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In this paper we explore quadrature methods for highly oscillatory integrals. Gen-
eralizing the method of stationary phase, we expand such integrals into asymptotic
series in inverse powers of the frequency. The outcome are two families of meth-
ods, one based on a truncation of the asymptotic series and the other extending an
approach implicit in the work of Filon. Both kinds of methods approximate the inte-
gral as a linear combination of function values and derivatives, with coefficients that
may depend on frequency. We determine asymptotic properties of these methods,
proving that, perhaps counterintuitively, their performance drastically improves as
frequency grows. The paper is accompanied by numerical results that demonstrate
the potential of this set of ideas.
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1. Introduction

The quadrature of highly oscillating integrals is a computational problem of an
overarching importance in a wide range of applications, e.g. quantum chemistry,
image analysis, electrodynamics, computerized tomography and fluid mechanics. It
is widely perceived as a ‘difficult’ problem, best overcome by somehow eliminating
oscillation, for example by choosing exceedingly small subintervals. The contention
of this paper is that, once appropriate discretization methods are designed and
properly understood, the problem of highly oscillatory quadrature becomes rela-
tively simple and that the precision of the calculation actually increases as the
frequency of oscillation grows. This phenomenon has already been identified in
(Iserles, 2003a) and (Iserles, 2003b) and earlier in (Levin, 1996) for a different com-
putational approach. Here we extend the approach of Iserles (2003a, 2003b) and
show that the rate of decay of the error, once frequency grows, can be increased
arbitrarily by the inclusion of higher derivatives.

Amazingly enough, the origin of the thread that will lead us to a new generation
of highly effective methods is a paper that appeared more than seventy years ago.
The standard numerical approach toward the discretization of the integral

I[f ] =

∫ 1

0

f(x)eiωg(x)dx, (1.1)
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where f and g are suitably smooth functions, is Gauss–Christoffel quadrature: we
interpolate the integrand at distinct nodes c1 < c2 < · · · < cν in [0, 1] by a polyno-
mial p of degree ν − 1 and approximate

I[f ] ≈ QGC[f ] =

∫ 1

0

p(x)dx

(Davis & Rabinowitz, 1980). Unfortunately, if ω À 1, this results in a completely
useless estimation of I[f ], bearing an error of O(1) (Iserles, 2003a). An alternative
approach builds upon an idea first advanced in a special case by Louis Napoleon
George Filon (1928) and phrased in more modern terminology by Flinn (1960).
Thus, instead of interpolating the integrand f(x)eiωg(x), we interpolate at c1, . . . , cν

the function f(x) by a polynomial f̃ and let

QF
1 [f ] =

∫ 1

0

f̃(x)eiωg(x)dx =

ν
∑

k=1

bk(ω)f(ck), (1.2)

where bk(ω) =
∫ 1

0
`k(x)eiωg(x)dx and `k is the kth cardinal polynomial of La-

grangian interpolation. Note that the construction of QF
1 requires the availability of

the first few moments
∫ 1

0
xmeiωg(x)dx in an explicit form. This is tacitly assumed in

the remainder of the paper. It was proved in (Iserles, 2003a) that, as long as g′ 6= 0
in [0, 1], it is true that

QF
1 [f ] − I[f ] ∼

{

O(ω−1), c1 > 0 or cν < 1,

O(ω−2), c1 = 0, cν = 1,
ω → ∞. (1.3)

Thus, increased frequency ω results in smaller error and this behaviour is en-
hanced once the endpoints are included among quadrature nodes. If g′ vanishes
at ξ1, . . . , ξs ∈ (0, 1), say, and nowhere else in [0, 1], and if g′′(ξk) 6= 0, k = 1, . . . , r,
then, once both the endpoints and the stationary points ξ1, . . . , ξr are nodes, we
obtain QF

1 [f ] − I[f ] = O(ω−3/2). The theory can been extended to more general
stationary points, when g′(ξk) = · · · = g(sk−1)(ξk) = 0, g(sk)(ξk) 6= 0 (Iserles,
2003b).

The current paper pursues the idea of letting the interpolating polynomial f̃

depend on derivatives of f , thereby improving upon the asymptotic estimate (1.3).
In effect, in place of Lagrange interpolation in the Filon method (1.3), we allow Her-
mite interpolation. This requires substantive extension of the asymptotic analysis
from (Iserles, 2003a, 2003b).

In §2 we consider the case g′ 6= 0, while §3 is devoted to the case when g is
allowed stationary points in [0, 1]. Our main basic tool is the method of station-

ary phase (Stein, 1993), except that, to derive high-order asymptotic estimates in
a convenient form, we need to resort to a new, albeit relatively straightforward,
method of analysis.

The work of §2–3 and the numerical results therein lead to two new families of
efficient methods for the quadrature of highly oscillatory integrals: a generalization
of Filon’s method (1.2), as well as a straightforward truncation of an asymptotic
expansion, which we term an asymptotic method. Early numerical results indicate
that, although both approaches have merit, a generalized Filon method is usually
better. More detailed analysis of the two approaches and means for a practical
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estimation of numerical error are a matter for current research and will feature in
a forthcoming publication.

Our results can be easily and transparently extended from [0, 1] to any bounded
interval by linear mapping, while the situation for unbounded intervals is, if at all,
substantially easier. As will be clear in §2–3, endpoints contribute to the asymptotic
expansion and, once an interval is infinite, the integral (1.1) exists and the moments
∫

∞

−∞
xmeiωg(x)dx, m ≥ 0, are bounded, this contribution disappears.

2. The case g
′(x) 6= 0, 0 ≤ x ≤ 1

We commence from the integral (1.1), assuming that the function g is strictly
monotone in the interval [0, 1]. Both here and in the sequel we assume that both
f and g are smooth: generalization to Cr[0, 1] functions for sufficiently large r ≥
1 is mathematically straightforward but notationally clumsy, and it obscures the
concepts at the basis of our work. Although the leading term in asymptotic series
of the integral as ω → ∞ can be derived from the van der Corput lemma (Stein,
1993), we require in our work more terms in an explicit form. They can be obtained
from the following lemma.

Lemma 2.1. Let

σ0[f ](x) = f(x),

σk+1[f ](x) =
d

dx

σk[f ](x)

g′(x)
, k = 0, 1, . . . .

Then, for ω → ∞,

I[f ] ∼ −
∞
∑

m=1

1

(−iω)m

{

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(0)

g′(0)
σm−1[f ](0)

}

. (2.1)

Proof. We prove by induction on s ≥ 0 the identity

I[f ] = −
s

∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(0)

g′(0)
σm−1[f ](0)

]

+
1

(−iω)s

∫ 1

0

σs[f ](x)eiωg(x)dx, ω > 0. (2.2)

It is certainly true for s = 0, coinciding with (1.1). For s ≥ 1 we integrate on the
right by parts,

1

(−iω)s

∫ 1

0

σs[f ](x)eiωg(x)dx = − 1

(−iω)s+1

∫ 1

0

σs[f ](x)

g′(x)

d

dx
eiωg(x)dx

= − 1

(−iω)s+1

[

eiωg(1)

g′(1)
σs[f ](1) − eiωg(0)

g′(0)
σs[f ](0) −

∫ 1

0

σs+1[f ](x)eiωg(x)dx

]

.

This proves (2.2) and, letting s → ∞, completes the proof of the lemma.

In the simplest, yet most important case g(x) = x the expansion (2.1) has a
particularly simple form,

I[f ] ∼ −
∞
∑

m=1

1

(−iω)m
[eiωf (m−1)(1) − f (m−1)(0)], ω → ∞, (2.3)
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which has already been proved in (H̊avie, 1973) and recently used for the compu-
tation of highly oscillatory integrals by Degani & Schiff (2003).

For general monotone g we have by direct calculation

σ0[f ] = f,

σ1[f ] = − g′′

g′2
f +

1

g′
f ′,

σ2[f ] =
3g′′

3 − gg′′′

g′4
f − 3g′′

g′3
f ′ +

1

g′2
f ′′,

σ3[f ] =
−15g′′

3
+ 10g′g′′g′′′ − g2g(iv)

g′6
f +

15g′′
2 − 4gg′′′

g′5
f ′ − 6g′′

g′4
f ′′ +

1

g′3
f ′′′

and it is trivial to prove that for every k ≥ 0 and j = 0, 1, . . . , k there exist functions
σk,j , which depend upon g and its derivatives, such that

σk[f ](x) =

k
∑

j=0

σk,j(x)f (j)(x), σk,k(x) =
1

[g′(x)]k
6= 0. (2.4)

An immediate consequence of lemma 2.1 is that the asymptotic method

QA
s [f ] = −

s
∑

m=1

1

(−iω)m

{

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(0)

g′(0)
σm−1[f ](0)

}

, (2.5)

a truncation of the asymptotic expansion (2.1), represents an efficient approxima-
tion to I[f ] once ω is large.

Theorem 2.2. For every smooth f and g it is true that

QA
s [f ] − I[f ] ∼ O(ω−s−1), ω → ∞. (2.6)

Proof. Follows at once from (2.2) since, replacing f by σs[f ] in (2.1), we observe

that
∫ 1

0
σs[f ](x)eiωg(x)dx = O(ω−1).

As an alternative to QA
s , we choose an integer n ≥ 2s, nodes c1 = 0 < c2 < · · · <

cν−1 < cν = 1 and integers θ1, θ2, . . . , θν ≥ 0 such that
∑ν

l=1 θl = n−ν and let f̃ be
a Hermite polynomial approximation to f at the points c1, . . . , cν of multiplicities
θ1, . . . , θν respectively. In other words, f̃ is a polynomial of degree n − 1 such that
f̃ (j)(cl) = f (j)(cl), j = 0, 1, . . . , θl, l = 1, 2, . . . , ν. It is well known that

f̃(x) =

ν
∑

l=1

θl
∑

j=0

αl,j(x)f (j)(cl),

where each αl,j is itself a polynomial of degree n − 1 such that α
(i)
l,j (cm) = 0 for

all i = 0, 1, . . . , θl and m = 1, 2, . . . , ν, except that α
(j)
l,j (cl) = 1. Consistently with

(1.2), we define the generalized Filon method QF
s as

QF
s [f ] =

∫ 1

0

f̃(x)eiωg(x)dx =

ν
∑

l=1

θj
∑

j=0

bl,j(ω)f (j)(cl), (2.7)
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Figure 1. The error for QA
2 (top) and QF

2 (bottom), scaled by ω3, for f(x) = cos x,
g(x) = x and 10 < ω < 100.

where θ1, θν ≥ s and

bl,j =

∫ 1

0

αl,j(x)eiωg(x)dx, j = 0, 1, . . . , θl l = 1, 2, . . . , ν.

Theorem 2.3. Suppose that θ1, θν ≥ s − 1. For every smooth f and g it is true

that

QF
s [f ] − I[f ] ∼ O(ω−s−1), ω → ∞. (2.8)

Proof. We replace f by f̃ − f in the asymptotic formula (2.1). Since f̃ (j)(0) =
f (j)(0), f̃ (j)(1) = f (j)(1), j = 0, 1, . . . , s−1, it follows from (2.4) that σk[f̃−f ](0) =
σk[f̃ − f ](1) = 0, k = 0, 1, . . . , s − 1. This readily implies the asymptotic formula
(2.8).

As an example, we take g(x) = x, s = 2 and, in Filon’s method, ν = 2, c1 = 0,
c2 = 1 and θ1 = θ2 = 1. The asymptotic and generalized Filon methods are,
respectively,

QA
2 [f ] =

eiωf(1) − f(0)

iω
+

eiωf ′(1) − f ′(0)

ω2
,

QF
2 [f ] =

(

− 1

iω
− 6

1 + eiω

iω3
+ 12

1 − eiω

ω4

)

f(0) +

(

eiω

iω
+ 6

1 + eiω

iω3
− 12

1 − eiω

ω4

)

f(1)

+

(

− 1

ω2
− 2

2 + eiω

iω3
+ 6

1 − eiω

ω4

)

f ′(0)

+

(

eiω

ω2
− 2

1 + eiω

iω3
+ 6

1 − eiω

ω4

)

f ′(1).

At a first glance, the asymptotic method has an obvious advantage, the simplicity
of its coefficients. On the other hand, while an asymptotic method blows up for
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Figure 2. The error for QF
2 , scaled by ω3, for f(x) = cos x, g(x) = x and 10 < ω < 100. We

have taken c = [0, 1

2
, 1] with n = 5, θ = [1, 0, 1] (top) and n = 6, θ = [1, 1, 1] (bottom).

small frequency, this is not the case with generalized Filon. As a matter of fact,
it was proved in (Iserles, 2003a) that for g(x) = x and 0 < ω ¿ 1 it is true that
QF

1 [f ] − I[f ] = 0 for all polynomials f of degree p − 1, where p is the order of the
usual Gauss–Christoffel quadrature at the nodes c1, c2, . . . , cν . Although this result
for general function g is no longer valid (Iserles, 2003b), it is nevertheless true from
our use of interpolatory quadrature weights that the degree of polynomial recovery
in general QF

s is at least n − 1.
However, the most striking advantage of generalized Filon emerges in numer-

ical experiments. Thus, in figure 1 we display the scaled errors ω3|QA
2 [f ] − I[f ]|

and ω3|QF
2 [f ] − I[f ]| for f(x) = cos x and g(x) = x. While both methods display

the expected error decay for large ω, QF
2 performs significantly better, and this is

confirmed by a raft of other computer experiments. Moreover, although the rate of
decay of generalized Filon cannot be improved by taking ν ≥ 3, hence adding inter-
nal nodes, this procedure seems to decrease drastically the leading error constant.
This can be clearly observed when comparing figures 1 and 2.

In figure 3 we consider the error for f(x) = ex, g(x) = (1 + x)2 and compare
errors in four methods: the asymptotic method QA

2 and three generalized Filon
methods QF

2 : with (a) c = [0, 1], θ = [1, 1], (b) c = [1, 1
2 , 1], θ = [1, 0, 1] and (c) c =

[0, 1
2 , 1], θ = [1, 1, 1]. To display all four errors, with disparate orders of magnitude,

in a single figure, we have computed the quantities log |Q[f ]− I[f ]|+3 log ω, where
Q[f ] stands for the underlying quadrature formulas. The rapid improvement in
generalized Filon for increasing n is clear.
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Figure 3. The logarithm of the error, scaled by ω3, for four different quadratures: from
the top, first QA

2 , then QF
2 for (a) c = [0, 1], θ = [1, 1], (b) c = [0, 1

2
, 1], θ = [1, 0, 1], and

(c) c = [0, 1

2
, 1], θ = [1, 1, 1]. Here f(x) = ex and g(x) = (1 + x)2.

3. Generalized Filon integration in the presence of

stationary points

Once g′ vanishes at one of more points in (0, 1), the asymptotics of I[f ] are given
by the classical method of stationary phase. This statement is, however, somewhat
misleading. In principle, the method of stationary phase applies in two situations,

1. Instead of integrating in [0, 1], we integrate in (−∞,∞), with the proviso that
both f and g are in L[R] ∩ C∞[R] (Olver, 1974); or

2. We integrate in [0, 1] but require that f has compact support sufficiently near
the stationary points of g (Stein, 1993).

However, the situation can be readily remedied by partitioning f into a sum of
bump functions and a remainder, as explained in (Iserles, 2003b). The outcome
is an important superposition principle, namely that the asymptotic form of (1.1)
is determined by the local behaviour at each stationary point, which can be in-
vestigated by the method of stationary phase, as well as the contribution of the
endpoints, as given by lemma 2.1.

As a matter of fact, we require more than the standard method of stationary
phase can deliver, namely the explicit form of all the expansion coefficients. This
will be provided in the next lemma, which, in a sense, does unto the method of
stationary phase what lemma 2.1 did to the van der Corput lemma.

We denote the generalized moments of the functional I by

µm(ω; ξ) = I[xm] =

∫ 1

0

(x − ξ)meiωg(x)dx, m ≥ 0
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and note that for every ξ ∈ [0, 1], and every smooth functions f and g, such that
g′(ξ) = 0, g′′(ξ) 6= 0 and g(x) 6= 0 in x ∈ (0, 1) \ {ξ}, it is true that

I[f ] = f(ξ)I[1]+I[f−f(ξ)] = f(ξ)µ0(ω; ξ)+
1

iω

∫ 1

0

f(x) − f(ξ)

g′(x)

d

dx
eiωg(x)dx. (3.1)

Lemma 3.1. Suppose that g is a smooth function and that g′(ξ) = 0, g′′(ξ) 6= 0,
for some ξ ∈ (0, 1). Then for every smooth f it is true that

I[f ] ∼ µ0(ω; ξ))

∞
∑

m=0

1

(−iω)m
ρm[f ](ξ)

−
∞
∑

m=1

1

(−iω)m

(

eiωg(1)

g′(1)
{ρm−1[f ](1) − ρm−1[f ](ξ)} (3.2)

−eiωg(0)

g′(0)
{ρm−1[f ](0) − ρm−1[f ](ξ)}

)

, ω → ∞,

where

ρ0[f ](x) = f(x),

ρk+1[f ](x) =
d

dx

ρk[f ](x) − ρk[f ](ξ)

g′(x)
, k ≥ 0.

Proof. Similarly to the proof of lemma 2.1, we commence by proving by induction
that

I[f ] = µ0(ω; ξ)
s−1
∑

m=0

1

(−iω)m
ρm[f ](ξ)

−
s

∑

m=1

1

(−iω)m

(

eiωg(1)

g′(1)
{ρm−1[f ](1) − ρm−1[f ](ξ)} (3.3)

−eiωg(0)

g′(0)
{ρm−1[f ](0) − ρm−1[f ](ξ)}

)

+
1

(−iω)s
I[ρs[f ]], s ≥ 0.

This is certainly true for s = 0. Moreover, by (3.1),

I[ρs[f ]] = µ0(ω; ξ)ρs[f ](ξ) +
1

iω

∫ 1

0

ρs[f ](x) − ρs[f ](ξ)

g′(x)

d

dx
eiωg(x)dx

and integration by parts, followed by substitution in (3.3) completes the inductive
proof. Letting s → ∞ yields the asymptotic estimate (3.2).

The asymptotic expansion (3.2) can be readily extended to the case when g′(ξ) =
g′′(ξ) = · · · = g(r)(ξ) = 0, g(r+1)(ξ) 6= 0 for any integer r ≥ 1. In place of (3.1) we
thus have

I[f ] =

r−1
∑

j=0

1

j!
f (j)(ξ)µj(ω; ξ) +

1

iω

∫ 1

0

f(x) − ∑r−1
j=0

1
j!f

(j)(ξ)(x − ξ)j

g′(x)

d

dx
eiωg(x)dx.
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Consequently, letting

ρ0[f ](x) = f(x),

ρk+1[f ](x) =
d

dx

ρk[f ](x) −
∑r−1

j=0
1
j!ρk[f ](j)(ξ)(x − ξ)j

g′(x)
, k ≥ 0,

we have, following a proof identical to that of lemma 3.1, the asymptotic estimate

I[f ] ∼
r−1
∑

j=0

1

j!
µj(ω; ξ)

∞
∑

m=0

1

(−iω)m
ρ(j)

m [f ](ξ)

−
∞
∑

m=1

1

(−iω)m

(

eiωg(1)

g′(1)
{ρm−1[f ](1) − ρm−1[f ](ξ)} (3.4)

−eiωg(0)

g′(0)
{ρm−1[f ](0) − ρm−1[f ](ξ)}

)

, ω → ∞.

for every smooth f .
Once we can derive an asymptotic expansion of the integral (1.1) for a sin-

gle stationary point in (0, 1), we can do so for any finite number of stationary
points. Thus, if ξ1, ξ2, . . . , ξq ∈ (0, 1) are all the stationary points, perhaps of dif-
ferent orders, of g, while g′(0), g′(1) 6= 0, we can partition the interval [0, 1] into q

subintervals I1, I2, . . . , Iq such that a single stationary point resides inside each Ij .
Therefore (3.4) applies (with trivial modification to cater for different endpoints)
in every Ij . A general asymptotic formula can be easily written down but such
generality probably obscures, rather than illuminating the issue.

We note in passing that the value of I[f ] is trivially independent of the partition.
In other words, the contribution of endpoints, except for 0 and 1, necessarily cancels
and, at least in principle, an asymptotic expression for I[f ] samples f and its
derivatives just at the endpoints 0 and 1 and the stationary points ξ1, ξ2, . . . , ξp.
This, however, is not as helpful as it sounds, since the choice of endpoints of Ij

expresses itself in the asymptotic formula inter alia in the definition of generalized
moments. Once we attempt to discard the contribution of “internal” endpoints, we
are rapidly led to fairly complicated and opaque expressions. On the other hand,
we preempt our discussion of generalized Filon methods in this setting by noting
that, as a consequence of our discussion, they can be formed by interpolating to
requisite order just at 0, ξ1, ξ2, . . . , ξp, 1.

Of course, to appreciate the rate of decay of I[f ] as ω À 1 grows, we must
determine the behaviour of the generalized moments µj(ω; ξ) for j = 0, 1, . . . , r−1.
This information follows from the method of the stationary phase, at least to the
extent that if ξ ∈ (0, 1), g′(ξ) = . . . = g(r)(ξ) = 0, g(r+1)(ξ) 6= 0 and g′(x) 6= 0
elsewhere in [0, 1] then there exist linear differential functionals ak, k = 0, 1, . . .,
such that for every smooth function h, compactly supported near ξ,

I[h] ∼
∞
∑

m=0

am[h]

ω(m+1)/(r+1)
, ω → ∞ (3.5)

(Stein, 1993). The term a0[h] is known explicitly and is a multiple of h(ξ). In
addition, if h(x) = O((x − ξ)j) for some ξ ∈ (0, 1) then it is easy to see that
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10 A. Iserles & S.P. Nørsett

ak[h] = 0 for k ≤ j. Therefore

µj(ω, ξ) = O(ω−j/(r+1)), j ≥ 0, ω → ∞.

Our first conclusion is that the asymptotic method (2.5) can be extended to
cater for stationary points. The following result follows readily from our discussion.

Theorem 3.2. Assume that g′(ξ) = g′′(ξ) = · · · = g(r)(ξ) =, g(r+1)(ξ) 6= 0 and

g′ 6= 0 in [0, 1] \ {ξ}. Then for every s ≥ 0 the method

QA
s [f ] =

r−1
∑

j=0

1

j!
µj(ω; ξ)

s−j−1
∑

m=0

1

(−iω)m
ρ(j)

m [f ](ξ)

−
s−1
∑

m=1

1

(−iω)m

(

eiωg(1)

g′(1)
{ρm−1[f ](1) − ρm−1[f ](ξ)} (3.6)

−eiωg(0)

g′(0)
{ρm−1[f ](0) − ρm−1[f ](ξ)}

)

carries for every smooth function f the asymptotic error

QA
s [f ] − I[f ] = O(ω−s−1/(r+1)).

Likewise, we can extend the generalized Filon method (2.7). We need first,
however, examine in greater detail the dependence of the operators ρk[f ] on the
derivatives of f . It is easy to see that for x 6= ξ each ρk[f ](x) is a linear combination
of f(x), f ′(x), . . . , f (k)(x) and this follows similarly to our treatment of operators
σk in §2. However, things are crucially different at x = ξ, a value that, according
to (3.3), we must sample. For example, for r = 1 we have by direct computation

ρ0[f ](ξ) = f(ξ),

ρ1[f ](ξ) = −1

2

g′′′(ξ)

g′′2(ξ)
f ′(ξ) +

1

2

1

g′′(ξ)
f ′′(ξ),

ρ2[f ](ξ) =

[

−5

8

g′′′
3
(ξ)

g′′5(ξ)
+

2

3

g′′′(ξ)g(iv)(ξ)

g′′4(ξ)
− 1

8

g(v)(ξ)

g′′3(ξ)

]

f ′(ξ)

+

[

5

8

g′′′
2
(ξ)

g′′4(ξ)
− 1

4

g(iv)(ξ)

g′′2(ξ)

]

f ′′(ξ) − 5

12

g′′′(ξ)

g′′3(ξ)
f ′′′(ξ)

+
1

8

1

g′′2(ξ)
f (iv)(ξ)

and so on. It is easy to prove that each ρk[f ](ξ) for k ≥ 1 depends on f (j)(ξ),
j = 1, 2, . . . , 2k.

The situation is more messy for general r ≥ 1. Let

f(x) =

∞
∑

m=0

fm

m!
(x − ξ)m, g(x) =

∞
∑

m=r+1

gm

m!
(x − ξ)m.

Then, after straightforward algebra,

ρ1[f ](x) = −r + 1

r + 2

gr+2

g2
r+1

fr +
1

gr+1
fr+1 + O(x − ξ).
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Therefore ρ1[f ](ξ) depends linearly on f (r)(ξ) and f (r+1)(ξ). More generally, letting

ρ1[f ](x) =

∞
∑

m=0

f̃m

m!
(x − ξ)m,

we observe that each f̃m is a linear combination of fr, fr+1, . . . , fr+m+1. Therefore,
applying to ρ1[f ] the same argument as to f , we deduce that ρ2[f ](ξ) is a linear
combination of f (j)(ξ), j = r, r + 1, . . . , 2r + 2. In general, an inductive argument
shows that ρk[f ](ξ) is a linear combination of f (j)(ξ) for j = r, r + 1, . . . , k(r + 1)
for every k ≥ 1.

We are can now in position to define and analyse the generalized Filon method
in the present setting. The important observation, following (Iserles, 2003b) in the
simplest case s = 1, is that stationary points play similar role to endpoints and,
to improve asymptotic decay of the error, we must sample function values and
derivatives there. Specifically, we must calculate there enough derivatives to be
able to compute enough values of ρk[f ](ξ).

We choose ν ≥ 3 and nodes c1 < c2 < · · · < cν such that c1 = 0, cν = 1 and
there exists q ∈ {2, 3, . . . , ν − 1} such that cq = ξ. Given integers θ1, θ2, . . . , θν ≥ 0,

we let f̃ be a polynomial of degree n =
∑ν

l=1 θl + ν − 1 such that

f̃ (j)(cl) = f (j)(cl), j = 0, 1, . . . , θl, l = 1, 2, . . . , ν. (3.7)

Theorem 3.3. Let θ1, θν ≥ s − 1 and θq ≥ (s − 1)(r + 1). Then

QF
s − I[f ] ∼ O(ω−s−1/(r+1)), ω → ∞. (3.8)

The proof is virtually identical to that of theorem 2.3. We substitute f̃ − f in
place of f in (3.5), and note that Hermite interpolation conditions at the endpoints
and the stationary points, together with the asymptotic formula (3.5), render zero
all the leading terms of the asymptotic expansion, whereby confirming (3.8).

Practical application of either QA
s or QF

s requires the knowledge of the first few
generalized moments of g in an explicit form. In the important case g(x) = (x−ξ)p,
where ξ ∈ (0, 1) and p ≥ 1 is an integer, the moments are easily calculated:

µk(x; ξ) = vk(1 − ξ) − vk(ξ),

where, changing a variable,

vk(y) =

∫ y

0

xkeiωxp

dx =
1

p(−iω)(k+1)/p

∫

−iωyp

0

x−1+(k+1)/pe−xdx

=
1

p(−iω)(k+1)/p

[

Γ

(

k + 1

p

)

− Γ

(

k + 1

p
,−iωyp

)]

,

where Γ(z, α) is the incomplete Gamma function (Abramowitz & Stegun, p. 260).
In general, however, moments are often unknown. This, as well as the need to
formulate the underlying problem in the form (1.1), i.e. as a product of a slowly
varying function and a fast oscillator, place obvious restrictions on the applicability
of asymptotic and generalized Filon methods alike.
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Figure 4. The error, scaled by ω5/2, for QA
2 [ex] (on the left) and QF

2 [ex] (on the right) for
g(x) = (x −

1

2
)2.

As an example of asymptotic and generalized Filon methods, consider the inte-
gral

I[f ] =

∫ 1

0

f(x)eiω(x− 1

2
)2dx.

Hence g(x) = (x − 1
2 )2, ξ = 1

2 and r = 1. The asymptotic formula (3.4) (actually,
(3.2) suffices in this setting) yields, after some algebra,

QA
2 = −

√
π erf(− 1

2

√
iω)

(−iω)1/2
f( 1

2 ) − e
1

4
iω

−iω
[f(0) − 2f( 1

2 ) + f(1)]

− 1

4

√
π erf(− 1

2

√
iω)

(−iω)3/2
f ′( 1

2 )

+
e

1

4
iω

(−iω)2
{2[f(0)) − 2f( 1

2 ) + f(1)] + [f ′(0) − f ′(1)] + 1
2f ′′( 1

2 )},

where erfz is the familiar error function.
For QF

2 we take the least values consistent with a O(ω−5/2) asymptotic decay:
ν = 3, θ1 = θ3 = 1 and θ2 = 2. In other words, we interpolate to the function
values f(0), f ′(0), f( 1

2 ), f ′( 1
2 ), f ′′( 1

2 ), f(1) and f ′(1) with a sixth-degree polynomial.

In figure 4 we display the error, scaled by ω5/2, for both methods and f(x) = ex.
Note that, while the asymptotic decay is of the order O(ω−5/2), as predicted by
theorems 3.2 and 3.3, the error constant is smaller by four degrees of magnitude in
the case of generalized Filon method.

Although one can present many other numerical results, this course of action is
likely to result in little further enlightenment. Instead, we complete our discussion of
stationary points by considering the case when g′ vanishes at an endpoint. Without
loss of generality, we assume that g′(0) = 0 and g′ 6= 0 in (0, 1], bearing in mind
that the case g′(0) = g′(1) = 0 can be resolved by subdividing [0, 1].

We employ a technique similar to that in the proof of lemma 3.1. For simplicity,
we assume that g′′(0) 6= 0 but the scope of our analysis can be easily extended.
Since, letting ξ = 0, I[f ] satisfies (3.1), integration by parts and a single application
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of the l’Hôpital rule demonstrate that

I[f ] = µ0(ω; 0)f(0) − 1

−iω

{

eiωg(1)

g′(1)
[f(1) − f(0)] − eiωg(0) f ′(0)

g′′(0)

}

+
1

−iω
I

[

d

dx

f( · ) − f(0)

g′( · )

]

.

We deduce at once, revisiting the inductive proof of lemma 3.1, that, as ω → ∞,

I[f ] ∼ µ0(ω, 0)

∞
∑

m=0

1

(−iω)m
ρm[f ](0) (3.9)

+

∞
∑

m=1

1

(−iω)m

(

eiωg(1)

g′(1)
{ρm−1[f ](1) − ρm−1[f ](0)} − eiωg(0) ρ

′

m−1[f ](0)

g′′(0)

)

.

Here ρk are the operators that we have defined earlier in the section, except that
ξ = 0. Let

ϕk =
ρ′k[f ](0)

g′′(0)
, k = 0, 1, . . . .

Then

ϕ0 =
1

g′′(0)
f ′(0),

ϕ1 =

[

−1

3

g(iv)(0)

g′′3(0)
+

1

2

g′′′
2
(0)

g′′4(0)

]

f ′(0) − 1

2

g′′′(0)

g′′3(0)
f ′′(0) +

1

3

1

g′′2(0)
f ′′′(0)

and, in general, each ϕk is as a linear combination of f (j)(0), j = 1, 2, . . . , 2k +
1. Likewise, each ρk[f ](0) and ρk[f ](1) are a linear combination of f (j)(0), j =
0, 1, . . . , 2k, and f (j)(1), j = 0, 1, . . . , k.

Commencing from (3.9), we conclude at once that the asymptotic method

QA
s [f ] = µ0(ω, 0)

s
∑

m=0

1

(−iω)m
ρm[f ](0)

+

s
∑

m=1

1

(−iω)m

(

eiωg(1)

g′(1)
{ρm−1[f ](1) − ρm−1[f ](0)} − eiωg(0) ρ

′

m−1[f ](0)

g′′(0)

)

carries an asymptotic error of O(ω−s−1/2). Moreover, by our analysis, it combines
the values of f (j)(0), j = 0, 1, . . . , 2s − 1, as well as f (j)(1), j = 0, 1, . . . , s − 1.

Likewise, the generalized Filon method can be extended to this setting, as long
as c1 = 0, cν = 1, θ1 ≥ 2s − 1 and θν ≥ s − 1.
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