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On updating the inverse of a KKT matrix1

M.J.D. Powell

Abstract: A KKT matrix, W say, is symmetric and nonsingular, with a leading
n̂×n̂ block that has a conditional positive definite property and a trailing m̂×m̂
block that is identically zero, the dimensions of W being (n̂+m̂)×(n̂+m̂). The
author requires the inverse matrix H = W−1 explicitly in an iterative algorithm
for unconstrained minimization without derivatives, and only one of the first n̂
rows and columns of W is altered on each iteration. The corresponding change
to H can be calculated in O(n̂2) operations. We study the accuracy and stability
of some methods for this updating problem, finding that huge errors can occur
in the application to optimization, which tend to be corrected on later iterations.
Let Ω be the leading n̂×n̂ submatrix of H. We give particular attention to the
remark that the rank of Ω is only n̂−m̂, due to the zero block of W . Thus Ω
can be expressed as the sum of n̂−m̂ matrices of rank one, and this factorization
can also be updated in O(n̂2) operations. We find, in theory and in practice, that
the use of the factored form of Ω reduces the damage from rounding errors and
improves the stability of the updating procedure. These conclusions are illustrated
by numerical results from the algorithm for unconstrained minimization.
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1. Introduction

The KKT conditions at the solution of a constrained optimization problem give
a system of equations that is satisfied by the variables and Lagrange multipliers
of the calculation, provided that the relevant functions are differentiable, and the
gradients of the active constraints are linearly independent (see Fletcher, 1987,
for instance). In particular, for a quadratic programming problem in n̂ variables,
with m̂ equality and no inequality constraints, the system of equations is linear,
and its matrix has the form

W =

(

A X T

X 0

)

l n̂

l m̂ .
(1.1)

Here A is the symmetric second derivative matrix of the objective function, and
the rows of the m̂×n̂ matrix X are the gradients of the constraints. The second
order conditions for optimality state that the quadratic programming problem has
a unique solution if the rank of X is m̂, and if vTAv is strictly positive for every
nonzero vector v∈Rn̂ that satisfies Xv=0. In this case the matrix (1.1) is called
a KKT matrix and is nonsingular. We write its inverse in the form

H = W−1 =

(

Ω ΞT

Ξ Υ

)

l n̂

l m̂ .
(1.2)

Systems of equations with the matrix (1.1) are also important to the iterations
of sequential quadratic programming algorithms for constrained optimization cal-
culations. Then A is an estimate of a second derivative matrix of the Lagrange
function, and the rows of X are gradients of constraint functions for a particular
choice of the vector of variables. Therefore, when this vector is revised and the
constraints are nonlinear, the change to X may be of full rank. In this case it is
usually not advantageous to employ updating techniques for the solutions of the
systems of equations of consecutive iterations.

On the other hand, the author is constructing an iterative algorithm for uncon-
strained minimization without derivatives, where a KKT matrix occurs on every
iteration, and where the change to the KKT matrix from one iteration to the next
is confined to a single row and column. Further, the inverse matrix (1.2) is stored
instead of W , because the elements of H provide some coefficients of Lagrange
functions that are required. Therefore in this paper we address the updating of H
when only the t-th row and column of W are altered, preserving symmetry, where
t is any integer from [1, n̂]. As far as the author knows, this situation does not
arise in algorithms for general constrained optimization calculations. Neverthe-
less, because of the importance of the KKT matrix, our results may be of interest
to many researchers in mathematical programming.

The new algorithm for unconstrained minimization is still under development,
a report on a provisional version being available (Powell, 2003), which presents
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an outline of the method with a few numerical results. The author has also
written a paper already on the updating calculation of the previous paragraph,
which gives not only a useful formula for the new H that can be applied in
O({m̂+n̂}2) operations, but also some analysis of the stability of the formula and
some favourable numerical results. Indeed, most of the errors that are introduced
by the use of inverse matrices are corrected automatically as the iterations proceed.
Therefore the author had not expected to write another paper on this subject.
The work on the new algorithm has been frustrated, however, by occasional huge
losses in efficiency due to the effects of computer rounding errors, although the
stability that has been mentioned gives excellent accuracy in the final value of
the objective function eventually. A technique that reduces much or all of this
damage was found by the author recently. It is based on the remark that, because
equations (1.1) and (1.2) imply XΩ=0, the rank of Ω is at most n̂−m̂. We are
going to store and update Ω in a way that guarantees this property, even in the
presence of computer rounding errors. Thus we will find that the performance of
the new algorithm is improved greatly in some troublesome cases.

The relevance of KKT matrices to the new algorithm for minimization without
derivatives is explained by Powell (2002b, 2003). That question is also addressed in
the remainder of this section, because of its importance to our work. Specifically,
each iteration employs a quadratic model Q(x), x∈Rn, of the objective function
F (x), x∈Rn, that is required to satisfy interpolation conditions of the form

Q(xi) = F (xi), i=1, 2, . . . ,m, (1.3)

where m is a prescribed fixed integer from the interval [n+2, 1
2
(n+1)(n+2)], the

value m=2n+1 being typical. The quadratic models are updated as the calculation
proceeds, but, after allowing for the constraints (1.3), there are 1

2
(n+1)(n+2)−m

degrees of freedom in each new quadratic model. The main idea of the new
algorithm is to take up this freedom on each iteration by minimizing the Frobenius
norm of the change to the second derivative matrix of the model. This technique is
analogous to applying the symmetric Broyden formula when the gradient ∇F (x),
x∈Rn, is available (see Section 9.1 of Dennis and Schnabel, 1983, for instance).

We write the change to the quadratic model in the form

Q(x) − Qold(x) = c + gT x + 1
2
xT∆x, x∈Rn, (1.4)

where Q and Qold are the new and old models, respectively. and where c ∈ R,
g∈Rn and ∆∈Rn×n have to be calculated. The values of these parameters are
defined by minimizing the squared Frobenius norm

‖∆‖ 2
F =

∑n
i=1

∑n
j=1 ∆2

ij, (1.5)

subject to the interpolation equations

c + gT xi + 1
2
xT

i ∆xi = F (xi) − Qold(xi), i=1, 2, . . . ,m. (1.6)
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We ignore the symmetry condition ∆T =∆, because it is achieved automatically.
Indeed, it follows from the KKT conditions of this subproblem that there exist
multipliers λj, j =1, 2, . . . ,m, satisfying the constraints

∑m
j=1 λj = 0 and

∑m
j=1 λj xj = 0, (1.7)

such that ∆ is the matrix
∆ =

∑m
j=1 λj xj xT

j . (1.8)

Thus the updating of the quadratic model is reduced to the calculation of c∈R,
g∈Rn and λ∈Rm.

Expressions (1.8) and (1.6) provide the identities

c + gT xi + 1
2

∑m
j=1 λj (xT

i xj)
2 = F (xi) − Qold(xi), i=1, 2, . . . ,m. (1.9)

It follows from the constraints (1.7) that the required parameters satisfy the square
system of linear equations

W





λ
c
g



 =

(

A X T

X 0

)





λ
c
g



 =





r

0





l m

l n+1 ,
(1.10)

where A has the elements

Aij = 1
2
(xT

i xj)
2, 1≤ i, j≤m, (1.11)

where X is the matrix

X =

(

1 1 · · · 1

x1 x2 · · · xm

)

l 1

l n ,
(1.12)

and where the components of r∈Rm are the right hand sides of the interpolation
conditions (1.9). We see that the matrix of the system (1.10) has the form (1.1),
the values of n̂ and m̂ being m and n+1, respectively. It is highly useful that the
number of unknowns is only m+n+1, because the quadratic polynomial (1.4) has
1
2
(n+1)(n+2) independent parameters.

One can deduce from the elements (1.11) that A has no negative eigenvalues
(see equation (2.10) of Powell, 2002b), and the positions of the points xi, i =
1, 2, . . . ,m, are chosen so that the system (1.10) is nonsingular, which will receive
attention in the next section. Therefore W is a KKT matrix. Moreover, each
iteration of the optimization algorithm changes at most one of the interpolation
points xi, i = 1, 2, . . . ,m. Let xt be replaced by x+, where t is an integer from
[1,m]. It follows from expressions (1.10)–(1.12) that all changes to W are confined
to the t-th row and column, which gives the updating calculation of the third
paragraph of this section. The current inverse matrix (1.2) is stored, as mentioned
already. Thus the parameters c, g and λ of each change to the quadratic model
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are calculated in only O({m+n}2) operations, which is also the amount of work
for updating H.

Section 2 addresses the revision of H when the t-th row and column of W
are altered. A simple updating formula is presented, which is equivalent to the
first one that is derived by Powell (2002b). Some lemmas show the change in the
determinant of W , and the dependence of the new matrix H on the t-th diagonal
element of the new W . The stability of the updating method is considered in
Section 3. An example exposes the huge loss of accuracy that can occur in the
application to unconstrained optimization. Therefore the stability is crucial to
the precision that can be achieved in the final vector of variables. In Section 4 we
study the new idea of expressing the partition Ω of the matrix (1.2) as the sum of
only n̂−m̂=m−n−1 rank one matrices, as suggested by the property XΩ=0 that
has been mentioned. It is proved that this technique gives a major improvement
to the stability of the updating formula. We find too that some of the immediate
damage from computer rounding errors is reduced. Ways of updating the new
expression for Ω are the subject of Section 5. They allow the factorization of
Ω to be included in the new algorithm for unconstrained minimization. Thus
the efficiency of the algorithm is improved greatly, as shown by a few numerical
experiments in Section 6. That final section includes also some remarks on the
development of the new algorithm.

2. A simple version of the updating formula

The m̂×m̂ zero partition of the matrix (1.1) is irrelevant throughout this section.
Therefore we let W be any d×d nonsingular symmetric matrix, d being an integer
that is at least two, and we consider the updating of H =W−1, when only the t-th
row and column of W are altered, their new values being vT and v, respectively.
In other words, W is replaced by the matrix W+ that has the elements

W+
kt = W+

tk = vk, k=1, 2, . . . , d,

W+
ij = Wij, i, j∈{1, 2, . . . , d}\{t}.

}

(2.1)

Therefore, if W+ is nonsingular, its inverse matrix H+ =(W+)−1 is characterized
by the conditions

(H+)−1
kt = (H+)−1

tk = vk, k=1, 2, . . . , d,

(H+)−1
ij = H−1

ij , i, j∈{1, 2, . . . , d}\{t}.

}

(2.2)

The following theorem suggests a way of calculating H+ from H and v ∈Rd in
O(d 2) operations, when W is not available, provided that the diagonal element
Htt is nonzero.

Theorem: Let H be a nonsingular d×d real symmetric matrix and let t be any
integer from [1, d] such that Htt is nonzero. Further, let v be any vector in Rd
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with the property
(et−H̃v)T v 6= 0, (2.3)

where et is the t-th coordinate vector in Rd, and where H̃ is the singular matrix

H̃ = H −
Het e

T
t H

eT
t Het

. (2.4)

Then the matrix

H+ = H̃ +
(et−H̃v) (et−H̃v)T

(et−H̃v)T v
(2.5)

is nonsingular, and it satisfies the conditions (2.2).

Proof: The nonsingularity of H and the definition (2.4) imply that H̃ has a null
space of dimension one, spanned by et. Thus the matrix (2.5) has the property

H+et = (et−H̃v) / (et−H̃v)T v, (2.6)

this vector being nonzero because of assumption (2.3). We address the nonsingu-
larity of H+ by letting z ∈Rd satisfy H+z = 0. Then the symmetry of H+ and
equation (2.6) give the relation

0 = eT
t H+z = (H+et)

T z = (et−H̃v)T z / (et−H̃v)T v. (2.7)

Therefore the definition (2.5) provides H̃z = H+z = 0. It follows from the first
statement of this proof that z = θ et holds for some θ ∈R, and θ is zero due to
H+z=0, because the vector (2.6) is nonzero. Hence H+z=0 implies z=0, which
establishes that H+ is nonsingular as required.

The matrix (2.5) also has the property H+v = et, which we write in the form
v =(H+)−1et. Thus, remembering the symmetry of H+, we deduce the first part
of expression (2.2).

Turning to the second part, we let i and j be any integers from [1, d] that
are different from t. Because the definition (2.4) implies H̃(H−1ej)=ej, formulae
(2.5) and (2.6) give the condition

H+(H−1ej) = ej + (et−H̃v) {(et−H̃v)T (H−1ej)} / (et−H̃v)T v

= ej + {(et−H̃v)T (H−1ej)}H+et. (2.8)

By pre-multiplying this equation by eT
i (H+)−1, and by employing eT

i et = 0, we
find the identity eT

i H−1ej =eT
i (H+)−1ej, which is equivalent to the second part of

expression (2.2). The proof is complete. 2

The theorem presents a simple method for updating H, assuming that divisions
by zero do not occur. Specifically, H̃ and H+ are rank one modifications of H and
H̃, respectively, that can be applied in only O(d 2) operations. On the other hand,
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we find below that the division by eT
t Het is avoided if the intermediate matrix H̃

is eliminated analytically from the updating procedure.
We begin the elimination of H̃ by deducing from expression (2.4) the equation

et−H̃v = (et−Hv) +
eT

t Hv

eT
t Het

Het, (2.9)

which provides the denominator

(et−H̃v)T v =
{

(eT
t v−vTHv) eT

t Het + (eT
t Hv)2

}/

eT
t Het

= σ
/

eT
t Het, (2.10)

where the last line defines the real parameter σ. Therefore the updating procedure
of the theorem gives the formula

H+ = H −
Het e

T
t H

eT
t Het

+
eT

t Het

σ
(et−H̃v) (et−H̃v)T . (2.11)

It follows from expression (2.9) that H+ is the matrix

H+ = H + σ−1
[

α (et−Hv) (et−Hv)T − βHet e
T
t H

+ τ
{

Het (et−Hv)T + (et−Hv) eT
t H

}]

, (2.12)

where α, τ and β are the real parameters

α = eT
t Het, τ = eT

t Hv, and

β =
σ

eT
t Het

−
(eT

t Hv)2

eT
t Het

= eT
t v − vT Hv.















(2.13)

We see that analytic cancellation removes the division by eT
t Het in the last line.

Therefore expression (2.12) can be used to calculate H+ whenever σ = αβ +τ 2

is nonzero. This expression is the first updating formula of Section 4 of Powell
(2002b).

The equation H+ = (W+)−1, stated in the first paragraph of this section,
suggests that σ = 0 occurs in the updating formula (2.12) if and only if W+ is
singular. We investigate this question, retaining the assumption that H is any
nonsingular d×d real symmetric matrix. Because H−1 is calculated from H and v,
we define W =H−1, and we let W+ have the elements (2.1). The relation between
σ and the singularity of W+ is as follows.

Lemma 1: The parameter σ of formula (2.12) has the value

σ = det W+ / det W, (2.14)
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for any v∈Rd, the matrices W and W+ being defined above.

Proof: The definition of W+ and expression (2.13) with σ=αβ+τ 2 imply that
both sides of equation (2.14) depend continuously on v ∈Rd. Therefore we may
assume without loss of generality that τ =eT

t Hv is nonzero.
We show that W+ can be expressed in the form

W+ = (I−et u
T )W (I−u eT

t ) + β et e
T
t , (2.15)

where u=et−Hv. Clearly this matrix is symmetric and satisfies the second part
of the conditions (2.1), so it is sufficient to establish W+et = v. The choice of u
and the identity W =H−1 provide the equation

W (I−u eT
t ) et = W (et−u) = WHv = v. (2.16)

Hence the matrix (2.15) has the required property

W+et = (I−et u
T ) v + β et = v − et (et−Hv)T v + β et = v, (2.17)

the last equation being due to the definition (2.13) of β.
We are going to combine expression (2.15) with the product rule for determi-

nants. The matrix (I−etu
T ) has the determinant 1−uT et = τ , which is nonzero

by assumption, so equation (2.15) is equivalent to the relation

(I−et u
T )−1 W+(I−u eT

t )−1 = W + β z zT , (2.18)

where z is the vector

z = (I−et u
T )−1et =

(

I +
et u

T

1−uT et

)

et =
et

1−uT et

= τ−1et. (2.19)

Thus WH =I implies the identity

(I−et u
T )−1 W+(I−u eT

t )−1 = W
(

I + β τ−2 Het e
T
t

)

. (2.20)

Now det(I +β τ−2Het e
T
t ) has the value 1+β τ−2eT

t Het = 1+αβ τ−2. Hence, by
taking determinants of the matrix equation (2.20), we obtain the condition

τ−2 det W+ = (1 + αβ τ−2) det W = σ τ−2 det W. (2.21)

Therefore the lemma is true. 2

The author has found that, when the updating formula (2.12) fails to provide
good accuracy in practice, the trouble arises usually from severe cancellation in
the calculation of β. Strong support for this claim is given in the next section.
Therefore he investigated the errors that occur in the conditions (2.2) if β is
incorrect in expression (2.12), the formulae

α = eT
t Het, τ = eT

t Hv and σ = αβ+τ 2 (2.22)
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being retained. He had in mind the technique of modifying β, in order to avoid
denominators σ that are very close to zero, in the application to the new algo-
rithm for unconstrained optimization, which is mentioned in Section 1. Work on
that technique has now been abandoned, however, because of the success of the
factorization that we will study in Sections 4–6, but it did produce the following
interesting result.

Lemma 2: Let H+(β) be the matrix (2.12) when t, H and v are as before, when
α, τ and σ have the values (2.22), and when β is any real number such that H+(β)
is finite and nonsingular. Then all the elements of the inverse matrix {H+(β)}−1

are independent of β, except for the t-th diagonal element.

Proof: Let H+(β̂) and H+(β̌) be finite and nonsingular, where β̂ 6= β̌. It follows
from equation (2.12) that the difference H+(β̌)−H+(β̂) is the matrix

(σ̂ σ̌)−1
[

α (σ̂−σ̌) (et−Hv) (et−Hv)T − (β̌ σ̂−β̂ σ̌)Het e
T
t H

+ τ (σ̂−σ̌)
{

Het (et−Hv)T + (et−Hv) eT
t H

}]

, (2.23)

where σ̂ = αβ̂ +τ 2 and σ̌ = αβ̌ +τ 2. The multipliers α (σ̂− σ̌), −(β̌σ̂− β̂σ̌) and
τ (σ̂−σ̌) are the numbers α2(β̂−β̌), τ 2(β̂−β̌) and ατ (β̂−β̌), respectively. Therefore
expression (2.23) is the symmetric outer product

(β̂−β̌) (σ̂ σ̌)−1
{

α (et−Hv) + τHet

} {

α (et−Hv) + τHet

}T
. (2.24)

Moreover, equations (2.12) and (2.22) in the case β = β̂ give the identity

H+(β̂) et = Het + σ̂−1
[

(et−Hv) {α−ατ +τα} + Het {−β̂α+τ−τ 2}
]

= σ̂−1 {α (et−Hv) + τHet} . (2.25)

These remarks provide the relation

H+(β̌) = H+(β̂) + (β̂−β̌) (σ̂/σ̌)H+(β̂) et e
T
t H+(β̂). (2.26)

Hence H+(β̌) has the inverse

{H+(β̌)}−1 = {H+(β̂)}−1 −
(β̂−β̌) σ̂

σ̌ + (β̂−β̌) σ̂ eT
t H+(β̂) et

et e
T
t , (2.27)

the denominator being nonzero because et is not in the null space of the matrix
(2.26). Equation (2.27) shows that the lemma is true. 2
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3. On the stability of the updating method

Both the updating method of the theorem and formula (2.12) have a highly useful
stability property, because H+ is calculated from t, H and v. The property is
a consequence of the conditions (2.2), when substantial errors are present in H,
due to the effects of the computer rounding errors of the previous iterations. We
consider the errors that are inherited by H+, if the calculation of H+ from t, H
and v is exact, taking the view that H−1 and (H+)−1 should be the matrices W
and W+, respectively, where W+ is defined by expression (2.1). Equations (2.1)
and (2.2) imply the values

(

(H+)−1−W+
)

kt
=

(

(H+)−1−W+
)

tk

= vk−vk = 0, k=1, 2, . . . , d,
(

(H+)−1−W+
)

ij
= (H−1−W )ij, i, j∈{1, 2, . . . , d}\{t}.























(3.1)

Therefore the updating procedure reduces to zero all the errors in the t-th row
and column of H−1−W , while all other elements of this matrix are unchanged,
except for the new errors that occur within the current iteration.

It follows that, if H is set to an arbitrary nonsingular symmetric matrix ini-
tially, if the updating formula is applied many times sequentially to H and W
without a division by zero, and if the final H is nonsingular, then, in exact arith-
metic, each element of the final matrix H−1−W is the same as the corresponding
element of the initial matrix H−1−W or is zero. Further, (H−1−W )ij becomes
zero if and only if i and/or j is in the set T , where T contains the indices t of all
the applications of the updating method. This highly advantageous property is
the subject of Test 5 in Section 7 of Powell (2002b), which runs for 105 iterations
in computer arithmetic. Each matrix W is taken from the system (1.10), the
values of m and n being 101 and 50, respectively. The initial H is such that the
elements of the first error matrix H−1−W are of magnitude 10−3. Then on each
iteration the updating of W and H arises from a change to the position of the
interpolation point xt, as mentioned in Section 1. Hence every integer t is from
the interval [1,m]. Thus the stability property of the previous paragraph tends
to correct the errors in the first m rows and columns of H−1−W , but it does not
reduce the errors in the bottom right (n+1)×(n+1) submatrix of H−1−W . Those
errors retain their magnitude of about 10−3 throughout the experiment. On the
other hand, when the t-th interpolation point is shifted for the first time, t being
an integer from [1,m], then the errors in the t-th row and column of H−1−W be-
come of magnitude 10−15, and they remain at this level throughout the subsequent
iterations of the calculation.

In this experiment, no very large new errors are introduced by an appli-
cation of the updating procedure, because the current interpolation points xi,
i=1, 2, . . . ,m, are clustered round the origin on every iteration. In unconstrained
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minimization calculations without derivatives, however, it is usual for the initial
interpolation points to be clustered about a given initial vector of variables, while
the final interpolation points are clustered about the optimal vector of variables,
which may be far from the initial vector. Further, because it is inefficient to keep
points in clusters when they are moved a long way, some points may be far apart
and others may be close together on a typical intermediate iteration. Therefore
several situations that occur in practice are not tested by the experiment of the
previous paragraph. They can introduce huge errors into H−1−W , an example be-
ing shown below. Recovery from such damage has to be achieved by the stability
properties of the updating formula.

We consider the effects of computer rounding errors on the calculation of H+

in a case with n = 2 and m = 5. Let W be the partitioned matrix of expression
(1.10), when the interpolation points are the vectors

x1 =

(

ξ
0

)

, x2 =

(

ξ+η
0

)

, x3 =

(

ξ−η
0

)

, x4 =

(

ξ
η

)

and x5 =

(

ξ
−η

)

(3.2)

in the definitions (1.11) and (1.12), where ξ and η are real numbers that satisfy
0<η <ξ. We let H be exactly W−1, we pick t=4, and we let x+ =(ξ+η, η)T be
the new position of xt. It follows from some algebra that H is the matrix

H =

















































4
η4 − 1

η4 − 1
η4 − 1

η4 − 1
η4

η2
−ξ2

η2

2ξ
η2 0

− 1
η4

1
2η4

1
2η4 0 0 ξ(ξ−η)

η2

η−2ξ
η2 0

− 1
η4

1
2η4

1
2η4 0 0 ξ(ξ+η)

η2

−η−2ξ
η2 0

− 1
η4 0 0 1

2η4

1
2η4 0 0 1

2η

− 1
η4 0 0 1

2η4

1
2η4 0 0 − 1

2η

η2
−ξ2

η2

ξ(ξ−η)
2η2

ξ(ξ+η)
2η2 0 0 0 0 0

2ξ
η2

η−2ξ
2η2

−η−2ξ
2η2 0 0 0 0 0

0 0 0 1
2η

− 1
2η

0 0 −ξ2

















































. (3.3)

. Further, because v∈R8 is the t-th column of W+, we find the vectors

v =





































1
2
(xT

1 x+)2

1
2
(xT

2 x+)2

1
2
(xT

3 x+)2

1
2
‖x+‖4

1
2
(xT

5 x+)2

1
ξ+η

η





































=





































1
2
(xT

1 x+)2

1
2
(xT

2 x+)2

1
2
(xT

3 x+)2

1
2
(xT

4 x+)2+γ
1
2
(xT

5 x+)2

1
ξ+η

η





































and Hv =





































−1−η−4γ

1

0

1+ 1
2
η−4γ

1
2
η−4γ

0
0

ξ η2+ 1
2
η−1γ





































, (3.4)
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where γ =ξ3η + 5
2
ξ2η2+3ξη3+ 3

2
η4. Thus the parameters of the updating formula

take the values

α = eT
t Het = 1

2
η−4, β = eT

t v − vT Hv = η4 − 2γ − 1
2
η−4γ2,

τ = eT
t Hv = 1 + 1

2
η−4γ and σ = αβ + τ 2 = 3

2
.







(3.5)

We see that both the leading 5×5 submatrix of H and σ are independent of ξ.
These properties are addressed in Section 5 of Powell (2002b), since a change to
ξ in the example can be regarded as a shift of the origin in R2.

Let ε be the relative precision of the computer arithmetic. Because the values
H11 = 4η−4 and v1 = 1

2
(ξ2 + ξη)2 > 1

2
ξ4 occur in the previous paragraph, the

first component of Hv includes a contribution from rounding errors of magnitude
(ξ/η)4ε. It follows from the −v1H11v1 term of β =eT

t v−vTHv, that some errors in
β are of size (ξ8/η4) ε, which causes errors in σ=αβ+τ 2 of magnitude (ξ/η)8ε, due
to α = 1

2
η−4. The accuracy ε = 10−16 is typical in double precision computation.

Thus we conclude that all accuracy may be lost from the denominator of the
updating formula (2.12) if we pick η≤0.01ξ in the example.

Let x
∗

be the best of the current interpolation points, which means that it
satisfies the condition

F (x
∗
) = min{F (xi) : i=1, 2, . . . ,m}. (3.6)

The example suggests that intolerable loss of accuracy may occur if the length
of the next change to the variables, d say, is less than 0.01‖x

∗
−x0‖, where x0

is the origin. Therefore x0 is altered occasionally, but each origin shift requires
a revision of the matrix H that takes O(m2n) operations, which, for large n, is
much more onerous than all the other work of an iteration. The compromise of
the algorithm is to change x0 in the case ‖d‖≤10−3/2‖x

∗
−x0‖, the new position

of x0 being x
∗
. Thus most iterations are without shifts.

Each change to x0 does not reduce the damage that has been caused to H by
the rounding errors of previous iterations, but it should provide less bad accuracy
in the updating of H by the current and future iterations. It has been mentioned
already that most of the present damage will be eliminated later by the stability
property (3.1), the main exception being that all the errors in the bottom right
(n+1)×(n+1) submatrix of H−1−W are inherited by (H+)−1−W+ on every
iteration. Therefore we would like these errors to be zero, which is possible in
practice, by applying the factorization technique that is studied in Section 4.

Usually the new interpolation point x+ is generated by the algorithm for un-
constrained optimization before picking the index t of the point that will be deleted
to make room for x+. An advantage of this freedom in t is that it can provide
a relatively large value of |σ| in the updating formula (2.11), which is important
to the nonsingularity of the system (1.10), as shown in Lemma 1. Therefore the
algorithm calculates the value of σ that would occur for each choice of t, using
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a method that is suggested by expression (3.4). Specifically, we let w ∈Rm+n+1

have the components 1
2
(xT

i x+)2, i=1, 2, . . . ,m, followed by 1 and the components
of x+, so the t-th column of W+ is the vector

v = w + γ et, (3.7)

where γ = 1
2
‖x+‖4−1

2
(xT

t x+)2. By making the substitution (3.7) in equation (2.12),
Powell (2002b) derives the formula

H+ = H + σ̂−1
[

α̂ (et−Hw) (et−Hw)T − β̂H et e
T
t H

+ τ̂
{

Het (et−Hw)T + (et−Hw) eT
t H

}]

, (3.8)

with the parameters

α̂ = α = eT
t Het, β̂ = 1

2
‖x+‖4 − wT Hw,

τ̂ = eT
t Hw and σ̂ = σ = αβ+τ 2 = α̂β̂+τ̂ 2.











(3.9)

We see that the value of σ̂=σ for every t can be found in only O(m2) operations,
because w and β̂ are independent of t. Thus the algorithm makes a choice of t
that assists the nonsingularity of the system (1.10).

Another strong advantage of formula (3.8) over formula (2.12) is that the
parameters τ̂ and β̂ are usually smaller than τ and β, which avoids cancellation in
the denominator σ̂=σ. In particular, equation (3.5) shows that, in our example,
the terms αβ and τ 2 are both of magnitude γ2η−8 ≈ (ξ/η)6, which can be huge
for 0<η <ξ, although σ =αβ+τ 2 = 3

2
is independent of ξ/η in exact arithmetic.

On the other hand, if formula (3.8) is applied to the example, then, because Hw
is the rightmost vector of expression (3.4) in the case γ = 0, we deduce β̂ = η4

and τ̂ = 1, so σ̂ = σ = α̂β̂+ τ̂ 2 is now the sum of two positive numbers. Powell
(2002b) proves that α̂ and β̂ are nonnegative for general positions of the points xi,
i=1, 2, . . . ,m, and x+. Therefore expression (3.8) is preferable to formula (2.12)
for updating H in the given application to unconstrained optimization.

The switch from expression (2.12) to (3.8) can also reduce the unwelcome
contributions from computer rounding errors to the denominator of the updating
formula, provided that one includes the factorization method of the next sec-
tion. Otherwise, the following argument applies. Equation (3.7) with t=4 gives
v1H11v1 =w1H11w1 in our example, so an error of magnitude

v1H11v1 ε = 4 η−4 {1
2
(xT

1 x+)2}2 ε = ξ4 (ξ+η)4 η−4 ε, (3.10)

mentioned earlier, occurs not only in β but also in β̂. It follows from α= α̂= 1
2
η−4

that the resultant damage to both σ = αβ+τ 2 and σ̂ = α̂β̂+ τ̂ 2 is of magnitude
(ξ/η)8ε.
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4. A partial factorization of H

Equations (1.1) and (1.2) imply XΩ = 0, as mentioned in Section 1. Moreover,
the rows of X are linearly independent, because the matrix (1.1) is nonsingular.
Therefore the rank of the n̂×n̂ symmetric matrix Ω is at most n̂−m̂. It follows
that Ω can be expressed in the form

Ω =
n̂−m̂
∑

j=1

sj zj zT
j = ZSZT , (4.1)

where each sj is −1 or +1, where each zj is in Rn̂, where Z is the n̂×(n̂−m̂)
matrix with the columns zj, and where S is the diagonal matrix with the diagonal
elements sj, j =1, 2, . . . , n̂−m̂. We are going to study the factorization (4.1) of Ω.
We find that in practice it is highly advantageous to store the factors instead of
Ω itself, the main reason being given in the following lemma, which is valid even
if much damage has been done to Z by computer rounding errors.

Lemma 3: Let H be a nonsingular symmetric matrix that has the form

H =

(

ZSZT ΞT

Ξ Υ

)

l n̂

l m̂ ,
(4.2)

where Z has only n̂−m̂ columns. Then all the elements of the bottom right m̂×m̂
submatrix of H−1 are zero.

Proof: Let i and j be any integers from the interval [n̂+1, n̂+m̂], and let the
matrix C(ij) be formed by deleting the j-th row and i-th column of H. Because
of the elementary identity

H−1
ij = (−1)i+j det(C(ij)) / det(H), (4.3)

we ask whether C(ij) is singular. The first n̂ rows of C(ij) give the submatrix
(

ZSZT (m̂−1) columns of ΞT
)

l n̂ , (4.4)

whose rank is bounded above by the sum

rank (ZSZT ) + (m̂−1) ≤ n̂−1. (4.5)

It follows that the first n̂ rows of C(ij) are linearly dependent. Therefore the
element (4.3) of H−1 is zero, which completes the proof. 2

The numerical results of Section 6 will show that, by using the factorization
(4.1) in the new algorithm for unconstrained optimization, huge gains in efficiency
are obtained in some calculations. Substantial gains are expected, because Lemma
3 implies a major improvement to the stability properties of the procedure for
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updating H. Indeed, because W has the structure (1.1), no errors occur in the
bottom right m̂×m̂ submatrix of H−1, as stated in the paragraph after equation
(3.6), where n̂ and m̂ take the values m and n+1, respectively. Another advantage
of the factorization is that it may reduce the damage from the new rounding errors
of each application of the updating procedure. We recall the example of Section
3, in order to illustrate this remark.

We give most of our attention to the calculation of σ̂ in expression (3.9), re-
membering that errors in σ̂ of magnitude (ξ/η)8ε are found at the end of Section
3. We separate β̂ = 1

2
‖x+‖4−wTHw into four parts, namely 1

2
‖x+‖4 and the con-

tributions to −wTHw from the off diagonal, bottom right and top left partitions
of the matrix (3.3). We see that the damage to the first three parts from the
computer arithmetic is O(ξ4ε), O(ξ6η−2ε) and O(ξ2η2ε), respectively. The last
part is −ŵT Ω ŵ, where ŵ has the components 1

2
(xT

i x+), i = 1, 2, . . . ,m, and the
damage to this part in Section 3 is O(ξ8η−4ε). Now, however, the factorization
(4.1) provides the identity

−ŵT Ω ŵ = −
m−n−1

∑

j=1

sj (zT
j ŵ)2. (4.6)

We deduce below that, if one calculates the right hand side of this equation instead
of the left hand side, then the contributions from rounding errors are smaller than
before.

The product ZSZT in the example has to be the top left submatrix of expres-
sion (3.3). It follows that S is the 2×2 unit matrix, but Z is not unique, because
ZSZT remains the same if Z is post-multiplied by any 2×2 orthogonal rotation.
We make the choice

ZT =
√

2 η−4

(

1 −1
2

−1
2

0 0

1 0 0 −1
2

−1
2

)

, (4.7)

which agrees with the leading part of expression (3.3). Thus computer arithmetic
gives the vector

ZT ŵ =
√

2 η−4

(

−1
2
η2(ξ+η)2+ O(ξ4ε)

−1
2
η4+ O(ξ4ε)

)

=

(

zT
1 ŵ + O(ξ4η−2ε)

zT
2 ŵ + O(ξ4η−2ε)

)

. (4.8)

Hence, by squaring the components on the right hand side, we find that the
dominant part of the damage from rounding errors to the term (4.6) has the form

2
m−n−1

∑

j=1

|zT
j ŵ| O(ξ4η−2ε) =

√

2 η−4
{

η2(ξ+η)2+ η4
}

O(ξ4η−2ε)

= O(ξ6η−2ε). (4.9)

Therefore the resultant contributions to σ̂= α̂β̂+τ̂ 2 are now of magnitude (ξ/η)6ε.
Moreover, τ̂ =eT

4 Hw and the error in τ̂ are 1 and O(ξ4η−4ε), respectively, so the
damage to σ̂ from errors in τ̂ is negligible.
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This gain in accuracy is achieved from condition (4.9), because, for each j,
the scalar product zT

j ŵ on the left hand side is at most O(ξ2), although it is a
linear combination of terms of magnitude ξ4η−2. Thus the gain occurs also in
the following generalization of the example. Let the points xi, i = 1, 2, . . . ,m,
and x+ be in a cluster of radius η, and let ξ be the distance of the centre of the
cluster from the origin, where 0 < η ¿ ξ. Then the elements of the submatrix
Ω of expression (1.2) are independent of ξ, and, assuming no unusual tendencies
towards singularity in W , they are O(η−4), so the elements of Z are O(η−2). We
write the components of ŵ in the form

ŵi = 1
2
(xT

i x+)2 = 1
2
(xT

i x+−x̄T x+)2+ (xT
i x+) (x̄T x+) − 1

2
(x̄T x+)2, (4.10)

i = 1, 2, . . . ,m, where x̄ is the centre of the cluster. Now, according to the first
paragraph of this section, Z has the property XZ =0, so the definition (1.12) of
X gives the equations

m
∑

i=1

Zij = 0 and
m

∑

i=1

Zij xT
i = 0, i=1, 2, . . . ,m−n−1. (4.11)

Therefore expression (4.10) with ‖xi−x̄‖=O(η) and ‖x+‖=O(ξ) imply the bound

|zT
j ŵ| =

∣

∣

∣

m
∑

i=1

Zij

{

1
2
(xT

i x+−x̄T x+)2+ (xT
i x+) (x̄T x+) − 1

2
(x̄T x+)2

}

=
∣

∣

∣

1
2

m
∑

i=1

Zij

(

(xi−x̄)T x+
)2 ∣

∣

∣ = O(ξ2), j =1, 2, . . . ,m−n−1, (4.12)

which shows the cancellation that is vital to the argument of the previous para-
graph. Thus the improvement there to the accuracy in σ̂ is achieved in the present
generalization.

Furthermore, if we apply the updating formula (2.12), which is not recom-
mended, then a small reduction in the dominant error of β can be gained by
employing the right hand side instead of the left hand side of the identity

−v̂T Ω v̂ = −
m−n−1

∑

j=1

sj (zT
j v̂)2. (4.13)

A simple calculation gives the value zT
2 v̂≈−2−1/2ξ3η−1 in the example of Section

3, which is unfavourable in comparison to the bound (4.12) on zT
j ŵ. Therefore

the damage to σ= σ̂ from computer rounding errors is now of magnitude (ξ/η)7ε.
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5. Updating the factorization of Ω

Let the symmetric matrix H ≈ W−1 have the form (4.2), where S, Z, Ξ and Υ
are available, and let W+ be constructed as before, the t-th row and column of
W being replaced by vT and v. We recall that H+ ≈ (W+)−1 is defined by the
conditions (2.2), assuming that H and H+ are nonsingular. Therefore H+ can
be generated by one of the updating methods that have been described already.
In this section, however, we address the problem of expressing the leading n̂×n̂
submatrix of H+ as the product

Ω+ =
n̂−m̂
∑

j=1

s+
j z+

j z+ T
j = Z+S+Z+ T , (5.1)

in order that the bottom right m̂×m̂ submatrix of (H+)−1 is identically zero,
as proved in Lemma 3. Therefore we seek a convenient procedure that generates
s+

j =±1 and z+
j ∈Rn̂, j =1, 2, . . . , n̂−m̂, explicitly from S, Z, Ξ, Υ, t and v.

We pick the submatrices Ξ+ and Υ+ of the partition

H+ =

(

Z+S+Z+ T Ξ+ T

Ξ+ Υ+

)

l n̂

l m̂
(5.2)

from equation (2.12) or (3.8), the latter formula being used by the new algorithm
for unconstrained optimization. Therefore we require Hv or Hw, respectively.
These vectors are generated in the obvious way from the form (4.2) of H, taking
advantage of the availability of ZT v̂ or ZT ŵ from the calculation of σ = σ̂, as
described in Section 4. The vector

Het =





∑n̂−m̂
j=1 sj (eT

t zj) zj

Ξ et





l n̂

l m̂
(5.3)

is also required after t has been chosen from the interval [1, n̂], where et on the
left and right hand sides is in Rn̂+m̂ and Rn̂, respectively. We find below that we
may have applied a rotation to Z that forces eT

t zj to be zero, and then in practice
we drop the j-th term from the sum of expression (5.3).

Immediately after the selection of t, we expect the scalar products eT
t zj, j =

1, 2, . . . , n̂−m̂, to be nonzero. However, if eT
t zj is nonzero, where 1≤ j < n̂−m̂,

then, by using the identity

a aT + b bT = (cos θ a + sin θ b) (cos θ a + sin θ b)T

+ (cos θ b − sin θ a) (cos θ b − sin θ a)T , θ∈R, a, b∈Rn̂, (5.4)

or

a aT − b bT = (cosh θ a + sinh θ b) (cosh θ a + sinh θ b)T

− (cosh θ b + sinh θ a) (cosh θ b + sinh θ a)T , θ∈R, a, b∈Rn̂, (5.5)
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in the case sj = sn̂−m̂ or sj =−sn̂−m̂, respectively, we can overwrite zn̂−m̂ and zj

by vectors that preserve the matrix Ω = ZSZT , and usually we can choose θ so
that eT

t zj becomes zero. Thus we may satisfy the conditions

eT
t zj = 0, j =1, 2, . . . , n̂−m̂−1. (5.6)

The reason for doing so is not to simplify expression (5.3), but because the fol-
lowing lemma suggests a highly convenient procedure for generating the required
factorization (5.1).

Lemma 4: Let the conditions of the theorem at the beginning of Section 2 be
satisfied, let H have the form (4.2), where Z has only n̂−m̂ columns, and where
S is a diagonal matrix as in equation (4.1), and let t be from the interval [1, n̂].
Then the leading n̂× n̂ submatrix of H+ has a factorization of the form (5.1).
Further, if Z has the property (5.6), then the first n̂−m̂−1 columns of Z+ and
diagonal elements of S+ can be given the values

z+
j = zj and s+

j = sj, j =1, 2, . . . , n̂−m̂−1, (5.7)

respectively. In this case, the final column of Z+ is the vector

z+
n̂−m̂ = ±

∣

∣

∣(et−H̃ v)T v
∣

∣

∣

−1/2
chop (et−H̃ v), (5.8)

where the choice of sign can be made later, where H̃ is the matrix (2.4), and where
the components of chop (et−H̃ v)∈Rn̂ are the first n̂ components of et−H̃v. The
corresponding diagonal element of S+ is s+

n̂−m̂ =±1, its sign being the same as the

sign of the denominator (et−H̃v)T v of formula (2.5).

Proof: The conditions of the theorem include the nonsingularity of H. It follows
from Lemma 3 that the bottom right m̂×m̂ submatrix of H−1 is zero. The second
part of expression (2.2) shows that (H+)−1 has this property too, the value of t
being from the interval [1, n̂]. Therefore the existence of the factorization (5.1) is
established by the argument in the first paragraph of Section 4.

Let H+ be generated by the method of the theorem of Section 2, which is
possible because of the assumptions (2.3) and Htt 6= 0, and let Ω̃ be the leading
n̂×n̂ submatrix of H̃. Then equations (2.4), (4.1), (5.6) and (5.7) give the formula

Ω̃ = Ω −
Ω et e

T
t Ω

eT
t Ω et

=
n̂−m̂
∑

j=1

sj zj zT
j −

s2
n̂−m̂ (eT

t zn̂−m̂)2 zn̂−m̂ zT
n̂−m̂

sn̂−m̂ (eT
t zn̂−m̂)2

=
n̂−m̂−1

∑

j=1

sj zj zT
j =

n̂−m̂−1
∑

j=1

s+
j z+

j z+ T
j . (5.9)

We see that Ω+ is the sum of the matrix (5.9) and the leading n̂×n̂ submatrix of
the rank one term of expression (2.5). In other words, because of the choices of
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z+
n̂−m̂ and s+

n̂−m̂ in and just after equation (5.8), Ω+ is the sum in the middle of
expression (5.1), as required. 2

We derive a convenient way of updating Z in the case (5.6) by eliminating H̃
from the construction in Lemma 4. Equations (4.1) and (5.6) provide the formulae

Ω et = sn̂−m̂ (eT
t zn̂−m̂) zn̂−m̂

α = Htt = Ωtt = sn̂−m̂ (eT
t zn̂−m̂)2

}

, (5.10)

as in the first line of expression (5.9). Therefore the definition (2.4) of H̃ gives
the vector

chop (et−H̃ v) = chop (et−Hv) + (eT
t Hv)α−1 Ω et

= (eT
t Hv) (eT

t zn̂−m̂)−1zn̂−m̂ + chop (et−Hv) (5.11)

and the scalar product

(et−H̃ v)T v = (et−Hv)T v + α−1 (eT
t Hv)2 = α−1σ, (5.12)

where the last equation depends on the values (2.13) and σ =αβ+τ 2. It follows
from the definition (5.8) and conditions (5.10)–(5.12) that z+

n̂−m̂ can be written in
the form

z+
n̂−m̂ = ±|α|1/2 |σ|−1/2

{

(eT
t Hv) (eT

t zn̂−m̂)−1zn̂−m̂ + chop (et−Hv)
}

= |σ|−1/2
{

τ zn̂−m̂ + (eT
t zn̂−m̂) chop (et−Hv)

}

, (5.13)

by making the choice ±|α|1/2 = eT
t zn̂−m̂. Further, because the signs of s+

n̂−m̂ and

(et−H̃ v)T v=α−1σ have to be the same, it follows from the last part of expression
(5.10) that the sign of s+

n̂−m̂ is opposite to the sign of sn̂−m̂ if and only if σ is
negative. The use of equations (5.7) and (5.13) for updating Z is recommended,
one reason being that again the division by α = eT

t Het, which occurs in the
theorem, has been removed.

When the partitions Ξ+ and Υ+ of H+ are obtained from formula (3.8), instead
of from formula (2.12), we prefer to put v = w+γ et into expression (5.13). The
conditions (5.10) show that the term (eT

t zn̂−m̂) chop (−γHet) is just −αγ zn̂−m̂,
and equations (2.13), (3.7) and (3.9) imply that τ−αγ has the value eT

t H(v−γet)=
eT

t Hw= τ̂ . Thus, recalling σ̂=σ, we can write the vector (5.13) in the form

z+
n̂−m̂ = |σ̂|−1/2

{

τ̂ zn̂−m̂ + (eT
t zn̂−m̂) chop (et−Hw)

}

. (5.14)

The method of the last two paragraphs has another reassuring property in
the situation when α = α̂ is zero. This possibility is unlikely in practice with
the conditions (5.6), because then all of the terms eT

t zj, j = 1, 2, . . . , n̂−m̂, are
zero, so the t-th row and column of Ω are identically zero. In this case, σ = σ̂
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has the positive value αβ+τ 2 = τ 2 or α̂β̂+ τ̂ 2 = τ̂ 2 in equation (5.13) or (5.14),
respectively. Thus the method gives z+

n̂−m̂ = ±zn̂−m̂ and s+
n̂−m̂ = sn̂−m̂, which

implies Ω+ = Ω. Now the conditions (5.6) are preserved if the columns of Z are
permuted. Therefore it is reassuring that Ω+ =Ω is independent of the particular
column of Z that is chosen to be last. In the present case, α, α̂ and the first n̂
components of Het are all zero in formulae (2.12) and (3.8), so these formulae
confirm that Ω+ =Ω should occur.

We have to give further attention to the method for updating Z, because
α = α̂ = Ωtt may be zero with nonzero elements elsewhere in the t-th row and
column of Ω. Then the conditions (5.6) cannot be obtained by rotations of the
form (5.4) and (5.5), the trouble in exact arithmetic being the choice of θ in
equation (5.5) in the case |eT

t a| = |eT
t b| 6= 0. Indeed, neither cosh θ a+sinh θ b

nor cosh θ b+sinh θ a can have a zero t-th component if θ is finite, and one of
these vectors is intended to overwrite zj. Another difficulty in practice is that
the proposed use of formula (5.5) tends to magnify any errors in zj and zn̂−m̂.
Therefore the following way of updating Z without this formula is recommended.
If eT

t zj is nonzero, and if sk = sj holds for k 6= j, then, by applying the Givens
rotation (5.4) to zj and zk, we can preserve ZSZT and achieve eT

t zj =0. Thus all
but one or two of the elements eT

t zj, j =1, 2, . . . , n̂−m̂, are made zero in a stable
way. The number is one if all the signs sj, j =1, 2, . . . , n̂−m̂, are the same, and
then the updating of Z is completed by the procedure that has been described
already. The alternative case is addressed in the remainder of this section. For
ease of notation, we assume that the rotations (5.4) have provided the conditions

eT
t zj = 0, j =3, 4, . . . , n̂−m̂, (5.15)

and that the values of s1 and s2 are +1 and −1, respectively. This situation
can occur in the application to unconstrained optimization, but it would be due
to computer rounding errors, because, when Ω has rank n̂−m̂ and no negative
eigenvalues, then all the signs sj in the factorization (4.1) are positive.

Let the conditions (5.15) hold with s1 = +1 and s2 = −1. If |eT
t z1| 6= |eT

t z2|
occurs, then, by combining a rotation of the form (5.5) with the procedure given
earlier, we deduce that both z+

1 and z+
2 are in the linear space spanned by z1,

z2 and chop (et−Hv). By continuity, we also expect this property in the case
|eT

t z1|= |eT
t z2|. Therefore we pick the values

z+
j = zj and s+

j = sj, j =3, 4, . . . , n̂−m̂, (5.16)

for the factorization (5.1). The corresponding values of z+
1 , z+

2 , s+
1 and s+

2 are
addressed in the lemma below, two alternatives being presented, in order to avoid
cancellation when the parameter β of formula (2.12) is positive or negative. The
identity (5.5) implies that the number of suitable choices of z+

1 and z+
2 is infinite.

Lemma 5: Let the conditions of the first sentence of Lemma 4 be satisfied with
the equations (5.15), let s1 and s2 be +1 and −1, respectively, and let H+ be
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defined by formula (2.12), where α=eT
t Het and σ=αβ+τ 2, the value of σ being

nonzero. Then the factorization (5.1) of the leading n̂×n̂ submatrix of H+ allows
the values (5.16). The choices

z+
1 = |τ 2+β ξ2

1 |
−1/2

{

τ z1 + ξ1 u
}

z+
2 = |σ (τ 2+β ξ2

1)|
−1/2

{

−β ξ1 ξ2 z1 + (τ 2+β ξ2
1) z2 + τ ξ2 u

}











(5.17)

or the choices

z+
1 = |σ (τ 2−β ξ2

2)|
−1/2

{

(τ 2−β ξ2
2) z1 + β ξ1 ξ2 z2 + τ ξ1 u

}

z+
2 = |τ 2−β ξ2

2 |
−1/2

{

τ z2 + ξ2 u
}











(5.18)

can also be made, where ξ1 =eT
t z1, ξ2 =eT

t z2 and u = chop (et−Hv). If expression
(5.17) is preferred in the case β ≥ 0, then s+

1 and s+
2 take the values +1 and

−signσ, respectively. Their values in the alternative case (5.18) with β ≤ 0 are
s+
1 =signσ and s+

2 =−1.

Proof: Equations (2.12), (4.1), (5.1) and (5.16) imply that it is sufficient to
establish the identity

s+
1 z+

1 z+ T
1 + s+

2 z+
2 z+ T

2 = z1 zT
1 − z2 zT

2

+ σ−1
{

αuuT − βΩ et e
T
t Ω + τ (Ω et u

T + u eT
t Ω)

}

. (5.19)

The conditions (5.15), with s1 =+1 and s2 =−1, provide the values

Ω et = ξ1 z1 − ξ2 z2 and α = eT
t Ω et = ξ2

1 − ξ2
2 . (5.20)

It follows from σ = τ 2+(ξ2
1−ξ2

2)β that the right hand side of expression (5.19) is
σ−1 times the matrix

(ξ2
1−ξ2

2)uuT + τ ξ1 (z1 uT + u zT
1 ) − τ ξ2 (z2 uT + u zT

2 )

+ (τ 2−β ξ2
2) z1 zT

1 + β ξ1 ξ2 (z1 zT
2 + z2 zT

1 ) − (τ 2+β ξ2
1) z2 zT

2 . (5.21)

Moreover, in the case (5.17) with the signs s+
1 =+1, s+

2 =−signσ and τ 2+βξ2
1 >0,

the left hand side of expression (5.19) is σ−1 times the matrix

(τ 2+β ξ2
1)

−1
[

(τ 2+β ξ2
1−β ξ2

2)
{

τ z1 + ξ1u
}{

τ z1 + ξ1u
}T

−
{

−β ξ1ξ2 z1

+ (τ 2+β ξ2
1) z2 + τ ξ2u

}{

−β ξ1ξ2 z1 + (τ 2+β ξ2
1) z2 + τ ξ2u

}T ]

, (5.22)

and in the case (5.18) with the signs s+
1 =signσ, s+

2 =−1 and τ 2−βξ2
2 >0, the left

hand side is σ−1 times the matrix

(τ 2−β ξ2
2)

−1
[

−(τ 2+β ξ2
1−β ξ2

2)
{

τ z2 + ξ2u
}{

τ z2 + ξ2u
}T

+
{

(τ 2−β ξ2
2) z1

+ β ξ1ξ2 z2 + τ ξ1u
}{

(τ 2−β ξ2
2) z1 + β ξ1ξ2 z2 + τ ξ1u

}T ]

. (5.23)
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By comparing the multipliers of each of the terms uuT , z1u
T +u zT

1 , z2u
T +u zT

2 ,
z1z

T
1 , z1z

T
2 +z2z

T
1 and z2z

T
2 , we find that the matrices (5.21), (5.22) and (5.23) are

the same. Therefore the lemma is true. 2

We can replace α, β, τ , σ and v by α̂, β̂, τ̂ , σ̂ and w throughout the statement
and proof of Lemma 5, the definition of H+ being changed from formula (2.12) to
formula (3.8). Thus the lemma is useful to the new algorithm for unconstrained
minimization, if a practical failure occurs in the theoretical property si = +1,
i=1, 2, . . . , n̂.

6. Numerical results and discussion

Only one table of numerical results is presented. It illustrates three of the main
stages of the research of the author in the last five years on algorithms for min-
imization without derivatives. The first stage provided the UOBYQA software
(Powell, 2002a), which defines all the parameters of every quadratic model by
interpolation to values of the objective function. Therefore the number of inter-
polation conditions is 1

2
(n+1)(n+2), so the amount of routine work of each iteration

is O(n4). Thus UOBYQA is unsuitable for large numbers of variables. Then the
second stage began with the challenge of deriving suitable updates of quadratic
models from far fewer interpolation conditions. The least Frobenius norm method,
described in Section 1, was tried, and it performed brilliantly. There were not only
huge reductions in the amount of work for n≥20, but also an unconstrained prob-
lem with n = 160 was solved to high accuracy using fewer than 10000 values of
the objective function, although UOBYQA would require 1

2
(n+1)(n+2)=13041

values to construct its first quadratic model. Whenever the author has discovered
techniques of this importance to practical algorithms on previous occasions, he
has developed Fortran software that makes the discoveries available for general
use. His efforts to do so again were frustrated for 18 months by loss of efficiency
due to computer rounding errors, as shown in the example of Section 3. That
loss is addressed in our discussion of Table 1 below, the relevant results being
obtained by the version of the new algorithm that is the subject of Powell (2003).
The factorization method of Section 4 was introduced in June, 2003. It provided
the jump from stage two to stage three, by making tolerable the damage from
rounding errors in difficult situations, which is also illustrated in Table 1. The
latest Fortran software, namely NEWUOA, is available free of charge from the
author at the e-mail address mjdp@cam.ac.uk.

We apply the software that is mentioned above to the objective function

F (x) =
2n
∑

i=1

{

bi −
n

∑

j=1

(

Cij cos(θjxj) + Sij sin(θjxj)
)}2

, x∈Rn, (6.1)

in the case n = 40, where each Cij and Sij is a random integer from [−100, 100],
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UOBYQA Powell (2003) NEWUOA

m=861 m=81 m=861 m=81 m=861

Problem 1 2181 2345 11335 1886 2216
Problem 2 2539 2295 3945 1601 2120
Problem 3 3035 2298 3205 1595 2199
Problem 4 2305 2469 6098 2062 2002
Problem 5 2028 2062 4412 1838 1996

max F (x
∗
) 4.6×10−9 3.0×10−8 9.0×10−10 1.5×10−7 1.1×10−9

max ‖x
∗
−x∗‖∞ 7.6×10−7 2.0×10−6 3.1×10−7 5.4×10−6 3.6×10−7

Average time 814 secs 62 secs 3423 secs 37 secs 1162 secs

Table 1: Numbers of function values etc in the case (6.1) with n=40

each θj is chosen randomly from the logarithmic distribution on [0.1, 1], and the
parameters bi, i = 1, 2, . . . , 2n, are defined by F (x∗) = 0, where the component
x∗

j of x∗ is picked randomly from the uniform distribution on [−π/θj, π/θj] for
j = 1, 2, . . . , n. An initial vector of variables, x0 say, is required by all versions
of the software, and its j-th component is taken at random from the uniform
distribution on [x∗

j −0.1π/θj, x∗

j +0.1π/θj] for j = 1, 2, . . . , n. The software also
requires initial and final values of a trust region radius, which are set to ρbeg =10−1

and ρend =10−6, respectively. The number of interpolation conditions, namely the
integer m of equation (1.3), is m= 1

2
(n+1)(n+2)=861 in UOBYQA, but otherwise

it has to be prescribed. We pick both m=81 and m=861 for the software of stages
two and three. Thus five different methods provide the results of the numerical
experiments. Only five different sets of random numbers were tried, each set giving
a particular objective function (6.1) and a particular starting point x0, which are
used throughout the relevant row of Table 1. The calculations were run in double
precision arithmetic on a Sun Ultra 10 workstation.

The numbers of function evaluations that occur when each of the five test
problems is solved by the five different methods are shown separately in the main
part of Table 1. We see that the NEWUOA software compares favourably with
the other implementations, and that fewer function values are usual when m
is decreased from 861 to 81. Other experiments by the author have supported
these findings for n ≥ 40, especially when n is large, but they are not reported
here, because the most important feature of the table to our work is the severe
inefficiency of the Powell (2003) algorithm in the case m=861. The crucial point
is that in theory the least Frobenius norm updating technique is redundant if m
has the value 1

2
(n+1)(n+2), because there is no freedom in a quadratic model
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that satisfies the current interpolation conditions. Thus, apart from the effects of
computer rounding errors, the performance of the Powell (2003) algorithm with
n = 40 and m = 861 should be similar to that of UOBYQA. Therefore one of
the main aims during the development of the more recent software was to find
techniques for auxiliary tasks that would provide the efficiency of UOBYQA in the
case m= 1

2
(n+1)(n+2). Particular attention was given to the frequency of shifts

of the origin x0, mentioned in Section 3. Those attempts failed miserably during
the second stage of the work, however, so the last column of Table 1 provides
excellent motivation for the use of the factorization (4.1).

The last three rows of Table 1 show the accuracy and running times of the
calculations. Here x

∗
is the final vector of variables that is returned by the soft-

ware, and we recall that x∗ is the optimal vector of variables, the parameters bi,
i = 1, 2, . . . , 2n, being defined by F (x∗) = 0. The maximum and average values
in these rows are taken over the five test problems. The magnitudes of F (x

∗
)

and ‖x
∗
−x∗‖∞ are very acceptable, because ρend =10−6 is a lower bound on the

radii of the trust regions that are chosen automatically. The good accuracy in the
m=861 column of Powell (2003) is particularly welcome, because it demonstrates
the success of the stability properties of Section 3 in recovering from large errors
in the approximation H≈W−1. Those errors were investigated by monitoring the
signs of the diagonal elements of Ω, which should all be positive. In Problem 1,
where 11335 function values are required, the updating formula (3.8) was applied
10473 times, 3 negative signs were introduced, and they survived for 8, 58 and 3
consecutive iterations. The times in the last row confirm that huge savings can
be achieved by the new software, provided that n is sufficiently large and the
calculation of the objective function is relatively cheap. Here the advantage of
NEWUOA over Powell (2003), in the m=81 columns of the table, is due mainly
to the inclusion of a truncated conjugate gradient method, instead of an O(n3)
procedure, for solving the trust region subproblems that occur.

The positive semi-definiteness of Ω is important in theory, but some violations
of the conditions Ωii≥0, i=1, 2, . . . ,m, are mentioned in the previous paragraph.
Therefore we ask briefly whether it may be advantageous to alter computed num-
bers if such violations become obvious in practice. A technique of this kind is
proposed in formula (7.5) of Powell (2003), namely the replacement of σ̂ in our
expression (3.9) by the value

σ̂ = max[α̂, 0] max[β̂, 0] + τ̂ 2, (6.2)

because α̂ and β̂ should be nonnegative, but the calculated values of α̂ and β̂
are retained in the numerator of equation (3.8). Experiments on the device (6.2)
during stage two of the development of the new software were highly unfavourable.
Moreover, by changing β̂ and then defining σ̂ = α̂β̂+ τ̂ 2, as suggested in Lemma
2, the author was unable to avoid the inefficiency that is shown by the large
numbers in the middle column of Table 1. With the benefit of hindsight, we take
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the view now that, if a need for the modification of parameters is detectable, then
substantial errors must have occurred already that require attention. We rely on
the stability property, described in the second paragraph of Section 3, to remove
old errors automatically. Therefore we should preserve the useful feature that the
t-th rows and columns of (H+)−1 and W+ are the same, although H−1 may be
very different from W . It follows that changes to β̂ and other parameters are not
recommended, even if it is clear from the factorization (5.1) that Ω+ is going to
have a negative eigenvalue.

The difficulties addressed in this paper are due to working with sequences of
inverse matrices. If W is nearly singular, then H = W−1 is often the sum of a
matrix of low rank with huge elements and another matrix with much smaller
elements that is important. Then the rounding errors of the first matrix damage
the elements of the second matrix severely. Therefore the standard advice of many
numerical analysts is to employ factorizations of matrices instead of storing and
updating their inverses. The new algorithms, however, do require coefficients of
Lagrange functions, and those coefficients are particular elements of H = W−1.
The author has not investigated whether it would be less painful to derive them
from a factorization of W . He does not intend to do so, because, due to the good
performance of the NEWUOA software in practice, his current research on least
Frobenius norm updating in unconstrained minimization without derivatives may
be nearly complete.
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