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A good way to distribute points in a sphere?
An easier question: a bad way to distribute points in the sphere?

[Kuijlaars–Saff] [Bendito et al.] [The web]
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Points satisfying some “extremal” property
Look for N points x1, . . . , xN in the sphere S such that...

• the volume of the convex envelope of x1, . . . , xN is maximized.

• the separation distance

dsep(x1, . . . , xN) = min
i<j
‖xi − xj‖ is maximized,

Tammes Problem or “hard spheres problem”.

• the function

Eu(x1, . . . , xN) =
∑
i<j

‖xi − xj‖ is maximized,

a classical open problem in discrete geometry.
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Maximize volume of convex envelope (N = 30)
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Maximize the separation distance (N = 30)
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Maximize sum of ‖xi − xj‖ (N = 30)
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Ipomoea purpurea pollen, flu virus, dessert
March,october, february
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Points satisfying some “extremal” property
Look for N points x1, . . . , xN in the sphere S such that...

• the s–energy (some fixed s ≥ 0)∑
i<j

‖xi − xj‖−s is minimized,

a classical problem in physics for s = 1, that is Thomson’s
problem.

• the logarithmic energy (aka logarithmic potential)

E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖

is minimized.
A set of N points in S minimizing E (i.e. maximizing the
product of their mutual distances) is called a set of Elliptic
Fekete Points.
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Elliptic Fekete points
Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For X = (x1, . . . , xN) ∈ SN where xi ∈ S, 1 ≤ i ≤ N, ellipic Fekete
points minimize the logaritmic energy

E(X ) = E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖

Let Σ ⊆ SN be the set of points such that E = +∞. Let

mN = min{E(X ) : X ∈ SN}.

Smale’s 7th problem: can one find X ∈ SN such that

E(X )−mN ≤ c log N?

“Can one find” means...can one describe a polynomial time
algorithm (BSS model)?
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A beginner’s problems with Smale’s 7th problem.
Probably also fair to say “An expert’s problems...”

1 Problem 1: the value of mN is not known, even to O(N).

Theorem (Wagner,Rakhmanov–Saff–Zhou)

mN = −N2

4
ln

4

e
− N ln(N)

4
− RN ,

where

−0.112768770... ≤ lim inf
N→∞

RN,0 ≤ lim sup
N→∞

RN ≤ −0.0234973...
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A beginner’s problems with Smale’s 7th problem.
Probably also fair to say “An expert’s problems...”

2 Problem 2: We need to solve a global minimization problem,
not just a local minimization problem. Moreover, usual
minimization algorithms will likely fall into “traps”:
experiments find many local minima of E .
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Regular Polyhedra seem to be an answer for
N = 4, 6, 8, 12, 20. Are they really?

Wikipedia picture

13/76 C. Beltrán Points in the sphere



Regular Polyhedra seem to be an answer for
N = 4, 6, 8, 12, 20. Are they really?

Ashmolean Museum de Oxford. ≈ 2500 B.C.
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Regular Polyhedra seem to be an answer for
N = 4, 6, 8, 12, 20. Are they really?

Not all of them! Föppl, Fejes, Rutishauser.

For N = 5 solved by [Dragnev–Legg-Townsend]
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Euler’s characteristic
Dirichlet cells

The Dirichlet cell of xi is the set of points x ∈ S such that

‖x − xi‖ = min
1≤j≤N

‖x − xj‖.

What should they look like when x1, . . . , xN is a set of elliptic
Fekete points? Intuitively, pretty regular hexagons and pentagons.
Say P pentagons and H hexagons, each vertex having three edges
touching it.Then,

2 = χ(S) =
6H + 5P

3
+ H + P − 6H + 5P

2
=

P

6
.

Thus, such a tessalation must have P = 12 pentagons.
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The soccer ball and the buckminsterfullerene
20 hexagons and 12 pentagons. C60 discovered by Curl, Kroto, Smalley 1985
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The soccer ball and the buckminsterfullerene
Diego Forlan and Harry Kroto with their respective belowed objects
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Euler’s characteristic
For greater N other figures appear in the (numerical) minima. [Hardin–Saff]

(Minimization of s–Energy, s = 1, 4, N = 1600.)
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Euler’s characteristic
Approximation to 1000 elliptic Fekete points by Bendito, Carmona, Encinas, Gesto,

Gómez, Mouriño, Sánchez
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We do know some things
Separation distance

• Theorem (Toth, Habicht– van der Waerden)

For the Tammes problem (maximize separation distance)√
8π√
3N
− CN−2/3 ≤ dsep(XTammes) ≤

√
8π√
3N
≈ 3.8093√

N
.

• Theorem (Rakhmanov–Saff–Zhou,Dubickas,Dragnev)

For the elliptic Fekete points,

2√
N − 1

≤ dsep(XFekete) ≤ 3.8093√
N

.
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We do know some things
Baricenter [Bergersen-Boal-Palffy Muhoray], [Dragnev-Legg-Townsend]. True for any

critical point of E

Let x1, . . . , xN be a set of elliptic Fekete points.

• The baricenter of x1, . . . , xN is the center of the sphere.

• For each i , ∑
j 6=i

xi − xj
‖xi − xj‖2

=
N − 1

2
xi ,

and ∑
j 6=i

‖xi − xj‖2 = 2N.
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Back to the Problems about Smale’s 7th Problem
Minimum value vs. Expected value

• Recall we have said

mN = −N2

4
ln

4

e
− N ln(N)

4
+ O(N)

• Expectation if we choose x1, . . . , xN just randomly and
uniformly in S:

Euniform = −N2

4
ln

4

e
+

N

4
ln

4

e
.

Theorem (Armentano-B.-Shub)

Expectation for points comming from the zeros of random
polynomials (Bombieri–Weyl distribution):

EB−W = −N2

4
ln

4

e
− N ln(N)

4
+

N

4
ln

4

e
.
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Back to the Problems about Smale’s 7th Problem
Minimum value vs. Expected value
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Roots of a randomly chosen (B–W) polynomial
Just one try
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Roots of a random polynomial vs. random points
Maybe 4 or 5 tries
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Comparison of the end–game starting at...
Random eigenvalues, random zeros of B-W polynomials, uniform points in S

The distribution of the values of E at the end–points of the
gradient flow seem not to depend on the distribution of the initial
data.

Which is clearly imposible.

27/76 C. Beltrán Points in the sphere



Comparison of the end–game starting at...
Random eigenvalues, random zeros of B-W polynomials, uniform points in S

The distribution of the values of E at the end–points of the
gradient flow seem not to depend on the distribution of the initial
data.Which is clearly imposible.

27/76 C. Beltrán Points in the sphere



The logarithm function in the sphere
The graphic corresponds to the function x 7→ − log ‖x − (0, 0, 1)‖

Notational abuse: from now on, S is the Riemann sphere, that is
the sphere of diameter 1. Let

Fq : S \ {q} → R
p 7→ log ‖p − q‖−1
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The logarithm function in the sphere
Harmonic properties of the logaritmic energy

Notational abuse: from now on, S is the Riemann sphere, that is
the sphere of diameter 1. Let

Fq : S \ {q} → R
p 7→ log ‖p − q‖−1

The (Riemannian) Laplacian of this function is constant:

∆Fq(p) = 2 ∀ p ∈ S \ {q}.
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A brief survey on harmonic analysis on manifolds
Hessian, Laplacian

Let M be a Riemannian manifold and let f :M→ R. The
Hessian of f at p ∈M is a bilinear form

Hess(f )(p) : TpM× TpM → R
(v ,w) 7→ Hess(f )(p)(v ,w) = w t(hij(x))v ,

where

hij(x) =
∂2f

∂xi∂xj
−

n∑
k=1

∂f

∂xk
Γk
ij

and Γk
ij are the Christoffel symbols.
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A brief survey on harmonic analysis on manifolds
Hessian, Laplacian

Let M be a Riemannian manifold and let f :M→ R. The
Hessian of f at p ∈M is a bilinear form
such that

Hess(f )(p)(v , v) =
d2

dt2
|t=0 f (γp,v (t)) ,

where γp,v (t) is the geodesic in M such that

γp,v (0) = p, γ̇p,v (0) = v .

Thus, if you know geodesics then you can compute the Hessian
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A brief survey on harmonic analysis on manifolds
Hessian, Laplacian

Let M be a Riemannian manifold and let f :M→ R. The
Hessian of f at p ∈M is a bilinear form
such that

Hess(f )(p)(v , v) =
d2

dt2
|t=0 f (γp,v (t)) .

Then, the Laplacian of f at p is

∆f (p) =
k∑

i=1

Hess(f )(p)(vi , vi ),

where the vi are a orthonormal basis of TpM. Thus, if you know
geodesics then you can compute the Laplacian
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A brief survey on harmonic analysis on manifolds
Harmonic functions, functions with constant Laplacian

A function f :M→ R is harmonic if ∆f (p) = 0 for p ∈M.
A manifold M is harmonic if for every p ∈M and small enough
ε > 0 all the Riemannian spheres

S(x , ε) = {q ∈M : dR(p, q) = ε}

have constant mean curvature.

Theorem (Willmore)

If M is harmonic and f :M→ R is harmonic then the mean value
equality holds:

−
∫
S(x ,ε)

f = f (p), for small enough ε > 0.
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A brief survey on harmonic analysis on manifolds
Harmonic functions, functions with constant Laplacian

A function f :M→ R is harmonic if ∆f (p) = 0 for p ∈M.
A manifold M is harmonic if for every p ∈M and small enough
ε > 0 all the Riemannian spheres

S(x , ε) = {q ∈M : dR(p, q) = ε}

have constant mean curvature.
If M is harmonic and f :M→ R satisfies ∆f ≡ C then the mean
value equality holds:

−
∫
S(x ,ε)

f = f (p)+C

∫ ε

0

Vol(B(p, s))

Vol(S(p, s))
ds, Bp(s) the Riemannian ball.
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A brief survey on harmonic analysis on manifolds
Harmonic functions, functions with constant Laplacian

A function f :M→ R is harmonic if ∆f (p) = 0 for p ∈M.
A manifold M is harmonic if for every p ∈M and small enough
ε > 0 all the Riemannian spheres

S(x , ε) = {q ∈M : dR(p, q) = ε}

have constant mean curvature.
The sphere is clearly a harmonic manifold and hence

−
∫
S(x ,ε)

Fq = Fq(p) + 2

∫ ε

0

π sin2 s

π sin(2s)
ds
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A brief survey on harmonic analysis on manifolds
Harmonic functions, functions with constant Laplacian

A function f :M→ R is harmonic if ∆f (p) = 0 for p ∈M.
A manifold M is harmonic if for every p ∈M and small enough
ε > 0 all the Riemannian spheres

S(x , ε) = {q ∈M : dR(p, q) = ε}

have constant mean curvature.
The sphere is clearly a harmonic manifold and hence

−
∫
S(x ,ε)

Fq = Fq(p) +

∫ ε

0
tan s ds
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A brief survey on harmonic analysis on manifolds
Harmonic functions, functions with constant Laplacian

A function f :M→ R is harmonic if ∆f (p) = 0 for p ∈M.
A manifold M is harmonic if for every p ∈M and small enough
ε > 0 all the Riemannian spheres

S(x , ε) = {q ∈M : dR(p, q) = ε}

have constant mean curvature.
The sphere is clearly a harmonic manifold and hence

−
∫
S(x ,ε)

Fq = Fq(p)− log cos ε
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A brief survey on harmonic analysis on manifolds
Harmonic functions, functions with constant Laplacian

A function f :M→ R is harmonic if ∆f (p) = 0 for p ∈M.
A manifold M is harmonic if for every p ∈M and small enough
ε > 0 all the Riemannian spheres

S(x , ε) = {q ∈M : dR(p, q) = ε}

have constant mean curvature.
We can also write

−
∫
B(x ,ε)

Fq = Fq(p) +
1

2
+

log cos ε

tan2 ε
.
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Harmonic properties of the logarithmic energy in the sphere
Laplacian and a Mean Value Theorem

Recall: for X = (x1, . . . , xN) ∈ SN , where SN has the product
Riemannian structure,

E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖.

Then:

• ∆E = 2N(N − 1).
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Harmonic properties of the logarithmic energy in the sphere
Laplacian and a Mean Value Theorem

Recall: for X = (x1, . . . , xN) ∈ SN , where SN has the product
Riemannian structure,

E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖.

Then:

• ∆E = 2N(N − 1).

• Thus, there exist no local maxima of E .
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Harmonic properties of the logarithmic energy in the sphere
Laplacian and a Mean Value Theorem

Recall: for X = (x1, . . . , xN) ∈ SN , where SN has the product
Riemannian structure,
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Harmonic properties of the logarithmic energy in the sphere
Mean value theorem

Theorem (B.)

Let ~ε = (ε1, . . . , εN) ∈ [0, π/2)N and let

B∞(X , ~ε) = B(x1, ε1)× · · · × B(xN , εN).

Then, if B∞(X , ~ε) ∩ Σ = ∅,

−
∫
B∞(X ,~ε)

E = E(X ) + (N − 1)
N∑
i=1

≈ε2i /4︷ ︸︸ ︷(
1

2
+

log cos εi
tan2 εi

)
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Harmonic properties of the logarithmic energy in the sphere
Mean value theorem and classical Harnack’s theorem
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Harmonic properties of the logarithmic energy in the sphere
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Harmonic properties of the logarithmic energy in the sphere
Mean value theorem and classical Harnack’s theorem
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Harmonic properties of the logarithmic energy in the sphere
A consequence of the mean value equality

Recall: mN is the minimum of E in SN \ Σ.

Theorem (B.)

Let X ∈ SN be such that

B∞(X , ~ε) ⊆ SN \ Σ, where ~ε = (ε, . . . , ε), ε =

√
2(E(X )−mN)

N − 1
.

Then,
‖DE(X )‖ ≤ 2

√
2N(N − 1)(E(X )−mN).
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Harmonic properties of the logarithmic energy...
... combined with the separation distance results, yield:

Let X = (x1, . . . , xN) ∈ SN be a N–tuple minimizing E . Let
Y = (y1, . . . , yN) ∈ SN be such that

dR(xi , yi ) ≤
1/6

N
√

N − 1
, 1 ≤ i ≤ N.

Then,

E(Y ) ≤ mN +
1

18

But, there exists Y = (y1, . . . , yN) ∈ SN such that

dR(xi , yi ) ≤
1/3√

N(N − 1)
, 1 ≤ i ≤ N,

and

E(Y ) > mN +
1

18
.
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Admissible error function
This may have another name in a general context, I just made this one up.

The admissible error function e : (0,∞)→(0,∞) is the function
defined as

e(t) = sup{ε : Y ∈ B∞(X , ~ε), implies E(Y ) ≤ mN + t},

We have just claimed:

e

(
1

18

)
∈

[
1/6

N
√

N − 1
,

1/3√
N(N − 1)

]
.
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Admissible error function
This may have another name in a general context, I just made this one up.

The admissible error function e : (0,∞)→(0,∞) is the function
defined as

e(t) = sup{ε : Y ∈ B∞(X , ~ε), implies E(Y ) ≤ mN + t},

One can also bound e(t) for general t:

Corollary (B.)

Let N ≥ 3. The admissible error function satisfies

e(t) ∈

[√
t

2N2(N − 1)
,

√
2t

N(N − 1)

]
, 0 ≤ t ≤

N2(N − 1)d2
N

2(1 + 2N)2
.

For any t > 0 a less precise estimate also follows.
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Admissible error function
This may have another name in a general context, I just made this one up.

The admissible error function e : (0,∞)→(0,∞) is the function
defined as

e(t) = sup{ε : Y ∈ B∞(X , ~ε), implies E(Y ) ≤ mN + t},

One can also bound e(t) for general t. For N = 50:
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Computability of elliptic Fekete points
Rational points are dense in S

The set of points in S whose coordinates are rational numbers is
dense in S.
Moreover, precise bounds are known on the size of spherical rational
points [Schmutz]: Given z ∈ R3, ‖z‖ = 1, there exists z̃ such that

z̃ =

(
p̃(1)

q̃(1)
,

p̃(2)

q̃(2)
,

p̃(3)

q̃(3)

)
∈ Q3 ∩ S,

such that∣∣∣∣∣ p̃(j)

q̃(j)
− x̃ (j)

∣∣∣∣∣ ≤ ε, 0 ≤ |p̃(j)| ≤ q̃(j) ≤
(

128

ε2

)2

.
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Computability of elliptic Fekete points
There are rational solutions (bounded bit length) to Smale’s 7th problem

The set of points in S whose coordinates are rational numbers is
dense in S.
There is a universal constant c ≥ 0 (c = 11 suffices) with the
following property: for every N ≥ 2 there exists Z = (z1, . . . , zN) ∈
SN such that:

1. E(Z ) ≤ mN + 1/18.

2. For 1 ≤ i ≤ N,

zi =

(
p
(1)
i

q
(1)
i

,
p
(2)
i

q
(2)
i

,
p
(3)
i

q
(3)
i

)
∈ S∩Q3, p

(j)
i , q

(j)
i ∈ Z, 1 ≤ j ≤ 3,

where

0 ≤ |p(j)
i | ≤ q

(j)
i ≤ (cN)6, 1 ≤ i ≤ N, 1 ≤ j ≤ 3,
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Computability of elliptic Fekete points
There exists a simply exponential Turing machine for Smale’s 7th Problem

The set of points in S whose coordinates are rational numbers is
dense in S.

Corollary (B.)

There exists a Turing machine which, on input N ∈ {2, 3, . . .},
outputs X = (x1, . . . , xN) ∈ SN ∩Q3N satisfying

E(X ) ≤ mN +
1

18
,

and such that the running time is simply exponential in N. More
precisely: polynomial(N) · (11N)36N .
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The soccer ball and the buckminsterfullerene
20 hexagons and 12 pentagons. C60 discovered by Curl, Kroto, Smalley 1985
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But why BuckminsterFullerene
Richard Buckminster Fuller and his Spaceship Earth. First such a “geodesic dome” was

designed by Walther Bauersfeld for his 1912 planetarium.
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The ball beneath the lion paw. Again 12 pentagons
A chinesse temple in Beijing. Bronze lion-dogs flank the entrances to the halls. This lion
has a ball under his paw symbolizing control of the empire. Math Intelligencer 17, n. 3.
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Origami spheres
Recommended movie: between the folds

61/76 C. Beltrán Points in the sphere



Equal area of Dirichelt cells, 122 electrons in nearly
optimal configuration and dual.

The 400 pieces in the first picture [Rakhmanov–Saff–Zhou], [Kuijlaars–Saff] have area π
100

diameter ≤ 7

2
√
10
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Other aspects of the problem
Locating good points in the sphere is studied in other contexts

• Packing and covering radius.

• Location problems.

• Quadrature formulas (spherical N–designs).

• Spherical harmonics and interpolation.

and many others.
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Elliptic Fekete points and the condition number of
polynomials

Shub and Smale’s condition number

Let f : C→ C be a polynomial of degree N and let ζ ∈ C be a
zero of f . Let

µ(f , ζ) =
N1/2(1 + ‖ζ‖2)

N−2
2

|f ′(ζ)|
‖f ‖B−W .

This is the condition number, which actually controls the
sensibility of the zero ζ to perturbations of f . Let

µ(f ) = max(µ(f , ζ) : f (ζ) = 0).

Theorem (Shub–Smale)

For every polynomial f , we have µ(f ) ≥ 1. For random f , with
probability at least 1/2 we have µ(f ) ≤ N.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials

So, for many polynomials, µ(f ) ≤ N.

Can we find one f with that
property? not easy! even changing N to Nc , c a constant.

Theorem (Shub–Smale)

Let x1, . . . , xN ∈ S be a set of elliptic Fekete points. Let
z1, . . . , zN ∈ C be the preimage of x1, . . . , xN under the
stereographic projection. Let f be the polynomial which has zeros
z1, . . . , zN . Then,

µ(f ) ≤
√

N(N + 1).

Experiments suggest µ(f ) ≤
√

N/2.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Theorem (Burgisser–Cucker)

Any polynomial whose zeros correspond to a set of elliptic Fekete
points is a good starting point for homotopy methods that solve
polynomials.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri–Weyl norm

Let x1, . . . , xN ∈ S and associated z1, . . . , zN ∈ C. Let

f (Z ) = (Z − z1) · · · (Z − zN).

Then,

E(x1, . . . , xN) =
1

2

N∑
i=1

lnµ(f , zi ) +
N

2
ln

∏N
i=1

√
1 + |zi |2
‖f ‖

− N

4
ln N,
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri–Weyl norm
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri–Weyl norm
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri–Weyl norm
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Escher’s sphere.
This is my last picture.
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