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Abstract

In this paper we develop a theory for analysing the size of a Lie bracket or commutator
in a matrix Lie algebra. Complete details are given for the Lie algebra so(n) of skew
symmetric matrices.

1 Norms and commutators in Mn[R] and so(n)

This paper is concerned with the following question. Let g be a Lie algebra (Carter, Segal
& Macdonald 1995, Humphreys 1978, Varadarajan 1984). Given X,Y ∈ g and a norm
‖ · ‖ : g → R+, what is the size of ‖[X,Y ‖ in comparison with ‖X‖ · ‖Y ‖?

On the face of this, this question has little merit since the elementary inequality

‖[X,Y ]‖ ≤ 2‖X‖ · ‖Y ‖ (1.1)

always holds for X,Y ∈ Mn[R], the set of all n × n real matrices and an arbitrary norm
‖ · ‖. Moreover, it is easy to prove that the bound (1.1) can be attained for most norms of
practical interest. In particular, this is the case for two types of norms closely associated with
a remarkable paper of von Neumann (1937).

We recall that a symmetric gauge is a vector norm · which is both symmetric and posi-
tive. In other words, for every x ∈ R

n it is true that xπ = x and |x| = x , where π is
a permutation of {1, 2, . . . , n}, x>

π
= [xπ1

, xπ2
, . . . , xπn

] and |x|> = [|x1|, |x2|, . . . , |xn|].
We consider two norms, firstly the operator norm

X = max
v 6=0

Xv

v

and secondly the norm
‖X‖ = σ(X) , (1.2)

where σ(X) are the singular values of X , arbitrarily ordered. While it is easy to see that
(1.2) is a unitary norm (i.e,, invariant under multiplication by a unitary matrix), von Neumann
proved that all unitary norms are of this form.
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We consider just the case n = 2, since it can be imbedded in Mn[R] for any n ≥ 2. Let

X =

[

1 0
0 −1

]

, Y =

[

0 1
−1 0

]

, Z = [X,Y ] =

[

0 2
2 0

]

.

It is easy to verify that X = Y = 1 and Z = 2. Moreover, since σ(X) = σ(Y ) = [1, 1]
and σ(Z) = [2, 2], it is also true that ‖X‖, ‖Y ‖ = 1 and ‖Z‖ = 2 1 , where 1

> = [1, 1].
In both cases the upper bound in (1.1) is attained.

Yet, there is a basic difference between Mn[R] and a Lie algebra g ⊂ Mn[R]: while
dim Mn[R] = n2, the Lie algebra typically has lower dimension. Thus, it makes sense to
pose the question whether, once X and Y are restricted to g, the inequality (1.1) might
still be obeyed as an equality or whether 2 might be replaced by a smaller constant for all
X,Y ∈ g. Thus, given a norm ‖ · ‖, we say that the radius of a Lie algebra g is the least
number ω(g) ∈ [0, 2] such that

‖[X,Y ]‖ ≤ ω(X)‖X‖ · ‖Y ‖, X, Y ∈ g.

In other words,

ω(g) = max

{ ‖[X,Y ]‖
‖X‖ · ‖Y ‖ : X,Y ∈ g, X, Y 6= O

}

, (1.3)

the operator norm of the commutator.
It is important when defining ω to keep in mind which underlying norm we are using. In

the following we shall denote by ‖v‖p, v ∈ R
n the vector p-norm and by

‖X‖p = max

{‖Xv‖p

‖v‖p
; v 6= 0

}

the corresponding operator norm as above. In the case p = 2 we shall call this the Euclidean
norm.

We denote by

‖X‖F =





n
∑

k,l=1

X2
kl





1
2

the Frobenius norm.
We recall also the important facts to be used below, namely that ‖X‖2 is equal to the

magnitude of the largest singular value of X while ‖X‖F = ‖σ(X)‖2.
When the context is not clear we will label the ω by a subscript denoting which norm is

being used.
Trivially, the Lie algebra g is commutative if and only if ω(g) = 0, but this observation is

devoid of any insight. More interestingly, consider so(3) and the Euclidean norm. Letting

X =





0 x1 x2

−x1 0 x3

−x2 −x3 0



 , Y =





0 y1 y2

−y1 0 y3

−y2 −y3 0





and observing that in so(n) the Euclidean norm coincides with the spectral radius, we com-
mence by noting that

‖X‖ = ‖x‖, ‖Y ‖ = ‖y‖.
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Moreover, if Z = [X,Y ] then, by an easy direct calculation,

‖z‖2 = ‖x‖ · ‖y‖ − (x>y)2. (1.4)

Therefore
‖[X,Y ‖ =

[

‖X‖2‖Y ‖2 − (x>y)2
]

1
2 ≤ ‖X‖ · ‖Y ‖,

with the upper bound holding as an equality when x is orthogonal to y. We thus deduce that
ω(so(3)) = 1.

Remark 1: There is a natural Lie algebra homomorphism between so(3) and R
3 endowed

with the cross product. The above computation may be repeated with this in mind and Req:1.4
is a standard vector identity.

Remark 2: It is also of interest to repeat the above computation for the Frobenius norm.
One determines immediately that ωF (so(3)) = 1/

√
2. However for Lie algebraic reasons

that will become apparent below it is more natural to scale the Frobenius norm by a factor of√
2. With this scaling we also have ωF (so(3)) = 1. Strikingly this result does not hold for n

larger than 3.
In this paper we determine ω(so(n)) for all n ≥ 3 (so(2) is a commutative algebra,

hence ω(so(2)) = 0) with respect to the (scaled) Frobenius norm. Specifically, we prove
that ωF (so(n)) =

√
2 for n ≥ 4 (with the above-mentioned scaling). Note that ‖X‖F =

−〈X,X〉, where 〈 · , · 〉 is a multiple of the Killing form in so(n), hence it has deeper Lie-
algebraic significance. The Killing form evaluated on a pair of n×n skew-symmetric matrices
A,B is actually (n − 2)trace AB (see (Kobayahsi & Nomizu 1969)). (Of course for a non-
compact Lie algebra the Killing form does not provide a norm since it is not definite.) Another
reason why the Frobenius norm is of interest is that the radius of so(n), n ≥ 4, is absolutely
trivial for most other norms of interest.

Thus, again, let · be a symmetric gauge and

X =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









, Y =









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









,

therefore

[X,Y ] =









0 0 0 −2
0 0 −2 0
0 2 0 0
2 0 0 0









.

Note that for every v ∈ R
4 positivity and symmetry of the symmetric gauge imply that

Xv =









v2

−v1

v4

−v3









= v

and, similarly, Y v = v and [X,Y ]v = 2 v . Therefore, in the underlying operator
norm X , Y = 1 and [X,Y ] = 2. Consequently ω(so(4)) = 2 and this can be extended
to all Lie algebras so(n), n ≥ 4, since they form a flag. This example cannot, however, be
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extended to unitary norms (1.2), unless ‖1‖ = 1. Note that the latter condition holds when
· = · ∞ (the ∞-Schatten norm (Horn & Johnson 1994)), but in that instance ‖· ‖ = ‖ · ‖2

and we are back to the area covered earlier in this paragraph. On the other hand, · = · 2,
whence ‖1‖ = 2, results in ‖ · ‖ = ‖ · ‖F. This, of course, does not necessarily mean that
ω(so(4)) < 2 in the Frobenius norm.

In Section 2 we discuss the structure of the commutator operator, considered as a linear
transformation from so(n) to itself. We prove that, subject to an appropriate representation
of so(n), the commutator matrix in the 1

2 (n − 1)n linear space can be read explicitly from a
certain directed graph and investigate its eigenstructure. Section 3 is devoted to the proof of
the main result of this paper, namely that, once we use the Frobenius norm, ω(so(n)) =

√
2

for all n ≥ 4.
The subject matter of this paper is motivated by a raft of issues arising from geometric

numerical integration. The simplest such problem is the convergence of the sum

f(t;X,Y ) =
∞
∑

m=0

amtmad m
XY, X, Y ∈ g,

where {am}m∈Z+
is a given sequence and ad X is the adjoint operator of the Lie algebra g,

ad 0
XY = Y, ad m

XY = [X, ad m−1
X Y ], m ∈ N.

It is trivial to deduce from the triangle inequality that

‖f(t;X,Y )‖ ≤ ‖Y ‖
∞
∑

m=0

am[tω(g)‖X‖]m,

thereby relating the convergence of F to the domain of analyticity of the generating function
∑∞

m=0 amzm. Similar and more complicated problems abound in the analysis of Lie-group
methods (Iserles, Munthe-Kaas, Nørsett & Zanna 2000). The benefit of smaller ω(g) is clear.

The norm of a bracket is also important in determining the maximum allowable step size
in certain minimization problems on adjoint orbits, see the work of Brockett (1993).

A related problem of interest in analysing certain systems of differential equations is that
of finding a bound on the norm of the bracket [X,N ] where N is fixed and X varies over
the adjoint orbit of a group. This problem is discussed in (Brockett 1994). In that setting for
so(n) one has to solve the problem of maximizing ‖[X,N ]‖ over all X = θT Λθ for N,Λ
fixed in so(n) and θ in the group SO(n).

2 The reduced commutator matrix in so(n)

2.1 The reduced commutator matrix

Let g ⊆ Mn[R] be an m-dimensional matrix Lie algebra, 1 ≤ m ≤ n2. An obvious means
to explore the norm of the commutator in g is by means of the natural embedding θ : g →
R

n2

that ‘stretches’ a matrix X into a vector, e.g. by letting θ(l−1)n+k(X) = Xk,l, k, l =
1, 2, . . . , n (columnwise ordering). Since commutation is a linear transformation, it follows
that for every X ∈ g there exists a matrix C̃X ∈ Mn2 [R] such that

θ([X,Y ]) = C̃Xθ(Y ), Y ∈ g.
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It is known that

σ(C̃X) = {λk − λl : λk, λl ∈ σ(X), k, l = 1, 2, . . . , n}

(Hille 1969), and this provides a useful tool to explore commutators in a classical setting. Yet,
this line of reasoning disregards the fact that g is a Lie algebra, typically of much smaller
dimension than that of Mn[R]. Thus, in place of θ, we propose a restricted embedding ν :
g → R

m. Let Q = {Q1, Q2, . . . , Qm} be a basis of g. We define an isomorphism ν from g
on R

m through

g 3 X =

m
∑

k=1

xkQk ⇔ ν(X) = x =











x1

x2

...
xm











.

Remark: We note that this is just a vector space isomorphism and not in general a Lie
algebra homomorphism and there is in general no natural cross-product operation in R

m.
The restricted commutator matrix CX ∈ Mm[R] is then defined by the identity

ν([X,Y ]) = CXν(Y ), Y ∈ g.

Spectral information on CX is no longer readily and explicitly available, yet the procedure
has the great virtue of reducing the dimension and allowing for a more natural incorporation
of Lie-algebraic information. Specifically, let {cj

k,l}k,l,j=1,2,...,m be the structure constants
of g with respect to Q,

[Qk, Ql] =

m
∑

j=1

cj
k,lQj .

It is an elementary exercise that

(CX)j,l =

m
∑

k=1

xkcj
k,l, j, l = 1, 2, . . . ,m. (2.1)

Defining the radius ω(g) of the Lie algebra as

max

{ ‖[X,Y ]‖
‖X‖ · ‖Y ‖ : X,Y ∈ g, X, Y 6= O

}

,

where ‖ · ‖ is a given norm induced by the vector norm on R
m, i.e. ‖X‖ = ‖ν(X)‖, we

observe that

Theorem 1

ω(g) = max

{‖CX‖
‖X‖ : X ∈ g, X 6= O

}

, (2.2)

where the Lie algebra norm is that induced by the map ν.
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Proof We have
‖[X,Y ]‖ = ‖ν([X,Y ])‖ = ‖CXν(Y )‖.

Hence

ω(g) = max
X∈g\{O}

max
Y ∈g\{O}

‖CXν(Y )‖
‖ν(X)‖ · ‖ν(Y )‖

= max
X∈g\{O}

‖CX‖
‖ν(X)‖ .

2

We conclude this section by addressing the question of multiple representations. Suppose
thus that we have two bases of g, Q = {Q1, Q2, . . . , Qm} and P = {P1, P2, . . . , Pm}, say.
Set

P = [ p1 p2 · · · pm ], Q = [ q1 q2 · · · qm ],

where pk = ν(Pk), qk = ν(Qk), k = 1, 2, . . . ,m. Then

g 3 X =

m
∑

k=1

xkPk =

m
∑

k=1

x̃kQk

implies at once that x = Qx̃. Therefore CQ
X = Q−1CP

XQ, where CP
X and CQ

X are reduced
commutators with respect to the two bases. In particular, if Q is an orthogonal matrix and the
bases are orthogonally similar then the radius of g does not depend on the choice of the basis.

Example: We compute ω(so(3)) using this formalism.
If

X =





0 a b
−a 0 c
−b −c 0





then we easily compute

CX =





0 c −b
−c 0 a
b −a 0



 .

Now, ν(X) = [x, y, z]T , and hence ‖ν(X)‖2 = (a2 + b2 + c2)1/2. On the other hand,
σ(CX) = {0,±(a2 + b2 + c2)1/2}, hence ‖CX‖2 = (a2 + b2 + c2)1/2 and we obtain
ω(so(3)) = 1.

2.2 The reduced commutator matrix in so(n) and directed graphs

We denote by Ek,l ∈ Mn[R] the matrix whose (k, l)th component is +1 and otherwise is
zero, k, l = 1, 2, . . . , n, and choose the basis

Q = {Qk,l = Ek,l − El,k : 1 ≤ k < l ≤ n}

of so(n). The restricted embedding ν takes each Qk,l to eµ(k,l) ∈ R
m, where m = 1

2 (n−1)n
and µ is an arbitrary isomorphism mapping pairs I = {(k, l) : 1 ≤ k < l ≤ n}, into
{1, 2, . . . ,m}. However, it is more convenient to discuss restricted commutator matrices in
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the formalism of the Qk,l, bypassing ν altogether. Thus, we index the structure constants and
the entries of the restricted commutator matrix by pairs (i, j) ∈ I.

For ease of notation we let Qk,l = −Ql,k for k > l and Qk,k = O. Since

[Qk,l, Qr,s] = δl,rQk,s − δk,rQl,s − δl,sQk,r + δk,sQl,r,

the structure constants are

c
(i,j)
(k,l),(r,s) =























−1, k = r, l 6= s, i = l. j = s,
+1, k 6= r, l = r, i = k, j = s,
−1, k 6= r, l = s, i = k, j = r,
+1, k = s, l 6= r, i = l, j = r,
0, otherwise,

(i, j) ∈ I. (2.3)

In other words, most structure constants vanish: not surprising, given that our basis is consis-
tent with the root space decomposition of so(n), hence likely to lend itself to a sparse set of
structure constants. Specifically, the nonzero structure constants are precisely

c
(l,s)
(k,l),(k,s) = −1, l < s, c

(l,s)
(k,l),(k,s) = +1, l > s,

c
(k,s)
(k,l),(l,s) = +1, k < s, c

(k,s)
(k,l),(l,s) = −1, k > s,

c
(k,r)
(k,l),(r,l) = −1, k < r, c

(k,r)
(k,l),(r,l) = +1, k > r,

c
(l,r)
(k,l),(r,k) = +1, l < r, c

(l,r)
(k,l),(r,k) = −1, l > r,

Given

so(n) 3 X =

n−1
∑

k=1

n
∑

l=k+1

xk,lQk,l,

(2.1) implies that

(CX)(k,l),(i,j) =
∑

(r,s)∈I
xr,sc

(i,j)
(r,s),(k,l) = −

∑

(r,s)∈I
c
(r,s)
(k,l),(i,j), (k, l), (i, j) ∈ I.

We observe that CX ∈ so(m) and that it is a very sparse matrix. specifically, for any (k, l) ∈
I the only nonzero entries are

(CX)(k,l),(l,j) = xk,j , j = l + 1, l + 2, . . . , n,

(CX)(k,l),(k,j) = xj,l, j = k + 1, k + 2, . . . , n, j 6= l, (2.4)

(CX)(k,l),(i,l) = xi,k, i = 1, 2, . . . , l − 1, i 6= k,

(CX)(k,l),(i,k) = xl,i, i = 1, 2, . . . , k − 1.

Altogether, just (n − 2)(n − 1), out of 1
2 (n − 1)2n2, entries of CX are nonzero.

The elements of CX lend themselves to a very convenient representation in terms of la-
belled digraphs. Any matrix A ∈ Mm[R] can be represented by a digraph with m vertices,
adopting the convention that, once Ak,l 6= 0, then there is a directed edge from vertex k to
vertex l with the label Ak,l. As an example, let us examine the digraph corresponding to CX

for n = 4 (hence m = 6):
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µ´
¶³
1, 2

µ´
¶³
1, 3

µ´
¶³
1, 4

µ´
¶³
2, 3

µ´
¶³
2, 4

µ´
¶³
3, 4

Q
Q
Q
Q
Q
Q
QQs

















À

6J
J
J
J
J
J
J
J
J
J
J
Ĵ

¾











Á

?
HHHHHHHHHHHHHHHHY
-

Q
Q

Q
Q

Q
Q

QQk

6J
J
J
J
J
J
J
J
J
J
J
Ĵ

x1,3

x2,4

x2,3

x3,4

x1,2x1,3

x1,2

x1,4
x2,3

x3,4

x1,4

x2,4

We commence by noting that the graph is 4-regular (Chartrand & Lesniak 1986): each vertex
is of degree 4. Moreover, two of the edges at each vertex commence and two terminate there.

A generalization for all n ≥ 3 is clear from (2.4). For every 1 ≤ k < l < j ≤ n we have

(CX)(k,l),(l,j) = xk,j , (CX)(l,j),(k,j) = xk,l, (CX)(k,j),(k,l) = xl,j .

In the notation of labelled digraphs this corresponds to the 3-cycle

µ´
¶³
k, l

µ´
¶³
l, jµ´

¶³
k, j

J
J
J
JĴ

¾



Á

xk,j

xk,l

xl,j

(2.5)

Needless to say, (2.5) can be read ‘backwards’: an arrow from (l, j) to (k, j) with a label xk,l

is the same as an arrow from (k, j) to (l, j) with the label −xk,l.

Lemma 2 For all n ≥ 3 the directed graph of CX is the sum of all
(

n
3

)

3-cycles (2.5) for all
1 ≤ k < l < j ≤ n. It is r-regular, where r = 2(n − 2).

Proof The first statement of the lemma follows at once from our analysis. Because of
symmetry, clearly the graph must be r-regular for some r ≥ 1. Therefore, the sum of all the
degrees of all the vertices is mr. Since each 3-cycle (2.5) accounts for exactly six degrees and
m = 1

2 (n − 1)n, we have

r =
6
(

n
3

)

1
2 (n − 1)n

= 2(n − 2).

2
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Given X,Y ∈ so(n), n ≥ 3, we can reconstruct the representation of [X,Y ] in the basis
Q directly from the digraph in Lemma 2. Since

[X,Y ] =
∑

(k,l)∈I

∑

(r,s)∈I
xk,lyr,s(δl,rQk,s − δk,rQl,s − δl,sQk,r + δk,sQl,r),

we have the following contributions to the (i, j) ∈ I component of the commutator,

(k, s) = (i, j), r = l ⇒ +xi,lyl,j , i + 1 ≤ l ≤ j − 1,

(l, s) = (i, j), r = k ⇒ −xk,iyk,j , 1 ≤ k ≤ min{i, j} − 1,

(k, r) = (i, j), s = l ⇒ −xi,lyj,l, max{i, j} + 1 ≤ l ≤ n,

(l, r) = (i, j), s = k ⇒ +xk,iyj,k, j + 1 ≤ k ≤ i − 1,

(k, s) = (j, i), r = l ⇒ −xj,lyl,i, j + 1 ≤ l ≤ i − 1,

(l, s) = (j, i), r = k ⇒ +xk,jyk,i, 1 ≤ k ≤ min{i, j} − 1,

(k, r) = (j, i), s = l ⇒ +xj,lyi,l, max{i, j} + 1 ≤ l ≤ n,

(l, r) = (j, i), s = k ⇒ −xk,jyi,k, i + 1 ≤ k ≤ n.

For n = 4 and (i, j) = (1, 3) just four terms survive from the above list,

[X,Y ]1,3 = x1,2y2,3 − x1,4y3,4 + x3,4y1,4 − x2,3y1,2.

Examine now the digraph for n = 4: (1, 3) is connected to (2, 3) with label x1,2 and outgoing
arrow, to (3, 4) with label x1,4 and incoming arrow etc. In general, it is easy to confirm the
following general rule for the reconstruction of the commutator in our basis.

Lemma 3 Let n ≥ 3. Then, for every (i, j) ∈ I the element [X,Y ]i,j is the sum of terms of
the form ±xk,lyr,s over all the 2(n− 2) edges adjoining the vertices (i, j) and (r, s) with the
weight xk,l, and with the sign being +1 if the arrow is outgoing from (i, j), −1 otherwise.

Lemma 3 becomes very useful when the matrix Y is sparse, since the algorithm therein
lends itself handily to the exploitation of structure and sparsity.

3 The radius of so(n) for n ≥ 4

3.1 The eigenstructure of so(n) in R
m

The evaluation of the Frobenius norm of a commutator comes as something of an anticlimax,
since the spectrum of the restricted commutator operator can be evaluated with relative ease.
We have already noted that the eigenvalues of the full commutator operator, acting in R

n2

,
are {i(λk − λl) : k, l = 1, 2, . . . , n}, where σ(X) = {iλ1, iλ2, . . . , iλn}. Our contention
is that m = 1

2 (n − 1)n of these eigenvalues survive intact once we consider the restricted
commutator.

To this end, we commence by revisiting the classical analysis of the eigenstructure of the
full commutator. Thus, suppose that X ∈ Mn[R] has a full set of eigenvectors, therefore
X = V DV −1, where D = diag λ. For every k, l = 1, 2, . . . , n, k 6= l, we set Ek,l ∈ Mn[R]
as a zero matrix, except for a unit element at the (k, l) entry. Therefore

V −1[X,Ek,l]V = DEk,l − Ek,lD = (λk − λl)Ek,l
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and [X,Wk,l] = (λk −λl)Wk,l, where Wk,l = V Ek,lV
−1, k, l = 1, 2, . . . , n. However, if X

resides in a Lie algebra g, we cannot expect Wk,l to belong to g: If g = so(n) then this is in
general false.

Suppose that X ∈ so(n) and assume that n = 2N – the case of an odd n will be addressed

briefly in the sequel. We set J =

[

0 1
−1 0

]

. Then there exists a matrix Q ∈ SO(n) such

that

QXQ> = A =













A1 O · · · O

O A2
. . .

...
...

. . .
. . . O

O · · · O AN













,

where Ak = αkJ , k = 1, 2, . . . , N . Note that the eigenvalues of X are ±iαk, k =
1, 2, . . . , N .

Choose 1 ≤ k < l ≤ N and let V ∈ so(n, C) be a zero matrix, except that
[

V2k−1,2l−1 V2k−1,2l

V2k,2l−1 V2k,2l

]

= U,

[

V2l−1,2k−1 V2l−1,2k

V2l,2k−1 V2l,2k

]

= −U,

where U =

[

u1 u2

u3 u4

]

. Letting Z = [A, V ], we observe that all the entries of Z vanish,

except for
[

Z2k−1,2l−1 Z2k−1,2l

Z2k,2l−1 Z2k,2l

]

= AkU −UAl,

[

Z2l−1,2k−1 Z2l−1,2k

Z2l,2k−1 Z2l,2k

]

= UAk −AlU.

Assume that γ ∈ C and u 6= 0 are an eigenvalue and an eigenvector, respectively, of the
matrix









0 αl αk 0
−αl 0 0 αk

−αk 0 0 αl

0 −αk −αl 0









.

Then AkU − UAl = γU and it follows that ν(V ) is an eigenvector of CA, corresponding to
the eigenvalue γ. This results for each k < l in four eigenvalue/eigenvector pairs,

γ = i(αk + αl), U =

[

1 i
i 1

]

;

γ = i(−αk + αl), U =

[

1 i
−i 1

]

;

γ = i(αk − αl), U =

[

1 −i
i 1

]

;

γ = i(−αk − αl), U =

[

1 −i
−i 1

]

.

Altogether, this results in 1
2 (N − 1)N = 1

2 (n − 1)n − 1
2n eigenvalues of CA.
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The remaining N = 1
2n eigenvalues of CA are zero. This is easy to verify by letting, for

any k = 1, 2, . . . , N , V ∈ so(n, C) be zero, except that
[

V2k−1,2k−1 V2k−1,2k

V2k,2k−1 V2k,2k

]

= J,

whence [A, V ] = O.
Once we have determined σ(CA), we note that σ(CX) = σ(CA) whenever X and A are

similar, since X = QAQ−1 means that

CXν(Y ) = ν(Z) ⇔ CAν(Q−1Y Q) = ν(Q−1ZQ).

Lemma 4 Suppose that n = 2N and that the eigenvalues of X ∈ so(n) are ±iαk, k =
1, 2, . . . , N . Then the eigenvalues of the restricted commutator CX are

i(±αk ± αl), 1 ≤ k < l ≤ N, (3.1)

as well as a zero eigenvalue of multiplicity N .

We note as an aside that we have just determined that the centralizer of X ∈ so(n) is
(n/2)-dimensional, as well as presenting its basis.

Lemma 5 Suppose that n = 2N + 1 and that the eigenvalues of X ∈ so(n) are ±iαk,
k = 1, 2, . . . , N and zero. Then the eigenvalues of the restricted commutator CX are

i(±αk ± αl), 1 ≤ k < l ≤ N, (3.2)

±iαk, 1 ≤ k ≤ N, (3.3)

as well as a zero eigenvalue of multiplicity N .

Proof Since X ∈ so(n) is necessarily singular, we need to add to A a bottom row and
rightmost column of zeros: We denote the new, (2N + 1) × (2N + 1) matrix by Ã. All the
eigenvectors of CA, suitably padded by zeros, can be extended to CÃ. Moreover, let v ∈ C

2N

be a nonzero eigenvector of Ã with an eigenvalue iγ and set

V =

[

O v

−vT 0

]

.

Then we can easily verify that [Ã, V ] = iγV . Hence we recover the eigenvalues (3.3). Alto-
gether we have N(2N +1) eigenvalues, hence the full spectrum of CÃ. Since the spectrum of
the restricted commutator is invariant under similarity transformation, the proof is complete.

2

3.2 The radius of so(n)

Up to
√

2, measuring so(n) in the Frobenius norm is the same as using the Euclidean norm in
R

1
2
(n−1)n, ‖X‖F =

√
2‖ν(X)‖2. Moreover, CX is skew symmetric, therefore normal, and

its Euclidean norm coincides with its spectral radius.
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Theorem 6 For every n ≥ 4 it is true that

ω(so(n)) =
√

2. (3.4)

Proof We commence with even n = 2N and assume that, without loss of generality,

|α1| ≥ |α2| ≥ · · · ≥ |αN |.

Therefore, according to (3.1),

‖CX‖2 = ρ(CX) = |α1| + |α2|.

Since ‖X‖2
F =

∑

λ∈σ(X) |λ|2, we deduce that

‖CX‖2

‖ν(X)‖2
=

|α1| + |α2|
1√
2
‖X‖F

=
|α1| + |α2|
√

∑N
k=1 |αk|2

≤ |α1| + |α2|
√

|α1|2 + |α2|2
≤

√
2,

with the upper bound attainable when α1 = α2 > 0, αk = 0, k ≥ 3, which corresponds
to an embedding of so(4) in the algebra. Note that the inequality above holds by Young’s
inequality for p = 2, i.e. we have 2|α1||α2| ≤ |α1|2 + |α2|2.

Therefore ω(so(2N)) =
√

2.
The proof for n = 2N + 1 is virtually identical, since

ρ(CX) = max{ max
1≤k<l≤N

|αk| + |αl|, max
k=1,2,...,N

|αk|} = |α1| + |α2|,

and we again obtain the radius (3.4). 2

Example It is instructive to analyse the special case so(4). Using the structure constants
one can compute that for

X =









0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

−x3 −x5 −x6 0









,

we have

CX =

















0 x4 x5 −x2 −x3 0
−x4 0 x6 x1 0 −x3

−x5 −x6 0 0 x1 x2

x2 −x1 0 0 x6 −x5

x3 0 −x1 −x6 0 x4

0 x3 −x2 x5 −x4 0

















.

The 2-norm of CX may then be computed to be ‖x‖2 + 2|x1x6 − x2x5 + x3x4|. Using
Lagrange multipliers to maximize this subject to ‖x‖ = 1 yields indeed that ω(so(4)) ≤

√
2.
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It is of interest in fact to to characterize all so(4) matrices whose restricted commutator
has the norm

√
2. These take either the form

X =









0 a b c
−a 0 c −b
−b −c 0 a
−c b −a 0









,

or

X =









0 a b c
−a 0 −c b
−b c 0 −a
−c −b a 0









for arbitrary a, b, c ∈ R which are not all zero.
In each case the spectrum of CX consists of 4 zero eigenvalues and ±i2(a2 + b2 + c2)1/2.

Hence ‖X‖F = 2(a2 + b2 + c2)1/2 and thus ‖ν(X)‖2 =
√

2(a2 + b2 + c2)1/2 and ‖CX‖2 =
2(a2 + b2 + c2)1/2 and it follows that ‖CX‖2/‖ν(X)‖2 =

√
2.

4 Conclusion

We have defined the radius of a Lie algebra and computed its value for so(n) and the Frobe-
nius norm. It is of interest to compute the radius for other Lie algebras. We intend to do this in
a future publication. In generalizing the work here one needs to distinguish between compact
and noncompact Lie algebras (where the Killing form is definite and indefinite respectively)
and between real and complex algebras. The compact real form of a complex Lie algebra is
natural to look at – for example su(n), the compact real form of sl(n, C). In the case of su(2)
one has of course a Lie algebra isomorphism between su(2) and so(3) and R

3 endowed with
the cross product. The map in this case is given by (see e.g.(Marsden & Ratiu 1999))





x1

x2

x3



→ X = 1
2

[

−ix3 −ix1 − x2

−ix1 + x2 ix3

]

.

Thus our earlier argument for so(3) shows that ω(su(2)) = 1 with respect to the norm in-
duced by the vector norm on R

3.
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