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A sample of problems

The Restricted Three-Body Problem: Trojans and Greeks,
outer comets, asteroids, satellites
Hamiltonian in synodic coordinates (rotating coordinates)

H =
1

2
(p2

x+p2
y)+ypx−xpy−

1 − µ

r1
− µ

r2
, on level H =−0.5(C−µ(1−µ)),

r1 = ((x−µ)2+y2)1/2, r2 = ((x−µ+1)2+y2)1/2, µ = mJ/(mS+mJ).
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Questions

1) On a given level of energy: when the orbit of an asteroid, an outer comet,
a satellite, is bounded? (no escape, no collision). Up to which e?

2) Triangular points L4, L5, close to Trojan and Greek asteroids. Linearly
stable for µ ∈ [0, µ1], where

µs = ωshort/ωlong = s, s ∈ N.

ωshort, ωlong = frequencies at L4,5:
[
(1 ± (1 − 27µ(1 − µ))1/2)/2

]1/2
.

Nonlinear stability for µ ∈ [0, µ1]\{µ2, µ3}. Practical stability in 3D.

Up to which distance do we have some kind of stability?
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The Sitnikov problem
Classical and popular problem. Relevant as first example of oscillatory
motion (Chazy, Sitnikov, Alekseev, McGehee, Moser)

z̈ = − z

(z2 + r(t)2/4)3/2
, r(t) = 1 − e cos(E), t = E − e sin(E).

Suitable Poincaré map: passages through z = 0 : (|v|k, tk) → (|v|k+1, tk+1)
(in polar coordinates), where v = dz/dt.
For e = 0, integrable, bounded motion iff |v| < 2.



Global aspects
Up to which distance it is possible to find rotational invariant curves
(i.c.)?
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Right: Idem but plotting |ż|/(1 − e)1/4 +
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e vs e.

Infinitely many jumps. In left plot we mark places where i.c. confining
islands of period 1, 2, . . . , 7 breakdown. Next plots show illustrations for
some periods.
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Bifurcations: the Hopf-saddle-node conservative unfolding
At a HSN bifurcation eigenvalues are 0,±i . Normal Forms, formally
rotationally invariant can be computed, and unfolded generically.
The volume preserving case helps to understand other cases.

HET

Left: behaviour of the NF to any order, conservative case. The 1D
and 2D Wu,s of south and north poles do not split. The system is
integrable. Right: A meridian section for parameter values giving rise to
heteroclinic connections in the general case. In the conservative one
the domain between separatrices is foliated by i.c.



Michelson system
A simple model, representative enough, is Michelson system, appearing
also as travelling waves in the Kuramoto-Shivasinski PDE.

x′′′ = −1 + ax′ + x2, a > 0.

It is convenient to use as parameter ε = (−a)−3. The NF to any order
has connecting 2D and 1D invariant manifolds of (±1, 0, 0). Real sys-
tem has splittings exponentially small in ε (see Dumortier-Ibañez-
Kokubu-S, in preparation). Plot: measure of confined domain vs ε.
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Fluid mechanics: the Rayleigh-Bénard problem
Describes the convection forced by difference of temperature between
bottom and top. We consider a cube with conducting lateral walls.

Pr−1
(
∂V

∂t
+ Ra1/2(V · ∇)V

)
−∇2V − Ra1/2θ ez + ∇ p = 0 ,

∂θ

∂t
+ Ra1/2(V · ∇)θ −∇2θ − Ra1/2w = 0 , ∇ · V = 0 ,

subject to boundary conditions V = θ = 0 at |x| = |y| = |z| = 1/2 .
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On the left a sketch of the bifurcation diagram of steady state solutions up
to 3 unstable directions is shown.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  20  40  60  80  100  120

We are interested in dynamics of particles inside the cube. On the right:
Example for B2 branch, where the horizontal coordinate displays a number
of solution along the branch. The vertical coordinate shows the fraction of
volume bounded by invariant tori.
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A paradigmatic example: the Hénon map
Any quadratic area preserving map can be reduced to

(
x
y

)
→

(
x̄
ȳ

)
=

(
c(1 − x2) + 2x + y

−x

)
x, y, c ∈ R.

With this normalisation fixed points at H= (−1, 1) and E= (1,−1),
elliptic if c ∈ [0, 2]: Tr(E) = 2 − 2c. A Normal Form analysis proves
non linear stability if c ∈ (0, 2) \ {1.5}.

It appears typically in generic non-hyperbolic area preserving
maps, e.g., in Poincaré sections of Hamiltonian systems with
two degrees of freedom in many parts of the phase space.

Despite its trivial character still many of its properties are not know
in detail mainly concerning global aspects.

It serves as paradigm for many phenomena. See S-Vieiro, Resonant zones,
inner and outer splittings in generic and low order resonances of APM,
preprint, and Global study of area preserving maps, in preparation.



Typical phase portrait and non-escaping points
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Left: Phase portrait for c = 0.75. Outside that domain, points escape
to infinity, close to Wu

H . Right: number of non-escaping points on a
grid 10−3 × 10−3. Computations done by a combination of methods. Ob-
serve the self-similar character and the jump discontinuities. Also
the non-escaping points before and after the destruction of rota-
tional i.c. confining islands of periods 5,4,3.
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Analytic tools

KAM theory: conditions for applicability

Twist map: T : (r, θ) )→ (r, θ + α(r)), dα/dr *= 0 on a ≤ r ≤ b, θ ∈
S1. Then

Theorem (KAM). Consider an APM perturbed twist map
Tε : (r, θ) )→ (r + εf1(r, θ, ε), θ + α(r) + εf2(r, θ, ε). If

- dα/dr *= 0 for T , frequency changes with amplitude,

- The rotation number ρ of an invariant curve of T satisfies a Dio-
phantine Condition DC, |qρ−p|>c|q|−τ, for some c>0, τ≥1,

- The perturbation ||εf || is sufficiently small,

then Tε has a nearby i.c. with the given ρ.

The three conditions are not independent: the larger |dα/dr| and the
DC, the larger the admissible perturbation can be.

“Best” ρ: Noble numbers.

Generalises to maps in a product of annuli.



The splitting of separatrices

First upper bounds

Averaging theorem (Neishtadt). Given z′ = εf (z, t, ε) with g analytic
w.r.t. z ∈ K, compact in Cm, 2π-periodic in t, bounded in ε, there
exists a change z = h(w, t, ε), such that w′ = εg(w, ε) + r(w, t, ε) with
||r|| < exp(−d/ε), d > 0.

Extends (S) to the case of f quasi-periodic in t with s frequencies satisfying
a DC (k, ω) ≥ c|k|−τ , ∀k ∈ Zs \ {0}. Then ||r|| < exp(−d/ε1/(τ+1)).



Sharp upper bounds

Let

- H(q, p) a 1 dof (analytic) Hamiltonian with an homoclinic orbit γ(t)
to an hyperbolic point H ,

- σ the smallest absolute value of the imaginary part of the singu-
larities of γ,

- Tε an analytic APM: Tε = ϕHε + O(ε2),

- h = ln(λ(ε)), being λ(ε) the dominant eigenvalue of Tε at the hyperbolic
point Hε.

Theorem (Fontich-S). ∀δ > 0 exists N (δ) s.t. the size of the splitting
< N (δ) exp(−(2πσ − δ)/h).

Generically the asymptotic size of the splitting is of the forms

Ahrexp(−2πσ/h)(1+o(1)), Ahrexp(−2πσ/h)




∑

i

cos(gi/h+ξi)+o(1)





as ε→ 0. (See Lazutkin, Gelfreich, Gelfreich-S).



Inner and outer splitting
at a resonance

T twist map, rm/n such that
α(rm/n) = m/n (resonant circle).
Sketch of a resonance for an APM.
Generically separatrices split near
p (outer splitting) and near q
(inner splitting).

!I"
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!I$
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q
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#q

Resonant NF: z )→ R2πm
n
(e2πiγ(|z|)z + cz̄n−1 + R̂n(z, z̄))

γ(|z|) = δ + b1|z|2 + b2|z|4 + . . . , bj Birkhoff coefficients.

Theorem (S-Vieiro). Assume b1, b2 *= 0. Then, inner and outer splittings
for the m/n resonance have, generically, different σ parameters. For
δ small they depend mainly on b1, b2.

In a general Tε, b1, b2 are replaced by dα/dr|rm/n
, d2α/dr2|rm/n

.

Hence these splittings are of quite different order of magnitude for
δ or ε small.



Key models and return maps
Return maps are essential to understand global phenomena. Consider
the behaviour near a broken separatrix, either single loop or figure 8.
A model can be derived by considering passage close to the saddle
and gluing maps.

W s(H1)

W u(H1)

H1

A general separatrix map and relevant universal properties has been
studied in S-Treschev. As a simple (and typical) case we have the Chirikov
separatrix map, which scaling actions by the size of the splitting and
identifying lower and upper parts reads



SPM

(
x
y

)
=

(
x̄
ȳ

)
=

(
x + a + b log(|ȳ|)

y + sin(2πx)

)
.

For b large SPM looks quite chaotic near y = 0. It seems that inside
the lobes the dynamics is fully chaotic, but it has been proved that
the fraction of ε (in log scale) for which there are stable islands inside the
lobe, tends to a positive constant if ε→ 0 (Broer-S-Tatjer, S-Treschev
and S-Vieiro).

Theorem: The SPM has only invariant rotational curves (i.e.,
graphs of y = g(x)) if b

y0
< εG, where εG ≈ 0.9716/(2π), the so-called

Greene’s critical value.

Thanks to contributions of Chirikov, Greene, Mather, MacKay, Rana-de la
Llave, Olvera-S, based on analysis of the standard map SM.

For some cases, like the transition for c ∈ [1.014, 1.015] in the Hénon map
there are chains of islands, the first and last ones very narrow and
become larger in the central part. The SPM is not a good model for this.



Not only one but two separatrices play a relevant role in the creation of
these islands. A similar thing occurs in the Birkhoff zones. The simplest
model is the biseparatrix map, which for 0 < y < d is given by

BSPM

(
x
y

)
=

(
x̄
ȳ

)
=

(
x + a + b1 log(ȳ) − b2 log(d − ȳ)

y + sin(2πx)

)
.

where d, b1, b2 > 0 and x mod 1. A suitable scheme is shown.

W s(H2)

W u(H2)

H2

W s(H1)

W u(H1)

H1

Theorem (S.-Vieiro): The condition to exist rotational invariant

curves for the BSPM can be written as
b1

y0
+

b2

d − y0
< εG. In particular,

there are no such i.c. if (
√

b1 +
√

b2)
2/d > εG.
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Computational tools

Long time integrations: Taylor methods

Consider an IVP f analytic in a nbd of (t0, x0) ∈ Ω ⊂ R × Rn

ẋ = f (t, x), x(t0) = x0.

We want to produce in an easy way the Taylor expansion x(t0 + h)
to high order for suitable h and use it as a one-step method. Easy to im-
plement, accurate and fast using automatic differentiation methods
and truncation errors τ largely below roundoff

Theorem. For a very large class of analytic, non-stiff, ODE the Taylor
method has the following properties:
- Asymptotically, for small enough τ , the optimal step size (concern-
ing efficiency) is almost independent of the number of digits and equal to
ρ(t)/ exp(2), where ρ(t) is the local radius of convergence.
- The optimal order is approximately linear in the number of digits.
- For a given equation and fixed t0, tf , the global computational cost,

is O(D4), where D is the number of digits.



Example of energy change in Sun-Jupiter-asteroid model. Asteroid in a
large domain around L4. Of a total of 175 test particles 43% subsisted for
109 Jupiter revolutions (≈ twice the age of Solar System). The two
worst cases are displayed. Initial energy is of the order of units.
System S-J-S-U-N for 4.5 Gyr: ∆H/H < 10−11. CPU time:3 days.
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Assuming iid random roundoff errors the effect is O(t1/2) in first
integrals and, for integrable systems, is O(t3/2) in angles.



Dynamics indicators: Lyapunov exponents

Given x0, v0, |v0| = 1, S0 = 0 compute

xk+1 = T (xk), wk+1 = DT (xk)(vk),

vk+1 = wk+1/|wk+1|, Sk+1 = Sk + log |wk+1|.

Then the limit slope of Sk as function of k gives Λmax

Comments:

- Use smoothing, fitting, extrapolation, self consistency to com-
pute Λmax.

- Stop at right place xN close to x0 to improve estimates.

- Use alternative estimators (e.g. MEGNO) for near-integrable.

- Possible determination of all exponents

See Broer-S, Cincotta-S, Cincotta-Giordano-S, Ledrappier-Shub-S-Wilkinson.



Dynamics indicators: frequency analysis

Given samples {f (jT/N )}N−1
j=0 of f (t) on [0, T ], determine a trigonometric

polynomial,

Qf(t) = Ac
0 +

Nf∑

l=1

(
Ac

l cos(2πνlt/T) + As
l sin(2πνlt/T)

)

whose frequencies, {νl}
Nf
l=1, and amplitudes, {Ac

l}
Nf
l=0, {A

s
l }

Nf
l=1, are a

good approximation of the corresponding ones of f (t). Nf , to be deter-
mined by the procedure (in terms of some input parameters). Like Nf as
small as possible, keeping high accuracy in the computed νl, A

c,s
l .

Key ideas of the procedure: a decreasing set of thresholds and a convergent
Newton method to compute νl, A

c,s
l .

Theorem (Gómez-Mondelo-S). If f is analytic, quasi-periodic with Dio-
phantine frequencies, there exist explicit formulas for the errors in
νl, A

c,s
l , depending on

Cauchy estimates for f , Diophantine constants, T and N .



Computing qp invariant curves

Working with a Fourier representation

Assume x(t) =
∑

k∈K ck exp(ki t), t ∈ S1 is a representation of the curve
for some set of indices K. Then

a) Look for invariance: Take a grid {x(2πj/N )}, compute images
{T (x(2πj/N ))}, analyse them and impose to have same ck, or

b) Look for conjugation: Search a transformation C which conjugates T
to a rotation.

In both cases use a normalisation, because of the arbitrariness of the origin.

Working in phase space

Select a line L transversal to the curve and an initial p on it. Compute
iterates and take some which return close to p. Interpolate them to find a
point q in L. Impose q = p and solve w.r.t. p.



Curve fitting

Question: Given a point p, is it on an invariant curve for T ?

1) Compute iterates of p and keep the ones close to p.

2) Fit a curve to the iterates in some local coordinates. Use orthogonal
polynomials with respect to the set of abscissae.

3) Find residuals: size and distribution as a function of number of iterate.

4) Use some test of acceptance based on standard deviation.

An example: the outer cometary problem

Consider the planar circular RTBP with primaries Sun-Jupiter, lo-
cated at (µ, 0), (µ−1, 0) in synodic (rotating) coordinates. µ ≈ 1/1047.3486.

Question: Given a value of the Jacobi constant C and considering
motions external to Jupiter’s orbit where is the “last” invariant
curve which prevents from escape?

How it is evolving with C?

What about dependence in µ?
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Some details on the Hénon map

A general overview
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Near-integrable case

Consider first c small. The map can be approximated by a flow.

Let d =
√

c/
√

2. The changes
(

x
y

)
=

1√
2

(
q + p
q − p

)
,

(
p
q

)
=

(
u
dv

)

allow us to write the close to the identity map
(

u
v

)
−→

(
u + 2dv + O(d2)

v + d(1 − 1
2u

2) + O(d2).

)

This map is O(d2)-close to the time d flow of Hamiltonian K(u, v) = v2 −
u+1

6u
3. The level K = 2

3

√
2 containing the hyperbolic point u = −

√
2, v =

0 corresponds to a separatrix, enclosing the elliptic point u =
√

2, v = 0.
The splitting for the manifolds of the map is exponentially small in
d.

Also invariant curves of the map exist at an exponentially small
distance of the manifolds.



A low-order resonance

As an example consider the parameter c = 1.015, just after the destruc-
tion of the i.c. confining islands of period 4. One can see a
domain without subsisting points close to the invariant mani-
folds of the period 4 orbit, see upper plot in next page. It looks as if the
manifolds coincide, at this resolution.

A computation of the splitting angle in the outer and inner ho-
moclinic connections gives the values so ≈ −0.951063 × 10−2, si ≈
0.294215 × 10−58.
From this one can derive a composed separatrix map and predict
the distance from the manifolds at which stable islands and invariant
curves appear in the domain bounded by the initial pieces of the manifolds.
These values agree with the results obtained by direct simulation, but
one should be careful about how this depends on the place where
we look. See lower plots.
For the outer islands and the existence or not of i.c. one requires
the use of the BSPM . Locally, in what concerns nearby islands, one can
approximate again by the SPM .
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Open problems and conclusions

• Tools for higher dimensions

• The role of Cantor sets

• Escape and diffusion rates

• Conclusions


