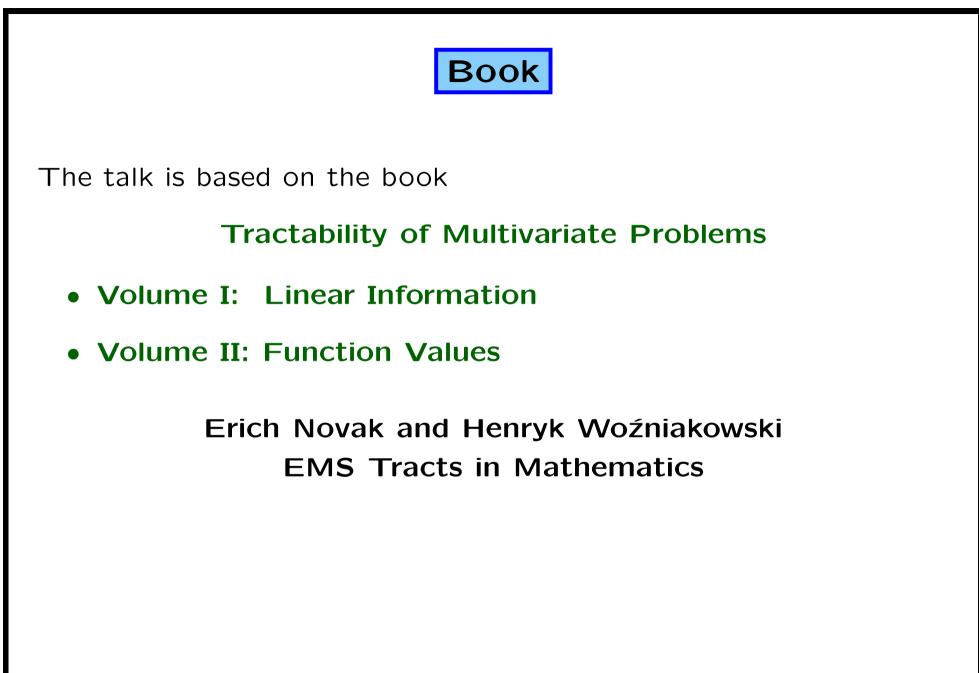


## of Multivariate Problems

Henryk Woźniakowski

Columbia University and University of Warsaw



### A little tractability history

We are in early 1990.... Finance CMO Problem

$$I_d(f) = \int_{[0,1]^d} f(t) \,\mathrm{d}t$$

Then d = 360 by Spaskov. Today d = 9125 by Kuo and Waterhouse.

$$I_d(f) \approx \text{QMC}_n(f) = \frac{1}{n} \sum_{j=1}^n f(t_j)$$

 $t_1, t_2, \ldots, t_n$  chosen as

Faure, Niederreiter, Sobol, Tezuka,... points

FoCM, Hong Kong 2008

### **Empirical Results**

Many reports that even for relatively small n,  $n \approx 1000$ ,

$$I_d(f) - \text{QMC}_n(f) \approx \frac{1}{n}$$

Usually similar results for  $QMC_n$  as for  $MC_{n^2}$ 

#### Why?

# Challenge to Theory

Roth [54,80], Frolov [80]: for  $f \in H(K_d)$  with

$$K_d(x,y) = \prod_{j=1}^d (1 + \min(x_j, y_j))$$

we have

$$I_d(f) - \mathrm{QMC}_n(f) = \mathcal{O}\left(\frac{\ln^{(d-1)/2} n}{n} \|f\|_{H(K_d)}\right)$$

Ok for small d. But for d = 360

$$\frac{\ln^{(d-1)/2} n}{n}$$
 is increasing for  $n \le e^{(d-1)/2}$   
 $d = 360$  implies  $e^{(d-1)/2} \approx 9 \cdot 10^{77}$ 

# Challenge to Theory

$$I_d(f) \approx A_{n,d}(f) = \sum_{j=1}^n a_j f(t_j)$$

$$e(n,d) = \inf_{A_{n,d}} \sup_{\|f\|_{H(K_d)} \le 1} |I_d(f) - A_{n,d}(f)|$$

#### **Information Complexity**

$$n(\varepsilon, d) = \min \{ n : e(n, d) \le \varepsilon \| I_d \| \}$$

**Basic questions:** 

- How does  $n(\varepsilon, d)$  depend on  $\varepsilon^{-1}$  and d?
- Do we have the curse of dimensionality, i.e., an exponential dependence on *d*?

### **Curse of Dimensionality**

$$n(\varepsilon, d) = \Theta\left(\varepsilon^{-1} \ln^{(d-1)/2} \varepsilon^{-1}\right) \text{ as } \varepsilon \to 0$$
$$n(\varepsilon, d) \leq \left[\frac{9 - 4\sqrt{2}}{3} \frac{1}{\varepsilon^2}\right] = [1.1143...]^d \varepsilon^{-2}$$
$$n(\varepsilon, d) \geq [1.0202]^d (1 - \varepsilon^2)$$

#### For QMC algorithms

$$n(\varepsilon, d) \leq [1.125]^{d} \varepsilon^{-2}$$
  
 $n(\varepsilon, d) \geq [1.055]^{d} (1 - \varepsilon^{2}) \qquad [1.055]^{360} \geq 2 \cdot 10^{8}$ 

1. Roth[54,80], Frolov[80], Chen[85] 2. Plaskota, Wasilkowski, Zhao[08]

3. Novak+W[01] 4. known 5. Sloan +W[98]

#### What's going on?

These results do not explain why QMC are so efficient

Analogy to Linear Systems: Ax = b with an  $n \times n$  matrix A

Large n often implies A sparse

For Multivariate Problems:

Large d often implies f has additional properties



Standard spaces of functions are isotropic

That is,

all variables and groups of variables are equally important

In particular, let  $g(t) = f(t_{j_1}, t_{j_2}, \dots, t_{j_d})$  – permutation of variables

 $f \in F_d$  implies that  $g \in F_d$  and  $\|g\|_{F_d} = \|f\|_{F_d}$ 

Question:

It is really true for large d and practical f ?

## Weighted Spaces

For  $f \in H(K_d)$ 

$$\|f\|_{H(K_d)}^2 = \sum_{\mathfrak{u}\subseteq [d]} \int_{[0,1]^{|\mathfrak{u}|}} \left(\frac{\partial^{|\mathfrak{u}|}}{\partial x_{\mathfrak{u}}} f(x_{\mathfrak{u}},1)\right)^2 \, \mathrm{d}x_{\mathfrak{u}} \qquad [d] := \{1,2,\ldots,d\}$$

Let  $\gamma = \{\gamma_{d,\mathfrak{u}}\}$  with  $\gamma_{d,\mathfrak{u}} \ge 0$ 

$$K_{d,\gamma}(x,y) = \sum_{\mathfrak{u}\subseteq [d]} \gamma_{d,\mathfrak{u}} \prod_{j\in\mathfrak{u}} \min(x_j,y_j)$$

For any  $\gamma$ ,

$$\|f\|_{H(K_{d,\gamma})}^2 = \sum_{\mathfrak{u}\subseteq[d]} \frac{1}{\gamma_{d,\mathfrak{u}}} \int_{[0,1]^{|\mathfrak{u}|}} \left(\frac{\partial^{|\mathfrak{u}|}}{\partial x_{\mathfrak{u}}} f(x_{\mathfrak{u}},1)\right)^2 \, \mathrm{d}x_{\mathfrak{u}} \quad \frac{0}{0} = 0$$

For  $\gamma_{d,\mathfrak{u}} = 1$   $K_{d,\gamma} = K_d$ , as before.

## Weighted Spaces

$$f = \sum_{\mathfrak{u} \subseteq [d]} f_{\mathfrak{u}}$$

 $f_{\mathfrak{u}}$  orthogonal,  $f_{\mathfrak{u}} \in H(K_{\mathfrak{u}})$  with  $K_{\mathfrak{u}}(x,y) = \prod_{j \in \mathfrak{u}} \min(x_j, y_j)$ Anova-type decomposition, Kuo, Sloan, Wasilkowski+W [08]

$$||f||_{H(K_{d,\gamma})}^{2} = \sum_{\mathfrak{u}\subseteq[d]} \frac{1}{\gamma_{d,\mathfrak{u}}} ||f_{\mathfrak{u}}||_{H(K_{\mathfrak{u}})}^{2} \qquad \frac{0}{0} = 0$$

 $f_{\mathfrak{u}}$  depends only on variables in  $\mathfrak{u}$ 

We can model various properties of f for various weights

### Various Weights

• Product weights: Sloan+W [98],  $\gamma_{d,\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_{d,j}$ . Then

$$H(K_{d,\gamma}) = H(K_{1,\gamma_{d,1}}) \otimes \cdots \otimes H(K_{1,\gamma_{d,d}})$$

and  $\gamma_{d,j}$  moderates the influence of  $x_j$ 

• Finite-order weights: Dick, Sloan, Wang + W [2003],

 $\gamma_{d,\mathfrak{u}}=0$  for all  $|\mathfrak{u}|>\omega$ . Then

$$f = \sum_{\mathfrak{u} \subseteq [d], |\mathfrak{u}| \le \omega} f_u$$

is a sum of functions depending on at most  $\omega$  variables.

# Tractability

#### **Information Complexity**

 $n(\varepsilon, d) = \min \{ n : e(n, d) \le \varepsilon \|I_d\| \}$ 

 $I = \{I_d\}$  is polynomially tractable iff

 $n(\varepsilon, d) \leq C d^q \varepsilon^{-p}$  for all  $\varepsilon \in (0, 1)$  d = 1, 2, ...

If q = 0 then  $I = \{I_d\}$  is strongly polynomially tractable

 $I = \{I_d\}$  is weakly tractable iff

$$\lim_{\varepsilon^{-1}+d\to\infty} \frac{\ln n(\varepsilon,d)}{\varepsilon^{-1}+d} = 0$$

Other notions of tractability, T-tractability, Gnewuch+W [07,...]

#### **Conditions on Weights**

For product weights:  $\gamma_{d,\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_{d,j}$ 

• Strong Pol. Tract. iff  $\limsup_d \sum_{j=1}^d \gamma_{d,j} < \infty$ 

• Pol. Tract. iff 
$$\limsup_d \frac{\sum_{j=1}^d \gamma_{d,j}}{\ln d} < \infty$$

• Weak Tract. iff 
$$\lim_d \frac{\sum_{j=1}^d \gamma_{d,j}}{d} = 0$$

For finite-order weights:  $\gamma_{d,\mathfrak{u}} = 0$  for all  $|\mathfrak{u}| > \omega$ 

$$n(\varepsilon,d) \leq \frac{\sum_{\mathfrak{u}} \gamma_{d,\mathfrak{u}} 2^{-|\mathfrak{u}|}}{\sum_{\mathfrak{u}} \gamma_{d,\mathfrak{u}} 3^{-|\mathfrak{u}|}} \frac{1}{\varepsilon^2} \leq \left(\frac{3}{2}\right)^{\omega} \frac{1}{\varepsilon^2}$$

For all such weights polynomial tractability holds. Proven by Sloan+W [98], Gnewuch +W [07], Sloan, Wang+W [04].

#### Semi-Constructive Proofs for FoW

Shifted Lattice Rules:  $QMC_{n,d}(f) = \frac{1}{n} \sum_{k=1}^{n} f\left(\left\{\frac{k-1}{n}\mathbf{z} + \mathbf{\Delta}\right\}\right)$ 

 $\mathbf{z} \in [n-1]^d$  by the CBC algorithm at cost  $\mathcal{O}(n d \ln n)$ , Cools and Nuyens[06], and  $\mathbf{\Delta} \in [0,1)^d$ 

Sloan, Wang +W [04]: For some  $\Delta$ , the error is  $\varepsilon$  with

$$n \leq C_a \varepsilon^{-2/a} d^{q^*(1-1/a)}$$
 for all  $a \in [1,2)$ 

- a = 1 best dependence on  $\varepsilon^{-1}$  + pol. tract.,
- a = 2 strong pol. tract.
- but z and  $\Delta$  depends on weights

### **Constructive Proofs for FoW**

Low Discrepancy Sequences:  $QMC_{n,d}(f) = \frac{1}{n} \sum_{k=1}^{n} f(t_k)$ 

Sloan, Wang+ W. [04]: The Niederreiter sequence in base b solves the problem with

$$n \leq C_{\delta} \varepsilon^{-(1+\delta)} \left( d^{q^*} \log(d+b) \right)^{1+\delta} \quad \forall \delta > 0$$

- best dependence on  $\varepsilon^{-1}$  + pol. tractability
- Niederreiter sequence does **not** depend on weights
- similar results for Halton and Sobol

# **General Case**

$$S_d$$
 :  $F_d \rightarrow G_d$ 

#### $F_d$ a class of *d*-variate functions

$$S_d(f) \approx A_{n,d}(f) = \phi(L_1(f), \dots, L_n(f))$$

 $L_j$  arb. linear functionals or function values

# **Errors in Different Settings**

#### WORST CASE:

$$e(n,d) = \inf_{A_n} \sup_{f \in F_d} \|S_d(f) - A_{n,d}(f)\|$$

#### AVERAGE CASE:

$$e(n,d) = \inf_{A_n} \int_{F_d} \|S_d(f) - A_{n,d}(f)\| \, \mu(\mathrm{d}f)$$

**RANDOMIZED:** 

$$e(n,d) = \inf_{A_n} \sup_{f \in F_d} \int_{\Omega} \|S_d(f) - A_{n,d,\omega}(f)\| \rho(\mathrm{d}\omega)$$

etc. . . .

# **Tractability**

**Information Complexity** 

$$n(\varepsilon, d) = \min\{n : e(n, d) \le \varepsilon \operatorname{CRI}_d\}$$

for the absolute error criterion  $CRI_d = 1$ 

for the normalized error criterion  $CRI_d = e(0, d) = ||S_d||$ 

#### **Polynomial Tractability**

 $n(\varepsilon, d) \leq C d^q \varepsilon^{-p}$  for all  $\varepsilon \in (0, 1), d \in \mathbb{N}$ 

Weak Tractability

$$\lim_{\varepsilon^{-1}+d\to\infty} \frac{\ln n(\varepsilon,d)}{\varepsilon^{-1}+d} = 0$$

### A Sample of the Results

Linear Unweighted Tensor Product Problems

$$S_d = S_1 \otimes \cdots \otimes S_1$$
 and  $S_1$  linear

$$F_d = F_1 \otimes \cdots \otimes F_1, \quad G_d = G_1 \otimes \cdots \otimes G_1$$

 $\{\lambda_j\}$  ordered eigenvalues of  $S_1^*S_1$ ,  $\lambda_2 > 0$ 

For Worst Case, Normalized Error Criterion, Arbitrary Linear Functionals

$$n(\varepsilon,d) = \left| \left\{ j = [j_1, j_2, \dots, j_d] : \frac{\lambda_{j_1}}{\lambda_1} \cdots \frac{\lambda_{j_d}}{\lambda_1} \right| > \varepsilon^2 \right\} \right|$$

- no polynomial tractability
- weak tractability iff  $\lambda_2 < \lambda_1$  and  $\lambda_n = o((\ln n)^{-2})$

#### Linear Weighted Tensor Product Problems

Let  $\lambda_1$  be of multiplicity  $p \geq 2$ . Then

 $n(\varepsilon,d) \ge p^d$  curse of dimensionality

For weighted spaces  $F_d = H(K_d)$  and  $\lambda_n = o((\ln n)^{-2})$ 

$$K_d(x,y) = \sum_{\mathfrak{u}} \gamma_{d,\mathfrak{u}} \prod_{j \in \mathfrak{u}} K_1(x_j, y_j) \qquad 1 \notin H(K_1)$$

$$m_p(\varepsilon, d) = \sum_{\mathfrak{u}: \gamma_{d,\mathfrak{u}} > \varepsilon^2} (p-1)^{|\mathfrak{u}|}$$

weak tractability iff 
$$\lim_{\varepsilon^{-1}+d\to\infty} \frac{\ln m_p(\varepsilon,d)}{\varepsilon^{-1}+d} = 0$$

### **Typical Results**

Let  $\sum_{j=1}^{\infty} \lambda_j^{\tau} < \infty$  for some  $\tau > 0$ .

- Unweighted problems  $\implies$  no polynomial tractability or even curse of dimensionality
- For product weights  $\gamma_{d,\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_{d,j}$

$$\begin{split} \limsup_{d \to \infty} \sum_{j=1}^{d} \frac{\gamma_{d,j}^{\tau}}{\ln d} < \infty & \implies \text{ polynomial tractability} \\ \lim_{d \to \infty} \sum_{j=1}^{d} \frac{\gamma_{d,j}^{\tau}}{d} = 0 & \implies \text{ weak tractability} \end{split}$$

• Finite-order weights  $\gamma_{d,\mathfrak{u}} = 0$  for  $|\mathfrak{u}| > \omega \implies$  polynomial tractability.

### **Major Tractability Questions**

For which spaces  $F_d$  and for which linear or non-linear multivariate problems do we have tractability?

Tractability is a popular research subject from 1994.
Many papers and results obtained so far by:
Dick, Fang, Gnewuch, Griebel, Heinrich, Hickernell, Hinrichs, Huang, Joe,
Kritzer, Kuo, Larcher, Leobacher, Li, Niederreiter, Novak, Papageorgiou,
Pillichshammer, Plaskota, Scheicher, Schmid, Sloan, Wang, Wasilkowski,
Werschulz, Wojtaszczyk, Waterhouse, W, Yue, Zhao, Zhang, ...

Still many open questions...

### One of Many Open Problems

Finance integrands do not belong to  $H(K_d)$  !!!. Usually we have

$$I_d(f) = \int_{[0,1]^d} |f(t)| \, \mathrm{d}t \qquad f \in H(K_d)$$

**Conjecture:** 

Some QMC are as good for f as for |f|

### **Tractability Number**

• If you solve k open problems from our book and publish m "good" papers on tractability then your number is

2k + m

• Let k = m = 0. Let p be the largest tractability number among people with whom you publish a "good" paper. Then your number is

 $\frac{p}{1+p}$ 

#### HA: Compute Your Tractability Number

Warning: HA may be intractable !!!

FoCM, Hong Kong 2008