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A good way to distribute points in a sphere?

An easier question: a bad way to distribute points in the sphere?

[Kuijlaars—Saff] [Bendito et al.] [The web]
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Points satisfying some “extremal” property
Look for N points xi,...,xy in the sphere S such that...

e the volume of the convex envelope of xi,...,xy is maximized.

e the separation distance

dsep(X1, ..., xn) = min||x; — xj|| is maximized,
1<J

Tammes Problem or “hard spheres problem™.

e the function

Eu(xi,...,xn) = Z | xi — xj|| is maximized,
i<j

a classical open problem in discrete geometry.
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Maximize volume of convex envelope (N = 30)

Paints of the minimizing N-tuple in the camplex plane

4/76 C. Beltran

Points in the unit sphere associated to the minimizing MN-tuple

Points in the sphere



Maximize the separation distance (N = 30)

Paints of the minimizing M-tuple in the complex plane Puints ih the unit sphere associated to the minimizing MN-tuple
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Maximize sum of ||x; — x;|| (N = 30)

Puoints of the minimizing M-tuple in the complex plane Fuoints in the unit sphere associated to the minimizing M-tuple
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Ipomoea purpurea pollen, flu virus, dessert

March,october, february

7/76 C. Beltran Points in the sphere



Points satisfying some “extremal” property

Look for N points xi,...,xy in the sphere S such that...

e the s—energy (some fixed s > 0)
Z | xi — ;|| is minimized,
i<j
a classical problem in physics for s = 1, that is Thomson's
problem.

8/76 C. Beltran Points in the sphere



Points satisfying some “extremal” property
Look for N points xi,...,xy in the sphere S such that...

e the s—energy (some fixed s > 0)
Z | xi — ;|| is minimized,
i<j

a classical problem in physics for s = 1, that is Thomson's
problem.

e the logarithmic energy (aka logarithmic potential)

E(xas- o) =log [T IIx — 17 = = 3 log [lx; — x]

i<j i<j

is minimized.
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Points satisfying some “extremal” property
Look for N points xi,...,xy in the sphere S such that...

the s—energy (some fixed s > 0)

Z | xi — ;|| is minimized,

i<j
a classical problem in physics for s = 1, that is Thomson's
problem.
the logarithmic energy (aka logarithmic potential)

Exay ) = log [ Il — g7 = = log I — x
i<j 1<J
is minimized.
A set of N points in S minimizing £ (i.e. maximizing the
product of their mutual distances) is called a set of Elliptic
Fekete Points.
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Elliptic Fekete points
Early works by Fekete, Szego, Whyte, Hille, Tsuji, etc.

For X = (x1,...,xn) € SN where x; €S, 1 <i < N, ellipic Fekete
points minimize the logaritmic energy

EX)=E(x,- .. XN)—IogHHx,—XJH 1 Zlong,—xJH

i<j i<j

Let ¥ C SV be the set of points such that £ = +00. Let
my = min{E(X) : X € SV}.

Smale’s 7th problem: can one find X € SN such that

E(X)—my < clogN?
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Elliptic Fekete points
Early works by Fekete, Szego, Whyte, Hille, Tsuji, etc.

For X = (x1,...,xn) € SN where x; €S, 1 <i < N, ellipic Fekete
points minimize the logaritmic energy

EX)=E(x,- .. XN)—IogHHx,—XJH 1 Zlong,—xJH

i<j i<j
Let ¥ C SV be the set of points such that £ = +00. Let
my = min{E(X) : X € SV}.
Smale’s 7th problem: can one find X € SN such that
E(X)—my < clogN?

“Can one find” means...
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Elliptic Fekete points
Early works by Fekete, Szego, Whyte, Hille, Tsuji, etc.

For X = (x1,...,xn) € SN where x; €S, 1 <i < N, ellipic Fekete
points minimize the logaritmic energy

EX)=E(x,- .. XN)—IogHHx,—XJH 1 Zlong,—xJH

i<j i<j
Let ¥ C SV be the set of points such that £ = +00. Let
my = min{E(X) : X € SV}.
Smale’s 7th problem: can one find X € SN such that
E(X)—my < clogN?

“Can one find" means...can one describe a polynomial time
algorithm (BSS model)?
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A beginner's problems with Smale’s 7th problem.

Probably also fair to say “An expert's problems...”

1 Problem 1: the value of my is not known, even to O(N).

Theorem (Wagner,Rakhmanov—Saff-Zhou)

- RNa

N2 4  NIn(N)
my=——In—-—
4 e 4

where

—0.112768770... < I;Vm inf Ry o < limsup Ry < —0.0234973...
—00

N—oo
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A beginner's problems with Smale’s 7th problem.

Probably also fair to say “An expert's problems...”

2 Problem 2: We need to solve a global minimization problem,
not just a local minimization problem. Moreover, usual
minimization algorithms will likely fall into “traps™:
experiments find many local minima of £.
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A beginner's problems with Smale’s 7th problem.

Probably also fair to say “An expert’'s problems...”

2 Problem 2: We need to solve a global minimization problem,
not just a local minimization problem. Moreover, usual
minimization algorithms will likely fall into “traps”:
experiments find many local minima of £.
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Regular Polyhedra seem to be an answer for
N =4,6,8,12,20. Are they really?

Wikipedia picture
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Regular Polyhedra seem to be an answer for
N =4,6,8,12,20. Are they really?

Ashmolean Museum de Oxford. ~ 2500 B.C.
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Regular Polyhedra seem to be an answer for
N =4,6,8,12,20. Are they really?

Not all of them! Foppl, Fejes, Rutishauser.

For N =5 solved by [Dragnev-Legg-Townsend|
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Euler's characteristic

Dirichlet cells

The Dirichlet cell of x; is the set of points x € S such that

[P =xill = min, llx =l
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Euler's characteristic

Dirichlet cells

The Dirichlet cell of x; is the set of points x € S such that

Ix = xi|| = 1ggN\\X—XjH-
What should they look like when x1, ..., xy is a set of elliptic

Fekete points? Intuitively, pretty regular hexagons and pentagons.
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Euler's characteristic

Dirichlet cells

The Dirichlet cell of x; is the set of points x € S such that

Ix = xi|| = 12}gNHX—XjH-
What should they look like when x1, ..., xy is a set of elliptic

Fekete points? Intuitively, pretty regular hexagons and pentagons.
Say P pentagons and H hexagons, each vertex having three edges
touching it.
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Euler's characteristic

Dirichlet cells

The Dirichlet cell of x; is the set of points x € S such that

Ix = xi|| = 12}gNHX—XjH-
What should they look like when x1, ..., xy is a set of elliptic

Fekete points? Intuitively, pretty regular hexagons and pentagons.
Say P pentagons and H hexagons, each vertex having three edges
touching it. Then,

6H + 5P 6H 5P P
2:X(S):++H+P—+:g.

Thus, such a tessalation must have P = 12 pentagons.
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The soccer ball and the buckminsterfullerene
20 hexagons and 12 pentagons. C60 discovered by Curl, Kroto, Smalley 1985
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The soccer ball and the buckminsterfullerene

Diego Forlan and Harry Kroto with their respective belowed objects
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Euler's characteristic

For greater N other figures appear in the (numerical) minima. [Hardin—-Saff]

(Minimization of s—Energy, s = 1,4, N = 1600.)
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Euler's characteristic

Approximation to 1000 elliptic Fekete points by Bendito, Carmona, Encinas, Gesto,
Gomez, Mourifio, Sanchez
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We do know some things

Separation distance

e Theorem (Toth, Habicht— van der Waerden)
For the Tammes problem (maximize separation distance)

877‘- - CN72/3 < dsep(XTammes) < 8771- ~ 38093

V3N “VVaN VN

e Theorem (Rakhmanov-Saff-Zhou,Dubickas,Dragnev)
For the elliptic Fekete points,

2 3.8093
ﬁ < dsep(XFekete) < \/N .
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We do know some things

Baricenter [Bergersen-Boal-Palffy Muhoray], [Dragnev-Legg-Townsend]. True for any
critical point of £

Let x1,...,xy be a set of elliptic Fekete points.
e The baricenter of xi,...,xy is the center of the sphere.
e For each i,
— N-1
FEE T

J#i
and

> lIxi = xl* =

J#i
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Back to the Problems about Smale’'s 7th Problem

Minimum value vs. Expected value

e Recall we have said
N2 | 4 Nin(N)

my=——In——
N 4 e 4
e Expectation if we choose xi, ..., xy just randomly and

uniformly in S:

+ O(N)

N2 4 N, 4
]Euniform =———o1In Z In E
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Back to the Problems about Smale’'s 7th Problem

Minimum value vs. Expected value

e Recall we have said

N2 4  Nin(N)
my=——In——

4 e 4
e Expectation if we choose xi, ..., xy just randomly and

uniformly in S:

+ O(N)

N2 4 N, 4
Euniform =———o1In Z In E

Theorem (Armenta no—B.—Shub)

Expectation for points comming from the zeros of random
polynomials (Bombieri-Weyl distribution):

N*> 4 Nin(N) N 4
E =———1n ——— 4+ —In-.
B-w =Ty 2 7"
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Back to the Problems about Smale’'s 7th Problem

Minimum value vs. Expected value

IEuum'form — . +— In —
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Just one try

Roots of a randomly chosen (B-W) polynomial

SN
SN

/ |10
sSaniiiding

L] il

LD
Sy

&

Points in the sphere

C. Beltran
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Roots of a random polynomial vs. random points
Maybe 4 or 5 tries

Points in the sphere

C. Beltran
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Comparison of the end—game starting at...

Random eigenvalues, random zeros of B-W polynomials, uniform points in S

Local Minima! vakoes obtsned, and the minimum among them Local Minimal values obtained, and the a them obtainad, and the minirum among them

% Valss of F

Mn(F) sbtained

-+
.-

L L
0 10W 200 30 400 500 6000 7000 G0 W00 1owp 0 W00 20 300 4000 G000 600 7000 GO0 9000 10000 0 1000 2000 3000 4000 000 000 70MD @00 5000 1o

The distribution of the values of £ at the end—points of the
gradient flow seem not to depend on the distribution of the initial
data.
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Comparison of the end—game starting at...

Random eigenvalues, random zeros of B-W polynomials, uniform points in S

Local Mriml vloes sbtansd, and the minimum smong them o T )

+ Vilues of F
Mn(F) sbtained

s

L L
D 10W 200 300 400 5000 6000 7000 G000 W00 1op 0 1000 2000 300 4000 G000 6000 7000 G000 9000 10000

obtainad, and the minimum among them

+ Vales ofF
—— MinfF) oblained

Y S S S S —
1000 2000 3000 4000 &0O0 BOOD 700D ADOO 9000 10000

The distribution of the values of £ at the end—points of the
gradient flow seem not to depend on the distribution of the initial

data.Which is clearly imposible.
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The logarithm function in the sphere
The graphic corresponds to the function x — — log||x — (0,0, 1)|]

Notational abuse: from now on, S is the Riemann sphere, that is
the sphere of diameter 1. Let

Fqo: S\{q} — R
p +— logllp—q|™*
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The logarithm function in the sphere

Harmonic properties of the logaritmic energy

Notational abuse: from now on, S is the Riemann sphere, that is
the sphere of diameter 1. Let

Fo: S\{g} - R
p  +— logllp—q|™*

The (Riemannian) Laplacian of this function is constant:

AFq(p) =2 VpeS\{q}.
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A brief survey on harmonic analysis on manifolds

Hessian, Laplacian

Let M be a Riemannian manifold and let f : M — R. The
Hessian of f at p € M is a bilinear form

Hess(f)(p): ToM x TpM — R
(v, w) — Hess(f)(p)(v,w) = wi(hj(x))v,

where
of rk
hij(x) 8x,0xj Zaxk

and I‘fj- are the Christoffel symbols.
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A brief survey on harmonic analysis on manifolds

Hessian, Laplacian

Let M be a Riemannian manifold and let f : M — R. The
Hessian of f at p € M is a bilinear form
such that

d2
Hess(F)(p)(v, v) = 5 le=o  (7p.0(1))

where 7, ,(t) is the geodesic in M such that

Yo (0) = p, Yo (0) = v.

Thus, if you know geodesics then you can compute the Hessian
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A brief survey on harmonic analysis on manifolds

Hessian, Laplacian

Let M be a Riemannian manifold and let f : M — R. The
Hessian of f at p € M is a bilinear form
such that

d2
Hess(F)(p)(v, v) = 5 le=o f (7p.0(1)).

Then, the Laplacian of f at p is
k
Af(p) =D Hess(f)(p)(vi; vi),
i=1

where the v; are a orthonormal basis of T, M. Thus, if you know
geodesics then you can compute the Laplacian
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A brief survey on harmonic analysis on manifolds

Harmonic functions, functions with constant Laplacian

A function f : M — R is harmonic if Af(p) =0 for p € M.
A manifold M is harmonic if for every p € M and small enough
€ > 0 all the Riemannian spheres

S(x,e) ={q e M :dr(p,q) =¢}
have constant mean curvature.

Theorem (Willmore)

If M is harmonic and f : M — R is harmonic then the mean value
equality holds:

][ f="~(p), for small enough € > 0.
S(x,e)
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A brief survey on harmonic analysis on manifolds

Harmonic functions, functions with constant Laplacian

A function f : M — R is harmonic if Af(p) =0 for p € M.
A manifold M is harmonic if for every p € M and small enough
€ > 0 all the Riemannian spheres

S(x,e) ={q e M :dr(p,q) =¢}

have constant mean curvature.
If M is harmonic and f : M — R satisfies Af = C then the mean
value equality holds:

€ Vol(B(p,s)) : ,
f="Ff(p +C/ —— " ds, B,(s) the Riemannian ball.
]é(x,s) ( ) 0 VO/(S(p,s)) p( )
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A brief survey on harmonic analysis on manifolds

Harmonic functions, functions with constant Laplacian

A function f : M — R is harmonic if Af(p) =0 for p € M.
A manifold M is harmonic if for every p € M and small enough
€ > 0 all the Riemannian spheres

S(x,e) ={q e M :dr(p,q) =¢}

have constant mean curvature.
The sphere is clearly a harmonic manifold and hence

2

¢ mwsin®s
F, = F 2 ——d
]é(xﬁ) 9 a(p) + /0 msin(2s) °
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A brief survey on harmonic analysis on manifolds

Harmonic functions, functions with constant Laplacian

A function f : M — R is harmonic if Af(p) =0 for p € M.
A manifold M is harmonic if for every p € M and small enough
€ > 0 all the Riemannian spheres

S(x,e) ={q e M :dr(p,q) =¢}

have constant mean curvature.
The sphere is clearly a harmonic manifold and hence

3
][ Fq = Fq(p) + / tans ds
S(x,e) 0
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A brief survey on harmonic analysis on manifolds

Harmonic functions, functions with constant Laplacian

A function f : M — R is harmonic if Af(p) =0 for p € M.
A manifold M is harmonic if for every p € M and small enough
€ > 0 all the Riemannian spheres

S(x,e) ={q e M :dr(p,q) =¢}

have constant mean curvature.
The sphere is clearly a harmonic manifold and hence

][ Fq = Fq(p) — logcose
S(x,e)
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A brief survey on harmonic analysis on manifolds

Harmonic functions, functions with constant Laplacian

A function f : M — R is harmonic if Af(p) =0 for p € M.
A manifold M is harmonic if for every p € M and small enough
€ > 0 all the Riemannian spheres

S(x,e) ={q e M :dr(p,q) =¢}

have constant mean curvature.
We can also write

1 logcose
Fq=F, -+ =
]{S(X,a) q q(P) + 5 + tanZe
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Harmonic properties of the logarithmic energy in the sphere

Laplacian and a Mean Value Theorem

Recall: for X = (xi,...,xy) € SV, where SN has the product
Riemannian structure,

E(xt.xn) =log [ IIx — xi 7 = = " log ||xi — x.

i<j i<j
Then:
o AE =2N(N —1).
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Harmonic properties of the logarithmic energy in the sphere

Laplacian and a Mean Value Theorem

Recall: for X = (xq,...,xn) € SV, where SN has the product
Riemannian structure,

E(xt.xn) =log [ IIx — xi 7 = = " log ||xi — x.
i<j i<j
Then:
o AE =2N(N —1).

e Thus, there exist no local maxima of £.
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Harmonic properties of the logarithmic energy in the sphere

Laplacian and a Mean Value Theorem

Recall: for X = (xi,...,xy) € SV, where SN has the product
Riemannian structure,

E(xt.xn) =log [ IIx — xi 7 = = " log ||xi — x.

i<j i<j

Then:

The average value of the
logarithmic energy on the
yellow area is equal to the
logarithmic energy at the
centers of the circles, plus
a constant. This constant
depends only on the values
of the radios.

(for non-overlapping circles!)
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Harmonic properties of the logarithmic energy in the sphere

Mean value theorem

Theorem (B.)
Let &= (e1,...,en) € [0,7/2)N and let
BOO(X,E) = B(Xl,&‘l) X oo X B(XN,EN).

Then, if Boo(X,&)NX =10,
~e? /4

N
1 Iogcoss
E=EX -1)
]{Bw(x,g) Z( tanZ¢; >
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Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

fo—lo o) Py =33 Y

f-’('j)"")( .:ﬂ
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Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

fo—lo o) Py =33 Y

f-’('j)"")( .:ﬂ

0

() <D (%)
O
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Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

fo—lo o) Py =33 Y

f-’('j)"")( .:ﬂ

0

() <D (%)
O

AL
WA <

45/76 C. Beltran Points in the sphere



Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

?{3*)

LD:JE= E-mmy
\\qgw\\é?

RO =38
f-’('j)"")( .:ﬂ

0

() <D (%)
O




Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

fo—lo o) Py =33 Y

f-’('j)"")( .:ﬂ

SharFZ
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Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

fo—lo o) Py =33 Y

f-’('j)"")( .:ﬂ
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Harmonic properties of the logarithmic energy in the sphere

Mean value theorem and classical Harnack's theorem

ReO=3E ¢
f-’('j)"")( .:ﬂ

fo—~le)

bs Uk

b fassi.Llo.,

WT ‘ovc‘n]ﬂg
P2
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Harmonic properties of the logarithmic energy in the sphere

A consequence of the mean value equality

Recall: my is the minimum of £ in SV \ .

Theorem (B.)
Let X € SN be such that

2(E0X) — mw)

Boo(X,8) TSN\ X, where&=(e,...,e),e = N1

Then,

IDEX)]| < 2v/2N(N — D)(EX) — mw).
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Harmonic properties of the logarithmic energy...

.. combined with the separation distance results, yield:

Let X = (x1,...,xn) € SN be a N-tuple minimizing €. Let
Y =(y1,...,yn) € SN be such that

1/6

dr(xi, yi) < —F—, 1<i<N.
R(X y) Nm /
Then, )
E(Y) < =
(Y) < mn+ 12
But, there exists Y = (y1,...,yn) € SV such that
dr(riy) < 1 1<i<n,
N(N —1)
and

1
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Admissible error function

This may have another name in a general context, | just made this one up.

The admissible error function e : (0,00)—(0, 00) is the function
defined as

e(t) =sup{e: Y € Boo(X,£), implies E(Y) < my + t},
We have just claimed:

(1) ¢

1/6 1/3
NvN—-1"\/N(N - 1)
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Admissible error function

This may have another name in a general context, | just made this one up.

The admissible error function e : (0,00)—(0, 00) is the function
defined as

e(t) =sup{e: Y € Boo(X,£), implies E(Y) < my + t},

One can also bound e(t) for general t:
Corollary (B.)

Let N > 3. The admissible error function satisfies

t 2t N2(N — 1)d?
V2NV — 1)\ N(N—l)] N (ST

For any t > 0 a less precise estimate also follows.

e(t) €
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Admissible error function

This may have another name in a general context, | just made this one up.

The admissible error function e : (0,00)—(0, 00) is the function
defined as

e(t) =sup{e: Y € Boo(X,£), implies E(Y) < my + t},

One can also bound e(t) for general t. For N = 50:

0,01
ENCTEEY
[ENETEIEY
o.0o0¥

0o.008

UNCLEAR...

o.oos
o004 cee THUS UNSAFE
o003

o.ooz

o.oon

.04 0.0 o.o08 o
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Computability of elliptic Fekete points

Rational points are dense in S

The set of points in S whose coordinates are rational numbers is
dense in S.

Moreover, precise bounds are known on the size of spherical rational
points [Schmutz]: Given z € R3, ||z|| = 1, there exists Z such that

51 52 50)
. (Y BB p 3
‘= (z,(l)’ g,(z)’g,(3)> €@ ns,

such that
=) . ) , 128\ 2
p - o o
o~ e 0=l < <€2> .
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Computability of elliptic Fekete points

There are rational solutions (bounded bit length) to Smale's 7th problem

The set of points in S whose coordinates are rational numbers is
dense in S.

There is a universal constant ¢ > 0 (¢ = 11 suffices) with the
following property: for every N > 2 there exists Z = (z1,...,2y) €
SN such that:

1. £&(Z) < my+1/18.
2. For1 <i <N,

pt ot Y s 00 :
Zj = (1)7 (2)) (3) ESOQ, P,‘ 7qi 6271§J§37

i i

where

0<p|< g <(cN)’,  1<i<N 1<j<3,
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Computability of elliptic Fekete points

There exists a simply exponential Turing machine for Smale’s 7th Problem
The set of points in S whose coordinates are rational numbers is
dense in S.

Corollary (B.)

There exists a Turing machine which, on input N € {2,3,...},
outputs X = (x1,...,xy) € SN N Q3N satisfying

1
E(X) < —

and such that the running time is simply exponential in N. More
precisely: polynomial(N) - (11N)3¢N.
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The soccer ball and the buckminsterfullerene
20 hexagons and 12 pentagons. C60 discovered by Curl, Kroto, Smalley 1985
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But why BuckminsterFullerene

Richard Buckminster Fuller and his Spaceship Earth. First such a “geodesic dome” was
designed by Walther Bauersfeld for his 1912 planetarium.
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The ball beneath the lion paw. Again 12 pentagons

A chinesse temple in Beijing. Bronze lion-dogs flank the entrances to the halls. This lion
has a ball under his paw symbolizing control of the empire. Math Intelligencer 17, n. 3.
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Origami spheres

Recommended movie: between the folds
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Equal area of Dirichelt cells, 122 electrons in nearly

optimal configuration and dual.

The 400 pieces in the first picture [Rakhmanov-Saff~Zhou], [Kuijlaars-Saff] have area {55
diameter < ﬁ
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Other aspects of the problem

Locating good points in the sphere is studied in other contexts

Packing and covering radius.

e Location problems.

Quadrature formulas (spherical N—designs).

Spherical harmonics and interpolation.

and many others.
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Elliptic Fekete points and the condition number of
polynomials

Shub and Smale’s condition number

Let f : C — C be a polynomial of degree N and let ( € C be a
zero of f. Let

o f — f — .
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Elliptic Fekete points and the condition number of
polynomials

Shub and Smale’s condition number

Let f : C — C be a polynomial of degree N and let ( € C be a
zero of f. Let

N—-2
2

NY2(1 + i¢]1?)
[£(<)]

This is the condition number, which actually controls the
sensibility of the zero ( to perturbations of f. Let

p(f) = max(u(f, ¢) : £(¢) = 0).

I fllB—w-

w(f, Q) =
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Elliptic Fekete points and the condition number of
polynomials

Shub and Smale’s condition number

Let f : C — C be a polynomial of degree N and let ( € C be a
zero of f. Let

N—-2
2

NY2(1 + i¢]1?)
[£(<)]

This is the condition number, which actually controls the
sensibility of the zero ( to perturbations of f. Let

p(f) = max(u(f, <) : £(¢) = 0).
Theorem (Shub—Smale)

For every polynomial f, we have u(f) > 1. For random f, with
probability at least 1/2 we have pu(f) < N.

I fllB—w-

w(f, Q) =
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials

So, for many polynomials, u(f) < N.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials

So, for many polynomials, u(f) < N. Can we find one f with that
property? not easy! even changing N to N€, ¢ a constant.

Theorem (Shub—Smale)

Let x1,...,xy €S be a set of elliptic Fekete points. Let
z1,...,2y € C be the preimage of x1,...,xy under the
stereographic projection. Let f be the polynomial which has zeros

z1,...,2zy. Then,
u(f) < A/N(N +1).
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials

So, for many polynomials, u(f) < N. Can we find one f with that
property? not easy! even changing N to N€, ¢ a constant.

Theorem (Shub—Smale)

Let x1,...,xy €S be a set of elliptic Fekete points. Let
z1,...,2y € C be the preimage of x1,...,xy under the
stereographic projection. Let f be the polynomial which has zeros

z1,...,2zy. Then,
u(f) < A/N(N +1).

Experiments suggest u(f) < v/N/2.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Theorem (Burgisser—Cucker)

Any polynomial whose zeros correspond to a set of elliptic Fekete
points is a good starting point for homotopy methods that solve

polynomials.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Shub-Smale
B.-Pardo

Burgisser-Cucker

“Fekete polynomial” Good initial pair

Easy to find

Small condition number
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Shub-Smale
B.-Pardo
Burgisser-Cucker

Easy to find

Good initial pair

“Fekete polynomial”

Easy to find

Small condition number
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Shub-Smale
B.-Pardo
Burgisser-Cucker

Easy to find

Good initial pair

“Fekete polynomial”

Easy to find

Small condition number
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Shub-Smale
B.-Pardo Conjectural or not known with precision

Burgisser-Cucker

Easy to find

Good initial pair

“Fekete polynomial”

Easy to find

Small condition number
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials and homotopy methods

Shub-Smale

B.-Pardo Conjectural or not known with precision Valid for

systems of eqns

Smale's 17th
problem,

Easy to find

Good initial pair

“Fekete polynomial”

Easy to find (A“:f%!g
Small condition
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri-Weyl norm

Let x1,...,xy €S and associated z,...,zy € C. Let

f(2)=(Z—-z1) - (Z — zn).
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri-Weyl norm

Let x1,...,xy €S and associated z,...,zy € C. Let

f(2)=(Z—-z1) - (Z — zn).
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri-Weyl norm
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Elliptic Fekete points and the condition number of
polynomials

Condition number, logarithmic potential and Bombieri-Weyl norm
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Elliptic Fekete points and the condition number of

polynomials
Condition number, logarithmic potential and Bombieri-Weyl norm

Points in the sphere

C. Beltran
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Escher’s sphere.

This is my last picture.
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