2000s)



We can use deterministic calculus pathwise for RODEs

dXt = f(Xt) dt + dWt ⇔
dz

dt
= f(z + Ot) + Ot

• Suppose that f satisfies a one-sided dissipative Lipschitz condition (L > 0)

〈x − y, f(x) − f(y)〉 ≤ −L|x − y|2, ∀x, y

Then for any two solutions z1(t) and z2(t) of the RODE

d

dt
|z1(t) − z2(t)|2 = 2

fi
z1(t) − z2(t),

dz1

dt
−

dz2

dt

fl

= 2 〈z1(t) − z2(t), f(z1(t) + Ot) − f(z2(t) + Ot)〉

≤ −2L |z1(t) − z2(t)|2

=⇒ |z1(t) − z2(t)|2 ≤ e−2Lt|z1(0) − z2(0)|2 → 0 as t → ∞ (pathwise)

Hence there exists a pathwise asymptotically stable stochastic stationary solution



Numerical schemes for RODEs

• we can solve RODEs pathwise as ODEs with Runge-Kutta schemes

• BUT these not attain their traditional order since the vector field Fω(t, x) is not
smooth enough in t

The Euler scheme attains order θ − ǫ when applied to the RODE

dx

dt
= −x + ζt(ω) =⇒ Yn+1(ω) = (1 − ∆n) Yn(ω) + ζtn (ω)∆n

However, one can do better by using the pathwise averaged Euler scheme

Yn+1(ω) = (1 − ∆n) Yn(ω) +

Z tn+1

tn

ζt(ω) dt

which was proposed in

L. Grüne and P. E. Kloeden, Pathwise approximation of random ordinary differential
equations, BIT, 12 (2001), 6-81



The averaged Euler scheme attains pathwise order 1 − ǫ provided the integral is ap-
proximated with Riemann sums

Z tn+1

tn

ζt(ω) dt ≈

J∆nX

j=1

ζtn+jδ(ω) δ

with step size δθ ≈ ∆n and δ · J∆n
= ∆n

For a general RODE this suggests averaging the whole vectorfield.

Less expensive computationally is to use the average of the noise

In(ω) :=
1

∆n

Z tn+1

tn

ζs(ω) ds.

in the vectorfield, e.g., as in the the explicit averaged Euler scheme

Yn+1 = Yn + f (In, Yn) ∆n. order min{1, 2θ}



• B-stable schemes include the implicit averaged Euler scheme

Yn+1 = Yn + f (In, Yn+1) ∆n order min{1, 2θ}

and the implicit averaged midpoint scheme

Yn+1 = Yn + f

„
In,

1

2
(Yn + Yn+1)

«
∆n. order 2θ

A. Jentzen and P.E. Kloeden, Stable time integration of spatially discretized random
and stochastic PDEs, IMA J. Numer. Anal. (submitted).

• A systematic derivation of higher order numerical schemes for RODEs involving
multiple integrals of the noise are given in
A. Jentzen and P.E. Kloeden, Pathwise convergent higher order numerical schemes
for random ordinary differential equations, Proc. Roy. Soc. London A 463 (2007),
2929–2944.
A. Jentzen and P.E. Kloeden, Pathwise Taylor schemes for random ordinary differ-
ential equations, BIT (submitted)
A. Jentzen, A. Neuenkirch and A. Rößler, Runge-Kutta type schemes for random
ordinary differential equations, LMS J. Comp. Math. (submitted)



Stochastic and random partial differential equations

Consider a bounded spatial domain D in R
d and a Dirichlet boundary condition

• RPDE
∂u

∂t
= ∆u + f(ζt, u) with noise ζt.

• SPDE dU = ∆U + f(U) + g(U) dW

where W is an infinite dimensional Wiener process

• in both time and spatial variables (Brownian sheet)

or

• of the form W (t, x) =
∞X

j=1

cjW j
t φj(x) with mutually independent scalar Wiener

processes W j
t and the φj a basis system in e.g. L2(D) form by the Laplace operator

on D with Dirichlet boundary condition.

• In simple cases, e.g. additive noise, we can transform an SPDE to an RPDE

(Doss–Sussmann)



Numerical methods

All of the difficulties encountered for deterministic PDE plus more due to the noise
e.g. nature, approximation and simulation of the noise

low order due to the roughness of the noise if only simple increments are used

• A.M. Davie and J.G. Gaines, Convergence of numerical schemes for the solution of
parabolic stochastic partial differential equations, Math. Computat. 70 (2000), no.
233, 123–134.
• T. Müller-Gronbach and K. Ritter, Lower bounds and nonuniform time discretiza-
tion for approximation of stochastic heat equations. Found. Computat. Math., 7
(2007), no. 2, 135–181.

A higher order is possible if multiple integrals of the noise are used

• W. Grecksch and P.E. Kloeden, Time–discretized Galerkin approximations of
parabolic stochastic PDEs, Bulletin Austral. Math. Soc. 54 (1996), 79–84.
• E. Hausenblas, Numerical analysis of semilinear stochastic evolution equations in
Banach spaces. J. Computat. Appl. Math. 147 (2002), 485–516.
• E. Hausenblas, Approximation of semilinear stochastic evolution equations. Po-
tential Anal. 18 (2003), 141–186.

Also: Gyöngy, Krylov, Millet, Nualart, Rosovskii, Sanz-Sole, etc
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Method of lines for the random PDE with a scalar noise Wiener process

∂u

∂t
=

∂2u

∂x2
− u − (u + Wt)

3

on the interval 0 ≤ x ≤ 1 with Dirichlet boundary condition


