Modulated Fourier expansions for oscillatory differential equations

Christian Lubich
Univ. Tübingen

joint work with Ernst Hairer
and David Cohen, Ludwig Gauckler, Daniel Weiss

Budapest, FoCM’11, 8 July 2011
Topic related to four workshops of this conference:

- Geometric integration and computational mechanics
- Asymptotic analysis and high oscillation
- Computational dynamics
- Foundations of numerical PDEs
Outline

Some phenomena

Some theorems

Modulated Fourier expansions
Some phenomena

Some theorems

Modulated Fourier expansions
Time scales in a nonlinear oscillator chain

Galgani, Giorgilli, Martinoli & Vanzini, Physica D 1992
Symmetric linear multistep methods over long times

error in total energy and angular momentum (Kepler problem)

Hairer & L., Numer. Math. 2004
mode energies in a nonlinear wave equation \(u_{tt} - u_{xx} + \frac{1}{2} u = u^2 \) with periodic b.c., only first Fourier mode excited initially

Gauckler, Hairer, L. & Weiss, Preprint 2011
actions $|u_j|^2$ in a full discretisation:

non-resonant step size $\Delta t = 2\pi/\omega_6 + 0.005$

vs. resonant step size $\Delta t = 2\pi/\omega_6$
Outline

Some phenomena

Some theorems

Modulated Fourier expansions
Oscillatory ODEs

\[\ddot{x}_0 = -\nabla_{x_0} U(x_0, x_1) \]
\[\ddot{x}_1 + \frac{1}{\varepsilon^2} x_1 = -\nabla_{x_1} U(x_0, x_1), \quad 0 < \varepsilon \ll 1 \]

Oscillatory energy \(E_1 = \frac{1}{2}|\dot{x}_1|^2 + \frac{1}{2\varepsilon^2}|x_1|^2 \) is an almost-invariant:

If \(U \) is analytic and \(E_1(0) \leq M \), then

\[|E_1(t) - E_1(0)| \leq C\varepsilon \quad \text{for} \quad t \leq e^{c/\varepsilon}, \]

provided that \(x_0 \) stays in a compact set.

Benettin, Galgani & Giorgilli, CMP 1989
Cohen, Hairer & L., JFoCM 2003
Time scales in a nonlinear oscillator chain
Trigonometric integrator for oscillatory ODEs

same ODE

\[
\begin{align*}
\ddot{x}_0 & = -\nabla_{x_0} U(x_0, x_1) \\
\ddot{x}_1 + \frac{1}{\varepsilon^2} x_1 & = -\nabla_{x_1} U(x_0, x_1), \quad 0 < \varepsilon \ll 1
\end{align*}
\]

trigonometric integrator with step size \(h \geq c\varepsilon \):
exact for \(\ddot{x}_1 + \frac{1}{\varepsilon^2} x_1 = 0 \), Störmer-Verlet for \(\ddot{x}_0 = f(x_0) \)

Under the non-resonance condition

\[
\left| \sin \left(\frac{kh}{2\varepsilon} \right) \right| \geq c\sqrt{h} \quad \text{for} \quad k = 1, \ldots, N,
\]

long-time near-conservation of total and oscillatory energies:

\[
\begin{align*}
H^n - H^0 & = O(h) \quad \text{for} \quad nh \leq h^{-N+1}.
\end{align*}
\]

Hairer & L., SINUM 2000
Time scales in a nonlinear oscillator chain
Symmetric linear multistep methods over long times

\[
\ddot{y} = f(y), \quad f(y) = -\nabla U(y)
\]

linear multistep method
\[
\sum_{j=0}^{k} \alpha_j y_{n+j} = h^2 \sum_{j=0}^{k} \beta_j f_{n+j}
\]

- symmetric: \(\alpha_j = \alpha_{k-j}, \beta_j = \beta_{k-j} \)
- all zeros of \(\sum \alpha_j \zeta^j \) are simple, except double root at 1
- order \(p \geq 2 \)

long-time near-conservation of energy:

\[
H^n - H^0 = O(h^p) \quad \text{for} \quad nh \leq h^{-p-2}
\]

Hairer & L., Numer. Math. 2004
Symmetric linear multistep methods over long times

error in total energy and angular momentum (Kepler problem)
Weakly nonlinear wave equations

1. Linear Klein–Gordon equation:

\[u_{tt} - \Delta u + \rho u = 0 \quad (x \in \mathbb{R}^d, t \in \mathbb{R}); \quad \text{with} \quad \rho \geq 0 \]

initial data \(a e^{ik \cdot x} + b e^{-ik \cdot x} \) for some wave vector \(k \in \mathbb{R}^d \)

The solution is a linear combination of plane waves \(e^{i(\pm k \cdot x \pm \omega t)} \).

(with frequency \(\omega = \sqrt{|k|^2 + \rho} \))

2. Nonlinear perturbation: \(u_{tt} - \Delta u + \rho u = g(u) \), same initial data

The solution has a Fourier series \(u(x, t) = \sum_{j \in \mathbb{Z}} u_j(t) e^{ijk \cdot x} \).

Size of mode energies \(E_j(t) = \frac{1}{2} |\omega_j u_j(t)|^2 + \frac{1}{2} |\dot{u}_j(t)|^2 \) for large \(t \)?

(with frequencies \(\omega_j = \sqrt{j^2 |k|^2 + \rho} \))

Energy transfer to higher modes?

Are plane waves stable under nonlinear perturbations?
Weakly nonlinear wave equations (cont.)

- real initial data with $E_1(0) = \varepsilon$, $E_j(0) = 0$ for $j \neq 1$
- real-analytic nonlinearity $g(u)$ at least quadratic at 0

Fix an integer $K > 1$. Then:
For almost all mass parameters $\rho > 0$ and wave vectors k, solutions to the nonlinear Klein–Gordon equation satisfy, over long times

$$t \leq c\varepsilon^{-K/4},$$

the bounds

$$|E_1(t) - E_1(0)| \leq C\varepsilon^2, \quad E_0(t) \leq C\varepsilon^2,$$

$$E_j(t) \leq C\varepsilon^j, \quad 0 < j < K,$$

$$\sum_{j=K}^{\infty} \varepsilon^{-(j-K)/2} E_j(t) \leq C\varepsilon^K.$$

metastable energy cascade Gauckler, Hairer, L. & Weiss 2011
mode energies in a nonlinear wave equation \(u_{tt} - u_{xx} + \frac{1}{2} u = u^2 \),
only first mode excited initially
Further results on ...

- energy distribution in FPU chains, particle lattices
- long-time Sobolev regularity of nonlinear wave equations
- Sobolev stability of plane wave solutions to NLS
- long-time near-conservation of actions in NLW and NLS
- ... and their numerical counterparts

general theme: long-time behaviour of weakly nonlinear systems and their numerical discretizations
Outline

Some phenomena

Some theorems

Modulated Fourier expansions
Modulated Fourier expansions

technique for analysing weakly nonlinear systems over long times

two ingredients:
 - solution approximation over short time (MFE)
 - almost-invariants of the modulation system

→ long-time results on the energy behaviour

Hairer & L. 2000 for long-time analysis of numerical integrators for highly oscillatory ODEs

Hairer & L. and Cohen, Gauckler 2003-2011, Sanz-Serna 2009 for analytical and numerical problems in Hamiltonian ODEs, PDEs, lattice systems over long times

MFE as a numerical approximation method
Modulated Fourier expansion in time

Model problem:

\[\ddot{x}_j + \omega_j^2 x_j = \sum_{j_1 + j_2 = j \mod N} x_{j_1} x_{j_2} \quad \text{for} \quad j = 1, \ldots, N \]

for frequencies \(\omega_j = \lambda_j / \varepsilon \), with \(\lambda_j \geq 1 \).

Assume: Harmonic energies \(E_j = \frac{1}{2} \omega_j^2 x_j^2 + \frac{1}{2} \dot{x}_j^2 \) are initially bounded independently of \(\varepsilon \).

Approximation ansatz:

\[x_j(t) \approx \sum_k z_j^k(t) e^{i(k \cdot \omega)t} \]

with slowly varying modulation functions \(z_j^k \)
finite sum over \(k = (k_1, \ldots, k_N) \in \mathbb{Z}^N \), and \(k \cdot \omega = \sum k_j \omega_j \)
Modulation system

\[(\omega_j^2 - (k \cdot \omega)^2) z_j^k + 2i(k \cdot \omega) \dot{z}_j^k + \ddot{z}_j^k = -\frac{\partial U}{\partial z_{-j}^k}(z)\]

with the modulation potential

\[U(z) = -\frac{1}{3} \sum_{j_1+j_2+j_3=0 \mod N} \sum_{k^1+k^2+k^3=0} z_{j_1}^{k_1} z_{j_2}^{k_2} z_{j_3}^{k_3}.\]

The infinite system is truncated and solved approximately (up to a defect \(\varepsilon^K\)) for polynomial modulation functions \(z_j^k\) under a non-resonance condition:

Small denominators \(\omega_j^2 - (k \cdot \omega)^2\) are not too small.
Formal invariants of the modulation system

The invariance property

$$U(S_\ell(\theta)z) = U(z) \quad \text{for} \quad S_\ell(\theta)z = (e^{ik_\ell\theta} z_j^k)_{j,k}$$

leads to formal invariants (Noether’s theorem)

$$E_\ell(z, \frac{d\bar{z}}{d\tau}) = \frac{1}{2} \sum_j \sum_k k_\ell \omega_\ell \left((k \cdot \omega)|z_j^k|^2 - iz_{-j}^{-k} \frac{dz_j^k}{d\tau} \right),$$

which are almost-invariants of the truncated modulation system and turn out to be close to the harmonic energies E_ℓ.

With these ingredients and many problem-specific technical details and estimates we obtain results on the long-time behaviour of the harmonic energies E_ℓ.
“This report is intended to be the first one in a series dealing with the behavior of certain nonlinear physical systems where the non-linearity is introduced as a perturbation to a primarily linear problem. The behavior of the systems is to be studied for times which are long compared to the characteristic periods of the corresponding linear problem.”

Fermi, Pasta & Ulam 1955

... which is just what modulated Fourier expansions are good for.