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Abstract

The aim of this paper is to derive new methods for numerically approximating the integral of
a highly oscillatory function. We begin with a review of the asymptotic and Filon-type methods
developed by Iserles and Nørsett. Using a method developed by Levin as a point of departure,
we construct a new method that utilizes the same information as the Filon-type method, and
obtains the same asymptotic order, while not requiring the computation of moments. We also
show that a special case of this method has the property that the asymptotic order increases
with the addition of sample points within the interval of integration, unlike all the preceding
methods whose orders depend only on the endpoints.

1 Introduction

A highly oscillatory integral is defined as

I[f ] =
∫ b

a
f(x) eiωg(x)dx

for f, g ∈ C∞ and frequency ω � 1. In this paper we only consider the case of g′(x) 6= 0 for a ≤ x ≤
b, in other words, when g has no stationary points. The most immediate candidate for numerically
approximating this integral might be Gaussian quadrature. Unfortunately, if we subdivide [a, b]
into panels of length h > 0 we can choose ω large enough such that the approximation is completely
meaningless, as the node points are essentially random samples in the range of oscillation. The
error of this approximation is O(1) as ω → ∞, which compares to an error of O

(
ω−1

)
when

approximating I[f ] by zero (Iserles and Nørsett, 2004). It is safe to say that any approximation
that is less accurate than equating the integral to zero is fairly useless. Letting h depend on ω, on
the other hand, results in an enormous amount of computation for large ω. Fortunately, there is
another way.

We begin with a review of two methods described in (Iserles and Nørsett, 2004), the asymptotic
method and the Filon-type method, which both have an error of order O

(
ω−s−1

)
for any fixed

positive integer s and increasing frequency ω. The implication is that, in stark contrast to Gaussian
quadrature, the larger the frequency the more accurate the approximation. Using these two methods
as an inspiration and extending the work of David Levin, we derive another method that also has
an error of order O

(
ω−s−1

)
. Like the Filon-type method, this new method uses interior points as

well as the endpoints for deriving the approximation, while unlike the Filon-type method it does
not require moments. We also show that a special case of this method has the property that using
interior points, in addition to endpoints, further increases the order of error.
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2 The asymptotic method

The foundation of the proofs in this paper lies in the observation, as described in (Iserles and
Nørsett, 2004), that

I[f ] =
∫ b

a
f(x) eiωg(x)dx =

1
iω

∫ b

a

f(x)
g′(x)

d
dx

eiωg(x)dx

=
1
iω

[
f(x)
g′(x)

eiωg(x)

]b
a

− 1
iω

∫ b

a

d
dx

[
f(x)
g′(x)

]
eiωg(x)dx = QA[f ]− 1

iω
I

[
d
dx

f

g′

]
,

where QA[f ] is defined as 1
iω

[
f(x)
g′(x)e

iωg(x)
]b
a
. Since we assume that g′(x) 6= 0 for all x ∈ [a, b] there

is no issue with dividing by g′. This equation states that if we approximate I[f ] by QA[f ] we have
an order of error of O

(
ω−2

)
, again using the fact that I[f ] = O

(
ω−1

)
for bounded f (Iserles and

Nørsett, 2004). But the error term of this approximation can likewise be approximated, now by
1
iωQ

A
[

d
dx

f
g′

]
. Hence we have derived a new approximation of I[f ], namely QA[f ] − 1

iωQ
A
[

d
dx

f
g′

]
,

which has an order of error of O
(
ω−3

)
. Clearly, if we continue this process of approximating the

error terms using QA, after s steps we obtain error O
(
ω−s−1

)
. Thus we have derived an asymptotic

expansion:

Theorem 1 Let f ∈ C∞ and g′(x) 6= 0 for a ≤ x ≤ b. Define σk as

σ1[f ](x) =
f(x)
g′(x)

, σk+1[f ](x) =
σk[f ]′(x)
g′(x)

, k ≥ 1.

Then, for ω →∞,

I[f ] ∼ −
∞∑
k=1

1

(−iω)k
{
σk[f ](b) eiωg(b) − σk[f ](a) eiωg(a)

}
.

A formal proof of this theorem can be found in (Iserles and Nørsett, 2004). We define

QAs [f ] = −
s∑

k=1

1

(−iω)k
{
σk[f ](b) eiωg(b) − σk[f ](a) eiωg(a)

}
,

i.e. the s-step partial sum of the asymptotic expansion. From the omitted proof of the theorem
we know that the error I[f ] −QAs [f ] is equal to 1

(−iω)s

∫ b
a g

′(x)σs+1[f ](x) eiωg(x)dx and by the def-
inition of asymptotic expansions we know that I[f ] − QAs [f ] ∼ O

(
ω−s−1

)
. Hence the error of the

approximation tends to zero as ω−s−1. In other words, the more oscillatory the integrand, the more
accurately we can approximate the integral! This flies in the face of the common intuition, based
on the problems associated with Gaussian quadrature, that oscillations make numerical integration
difficult.

From this theorem we now derive a corollary that will be used to find the order of error for
the Filon-type and Levin-type methods.

Corollary 1 Suppose 0 = f(a) = f(b) = f ′(a) = f ′(b) = · · · = f (s−1)(a) = f (s−1)(b) for some
positive integer s. Furthermore, allow f to depend on ω, and suppose that every function in the set{
f, · · · , f (s+1)

}
is of asymptotic order O(ω−n), ω →∞, for some fixed n. Then, as ω →∞,

I[f ] ∼ O
(
ω−n−s−1

)
.
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Proof Fix s ≥ 1. By simple inductive reasoning, we see that each σk[f ] is a linear combination
of terms independent of ω multiplied by functions in the set

{
f, · · · , f (k−1)

}
. As a result 0 =

σk[f ](a) = σk[f ](b) for all k ≤ s, and it follows that QAs [f ] is 0. Hence

I[f ] = − 1
(−iω)s+1

{
σs+1[f ](b) eiωg(b) − σs+1[f ](a) eiωg(a)

}
+

1
(−iω)s+1

∫ b

a
g′(x)σs+2[f ](x) eiωg(x)dx.

The first two terms are O
(
ω−n−s−1

)
. We know that |σs+2[f ]| ≤ K

ωn for some constant K, since
σs+2[f ] is a combination of f and its first s + 1 derivatives. Thus the integral term is also
O

(
ω−n−s−1

)
, since∣∣∣∣ 1
(−iω)s+1

∫ b

a
g′(x)σs+2[f ](x) eiωg(x)dx

∣∣∣∣ ≤ K

ωn+s+1
(b− a) = O

(
ω−n−s−1

)
.

2

Note that this corollary applies equally well when f and its derivatives are independent of ω,
in which case we take n = 0. Unless otherwise stated, we assume n = 0 when this corollary is used.

Remark In Corollary 1 it is necessary to impose the order requirement on both f and its first
s derivatives: f = O(ω−n) with no restriction on its derivatives is not sufficient. For example
consider f(x) = ω−neiωnx. Then f (k)(x) = ik−1ω(k−1)neiωnx = O

(
ω(k−1)n

)
and the corollary does

not hold.

3 The Filon-type method

The shortcoming with using an asymptotic expansion as an approximation is that in general QAs [f ]
diverges for fixed ω as s→∞. In other words, for fixed ω the accuracy of approximating an integral
by the partial sums QAs is limited. To work around this weakness we derive a Filon-type method,
which extends the work of Filon as described in (Iserles and Nørsett, 2004).

Theorem 2 Let s be some positive integer, let {xk}ν0 be a set of node points such that a = x0 <
x1 < · · · < xν = b, and let {mk}ν0 be a set of multiplicities associated with those node points such
that m0,mν ≥ s. Suppose that v(x) =

∑n
k=0 ckx

k, where n =
∑ν

k=0mk − 1, is the solution to the
system of equations

v(xk) = f(xk)
v′(xk) = f ′(xk)

...
v(mk−1)(xk) = f (mk−1)(xk)

for every integer 0 ≤ k ≤ ν. Then

I[f ]−QF [f ] ∼ O
(
ω−s−1

)
,

where

QF [f ] ≡ I[v] =
n∑
k=0

ckI
[
xk

]
.
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Figure 1: The error scaled by ω3 of QA2 [f ] (left figure, top), QF [f ] with only endpoints and multiplic-
ities all 2 (left figure, bottom)/(right figure, top), and QF [f ] with nodes

{
0, 1

2 , 1
}

and multiplicities
{2, 1, 2} (right figure, bottom) for I[f ] =

∫ 1
0 cos(x) eiωxdx.

Proof Note that I[f ] −QF [f ] = I[f ] − I[v] = I[f − v]. By the definition of v, the hypotheses of
Corollary 1 hold for the function f − v, hence I[f − v] ∼ O

(
ω−s−1

)
. 2

In other words, we interpolate f by a polynomial v using Hermite interpolation. Since we
are assuming that moments are available and QF [f ] is a linear combination of moments, we know
that QF [f ] can be computed. The obvious question then is if it has the same order of error as the
asymptotic method, as well as requiring the same number of derivatives, why bother? The answer
is that in many situations the accuracy of the Filon-type method is significantly higher than that
of the asymptotic method, even though it is of the same order. We also have the ability to add
interior node points to further increase the accuracy, and it is clear that QF [f ] converges to I[f ]
whenever the interpolating polynomial v converges uniformly to f .

We now compare asymptotic and Filon-type methods numerically. For example, consider the
case of the Fourier oscillator g(x) = x, and let f(x) = cosx over the interval [0, 1]. In Figure 1 we
compare several methods of order 3: QA2 [f ], QF [f ] with nodes {0, 1} and multiplicities {2, 2}, and
QF [f ] with nodes

{
0, 1

2 , 1
}

and multiplicities {2, 1, 2}. Even when sampling f only at the endpoints
of the interval, the Filon-type method represents a significant improvement over the asymptotic
method, having approximately one twelfth the error, while using exactly the same information.
Adding a single interpolation point resulted in an error almost indistinguishable from zero when
compared to the asymptotic method. Adding additional node points continues to have a similar
effect.

Unfortunately, it is not always true that the Filon-type method is more accurate than the
asymptotic method. Take the case of the Fourier oscillator and f(x) = 1

1+10x2 , now over the
interval [−1, 1]. This suffers from Runge’s phenomenon, as described in (Powell, 1981), where
certain non-oscillatory functions have oscillating interpolation polynomials. Since the Filon-type
method is based on interpolation, it is logical that the accuracy of QF [f ] is directly related to how
accurate the interpolation is. In Figure 2 we see that adding additional nodes actually reduces the
accuracy of QF [f ]. It should be noted that in this example QF [f ] with only endpoints and QA1 [f ]
are equivalent, which can be trivially proved by finding the explicit formula for QF [f ]. Thus QA1 [f ]
is the best method of the three tried.

We know that using Chebyshev interpolation points, also described in (Powell, 1981), helps
reduce the magnitude of Runge’s phenomenon. Using this choice for nodes, along with the required
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Figure 2: The error scaled by ω2 of QF [f ] with only endpoints (right figure), endpoints and two
additional evenly spaced points (left figure, bottom), and endpoints and four additional evenly
spaced points (left figure, top), where all multiplicities are 1 for I[f ] =

∫ 1
0

1
1+10x2 eiωxdx.
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Figure 3: The error scaled by ω2 of QF [f ] with only endpoints (right figure), endpoints and 2 addi-
tional Chebyshev interpolation points (left figure, top), and endpoints and 4 additional Chebyshev
interpolation points (left figure, bottom), where all multiplicities are 1 for I[f ] =

∫ 1
0

1
1+10x2 eiωxdx.

endpoint nodes, results in the errors seen in Figure 3. Now adding additional node points results
in a more accurate approximation. This certainly is a huge improvement over Figure 2, but the
Filon-type methods definitely do not have the same magnitude of improvement over the asymptotic
method that they did in Figure 1.

Another option, with regards to Runge’s phenomenon, is to use cubic splines in place of
interpolation. Unfortunately this suffers from the fact that a cubic spline can only match up to
the first derivative at the endpoints, hence the order is at most O

(
ω−3

)
in the present framework.

Since we are only considering methods with arbitrarily high order of convergence for increasing ω,
we will not explore the use of cubic or higher-degree splines.

4 The Levin-type method

The Filon-type method requires that moments are easily computable, which is not necessarily the
case. Fortunately, we can work around this problem by expanding on the method developed by
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David Levin in (Levin, 1997). What follows is a brief, and simplified, synopsis of the method
described in that paper. Suppose we have a function F (x) such that

d
dx

[
F (x) eiωg(x)

]
= f(x) eiωg(x). (4.1)

It follows immediately that I[f ] =
[
F (x) eiωg(x)

]b
a
. If we approximate F by some function v,

then we can approximate the integral by QL[f ] =
[
v(x) eiωg(x)

]b
a
. By expanding out the derivative

on the left hand side of (4.1) and canceling the eiωg(x) terms we obtain the equation L[F ](x) =
f(x), where L is the operator defined by L[F ] = F ′ + iωg′F . Now let v(x) =

∑n
k=0 ckx

k be the
collocation polynomial which is the solution to the system of equations L[v](xk) = f(xk) at points
a = x0 < x1 < · · · < xν = b. Then QL[f ] approximates I[f ] with error O

(
ω−2

)
.

The natural extension to the Levin method is to emulate the Filon-type method of the preceding
section and match not only the value of f and L[v] at the node points, but also the values of the
derivatives of f and L[v], up to given multiplicity. We prove in this section that, if we again match
the function values f and L[v] and the first s − 1 derivatives at the endpoints, then we obtain an
order of error of O

(
ω−s−1

)
. Since the proof of the following theorem does not rely on v being

a polynomial, we allow v to be a linear combination of a set of basis functions matching certain
criteria — a generalization that will be exploited in Section 5.

Theorem 3 Suppose that g′(x) 6= 0 for x ∈ [a, b]. Let {ψk}n0 be a basis of functions independent
of ω and let s be some positive integer. Furthermore let {xk}ν0 be a set of node points such that
a = x0 < x1 < · · · < xν = b and {mk}ν0 a set of multiplicities associated with those node points
such that m0,mν ≥ s. Suppose that v =

∑n
k=0 ckψk, where n =

∑ν
k=0mk − 1, is the solution to the

system of collocation equations

L[v](xk) = f(xk)
dL[v]
dx

(xk) = f ′(xk)

...
dmk−1L[v]
dxmk−1

(xk) = f (mk−1)(xk)

for every integer 0 ≤ k ≤ n and L[v] = v′ + iωg′v. Define

gk =
[(
g′ψk

)
(x0) , · · · ,

(
g′ψk

)(m0−1)(x0) , · · · ,
(
g′ψk

)
(xν) , · · · ,

(
g′ψk

)(mν−1)(xν)
]>
.

If the vectors {g0, · · · ,gn} are linearly independent, then for sufficiently large ω the system has a
unique solution and

I[f ]−QL[f ] ∼ O
(
ω−s−1

)
,

where
QL[f ] ≡

[
v(x) eiωg(x)

]b
a

= v(b) eiωg(b) − v(a) eiωg(a). (4.2)

Proof We know that I[f ]−QL[f ] = I[f ]− I[L[v]] = I[f − L[v]]. Hence we use Corollary 1, in a
manner similar to the proof of Theorem 2. Unfortunately, L[v] depends on ω so we need to show that
all the functions in the set

{
f − L[v] , · · · , f (s+1) − L[v](s+1)

}
are bounded for increasing ω. Since{

f, · · · , f (s+1)
}

are by definition independent of ω, we need only show that
{
L[v] , · · · , L[v](s+1)

}
are O(1).
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The vector of coefficients c = [c0, · · · , cn]> solves the system of equation Ac = f , where

A =



L[ψ0](x0) · · · L[ψn](x0)
...

. . .
...

L[ψ0]
(m0−1)(x0) · · · L[ψn]

(m0−1)(x0)
...

. . .
...

L[ψ0](xν) · · · L[ψn](xν)
...

. . .
...

L[ψ0]
(mν−1)(xν) · · · L[ψn]

(mν−1)(xν)


, f =



f(x0)
...

f (m0−1)(x0)
· · ·
f(xν)

...
f (mν−1)(xν)


.

For notational brevity we regard matrices as row vectors whose entries are column vectors. If we
let

pk =
[
ψ′k(x0) , · · · , ψ(m0)

k (x0) , · · · , ψ′k(xν) , · · · , ψ
(mν)
k (xν)

]>
,

then A = [p0 + iωg0, · · · ,pn + iωgn]. In later proofs we will also use ak = pk + iωgk to denote the
(k + 1)th column of A.

Using Cramer’s rule we find that ck = detDk
detA for 0 ≤ k ≤ n, where Dk is the matrix A

with the (k + 1)th column replaced by f . Note that all the entries of the matrix Dk, except for a
single column, are of order O(ω). Hence it is obvious from the definition of the determinant that
detDk = O(ωn).

We now show that 1
detA = O

(
ω−n−1

)
. We know that

detA = det [iωg0, · · · , iωgn] +O(ωn) = (iω)n+1 det [g0, · · · ,gn] +O(ωn)

But, by the hypothesis, the columns of this determinant are linearly independent, hence this de-
terminant is not zero and detA is an (n+ 1)th degree polynomial in ω. If ω is sufficiently large,
then the ωn+1 term overwhelms the O(ωn) term and detA 6= 0, which proves that the system has
a unique solution. Furthermore 1

detA = O
(
ω−n−1

)
, and we have shown that ck = O

(
ω−1

)
. Since

each ψk is independent of ω, it follows that v and its derivatives are also O
(
ω−1

)
. Thus,

L[v](j) = v(j+1) + iω
j∑

k=0

g(k+1)v(j−k) = O
(
ω−1

)
+O(1) = O(1)

for all 0 ≤ j ≤ s + 1. We have satisfied the hypotheses of Corollary 1 and the theorem follows.
2

Theorem 4 provides somewhat simpler conditions on the basis {ψk}n0 in the preceding theorem.
It is especially helpful as it ensures that the standard polynomial basis can be used with the Levin-
type method and any choice of nodes and multiplicities. Recall from (Powell, 1981) that stating
that a basis is a Chebyshev set is equivalent to stating that it spans a set M that satisfies the Haar
condition, or in other words that every function u ∈ M has less than n+ 1 roots to the equations
u(x) = 0 in the interval [a, b].

Theorem 4 Suppose that the basis {ψk}n0 is a Chebyshev set. Then the conditions on {gk}n0 of the
preceding theorem are satisfied for all choices of {xk}ν0 and {mk}ν0.

Proof Let M be equal to the span of {ψk}n0 . We begin by showing that {g′ψk}n0 is a Chebyshev
set. Note that {g′ψk}n0 is a family of linearly independent functions, since

∑
ckg

′ψk = g′
∑
ckψk
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Figure 4: The error scaled by ω3 of QA2 [f ] (left figure, top), QL[f ] (left figure, bottom)/(right
figure, top) and QF [f ] (right figure, bottom) both with only endpoints and multiplicities two for
I[f ] =

∫ 1
0 cos(x) eiω(x2+x)dx.

and g′ 6= 0. Let M̃ = span {g′ψk}n0 and ũ ∈ M̃ , where ũ is not identically zero. We know that
ũ = g′u for some u ∈M , and u is equal to zero less than n+1 times. But if u(x) 6= 0 then ũ(x) 6= 0.
Thus M̃ satisfies the Haar condition. It follows that the vectors [g′(y0)ψk(y0) , · · · , g′(yn)ψk(yn)]>

for 0 ≤ k ≤ n are linearly independent for any choice of nodes {yk}n0 (Powell, 1981). Thus, by a
trivial limiting argument, we know that {g0, · · · ,gn} are linearly independent. 2

The simplest and most obvious choice for {ψk} is the standard basis of polynomials, which we
know is a Chebyshev set. In fact this choice is equivalent to the Filon-type method for the Fourier
oscillator case. This was proved in (Xiang, 2005) for the original Levin method (i.e. multiplicities all
one), and the proof is trivial to generalize for the preceding Levin-type method. For the remainder
of this section we assume that {ψk} is the standard basis of polynomials.

How does the Levin-type method compare numerically to the asymptotic and Filon-type meth-
ods? Consider the case with g(x) = x2 + x and f(x) = cosx. We fix s equal to two, hence the
endpoints for the Filon-type and Levin-type methods must have multiplicity at least two, and we
obtain Figure 4. This figure suggests that, in reasonable situations, the Levin-type method is a
clear improvement over the asymptotic method, though not quite as accurate as the Filon-type
method.

Figure 5 compares the Levin-type method and the Filon-type method with the addition of
two sample points. This graph helps emphasize the effectiveness of adding node points within the
interval of integration. With just two node points, only one of which has multiplicity greater than
one, the error of QL[f ] is less than a sixth of what it was. In fact it is fairly close to the former
QF [f ] while still not requiring the knowledge of moments. On the other hand, adding the same
node points and multiplicities to QF [f ] results in an error indistinguishable from zero in comparison
to the original QL[f ]. It should be emphasized that even QL[f ] with only endpoints is still a very
effective method, as all the values in this graph are divided by ω3 ≥ 2003 = 8 · 106.

It comes as no surprise that the hierarchy of accuracy between the asymptotic, Filon-type,
and Levin-type methods depends on the choice of f and g. After all, we have already seen that
the Filon-type method can be less accurate than the asymptotic method when f exhibits Runge’s
phenomenon. Further in this paper, we will see an example where the Levin-type method with
polynomial basis is significantly more accurate than the Filon-type method, and oscillates between
more accurate and less accurate than the asymptotic method, for increasing ω.
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Figure 5: The error scaled by ω3 of QL[f ] (left figure, top) and QF [f ] both with only endpoints
and multiplicities two (left figure, bottom) compared to QL[f ] (left figure, middle) and QF [f ] (right
figure) both with nodes

{
0, 1

4 ,
2
3 , 1

}
and multiplicities {2, 2, 1, 2} for I[f ] =

∫ 1
0 cos(x) eiω(x2+x)dx.

5 Choosing a basis

It is important to note that, for the Levin-type method, there is no particular reason to use poly-
nomials for {ψk}. Not only can we greatly improve the accuracy of the approximation by choosing
the basis wisely, but surprisingly we can even obtain higher asymptotic order. The idea is to choose
{ψk} so that L[v] is qualitatively similar in shape to f within the interval of integration. Pretend
for a moment that QAs [f ] is equal to I[f ] =

[
F (x) eiωg(x)

]b
a
. Then F (x) = −

∑s
k=1

1
(iω)kσk[f ](x).

This suggests that a reasonable choice for {ψk} is to define ψ0 = 1 and ψk = σk[f ] for k ≥ 1.
Provided that this choice for {ψk} satisfies the hypotheses of the Levin-type method, it turns out
that we obtain an error of order O

(
ω−n−s−1

)
for n =

∑ν
k=0mk − 1, i.e. where n+ 1 is the number

of equations in the Levin-type method system. This is a very significant improvement since, unlike
in the case of the Filon-type method as well as the Levin-type method with polynomial basis, node
points within the interval increase the order and adding an additional multiplicity to each endpoint
increases the order by three.

To prove the order of the error we rely heavily on Cramer’s rule. As a result we need to do
several determinant manipulations. Hence we derive the following lemma, which we use repeatedly
in the proof of Theorem 6.

Lemma 5 Let ψ0 = 1,ψ1 = f
g′ , and ψk+1 = ψ′

k
g′ for integer k ≥ 1. If k ≥ 1 then

det [gk,ak, · · · ,ak+j , B] = det [gk,gk+1, · · · ,gk+j+1, B] (5.3)

where gk and ak were defined in Theorem 3 and B represents any additional columns that render
the matrix square.

Proof Note that ψ′k = g′ψk+1, for k ≥ 1. Hence we can rewrite pk as

pk =
[
ψ′k(x0) , · · · , ψ(m0)

k (x0) , · · · , ψ′k(xν) , · · · , ψ
(mν)
k (xν)

]>
=

[(
g′ψk+1

)
(x0) , · · · ,

(
g′ψk+1

)(m0−1)(x0) , · · · ,
(
g′ψk+1

)
(xν) , · · · ,

(
g′ψk+1

)(mν−1)(xν)
]>

= gk+1

9



Recall that ak = pk + iωgk. Thus multiplying the first column of the determinant on the left
hand side of (5.3) by iω and subtracting it from the second results in a second column equal to
ak − iωgk = pk = gk+1. Clearly we can repeat this process on the remaining columns, hence the
lemma follows by an inductive argument. 2

Note that Lemma 5 holds for any column interchange that occurs on both sides of the equality.
Using this lemma we can prove the following theorem:

Theorem 6 Let {ψk} be defined as in the preceding lemma, and suppose that {xk}ν0, {mk}ν0, and
{ψk}n0 satisfy the conditions for Theorem 3. Then, if m0,mν ≥ s,

I[f ]−QL[f ] ∼ O
(
ω−n−s−1

)
,

where as before n =
∑ν

k=0mk − 1.

Proof
Provided that we can show that the functions in the set

{
L[v]− f, · · · , L[v](s+1) − f (s+1)

}
are

of order O(ω−n), the theorem will follow from Corollary 1. If we fix 0 ≤ j ≤ s+ 1, then

L[v](j) − f (j) =
n∑
k=0

ckL[ψk]
(j) − f (j) =

n∑
k=0

ck

(
ψ

(j+1)
k + iω

(
g′ψk

)(j)
)
− f (j)

= iωc0g(j+1) +
n∑
k=1

ck

[(
g′ψk+1

)(j) + iω
(
g′ψk

)(j)
]
−

(
g′ψ1

)(j)

= iωc0g(j+1) + (iωc1 − 1)
(
g′ψ1

)(j) +
n∑
k=2

(ck−1 + iωck)
(
g′ψk

)(j) + cn
(
g′ψn+1

)(j)

=
1

detA

[
iω detD0 g

(j+1) + (iω detD1 − detA)
(
g′ψ1

)(j)

+
n∑
k=2

(detDk−1 + iω detDk)
(
g′ψk

)(j) + detDn

(
g′ψn+1

)(j)

]
.

Recall that we showed in the proof of Theorem 3 that 1
detA = O

(
ω−n−1

)
. Hence it is sufficient to

show that the numerator of the preceding fraction is O(ω). There are four types of terms we need
to handle: iω detD0, iω detD1 − detA, detDk−1 + iω detDk for integer 2 ≤ k ≤ n, and detDn.
The first of these cases follows immediately from Lemma 5. For the second case note that

detA− iω detD1 = det [a0,p1 + iωg1,a2, · · · ,an]− iω detD1

= det [a0,p1,a2, · · · ,an] + iω det [a0,g1,a2, · · · ,an]− iω detD1

= iω det [g0,g2,a2, · · · ,an] ,

where we use the fact that a0 = iωg0 and g1 = f , since g′(xk)ψ1(xk) = f(xk). After applying
Lemma 5 to this determinant, it is clear that this case is also O(ω).

The third case is handled in a very similar manner. Like before we begin by rewriting deter-
minants:

detDk−1 + iω detDk = det [a0, · · · ,ak−2,g1,pk + iωgk,ak+1, · · · ,an]
+iω det [a0, · · · ,ak−2,pk−1 + iωgk−1,g1,ak+1, · · · ,an]

= det [a0, · · · ,ak−2,g1,gk+1,ak+1, · · · ,an]

10
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Figure 6: The error scaled by ω4 of QA3 [f ] (left figure, top), QF [f ] with endpoints for nodes and
multiplicities 2 (left figure, bottom), and QB[f ] in with nodes

{
0, 1

2 , 1
}

and multiplicities one (right
figure) for I[f ] =

∫ 1
0 log(x+ 1) eiωxdx.

+iω det [a0, · · · ,ak−2,g1,gk,ak+1, · · · ,an]
+iω det [a0, · · · ,ak−2,gk,g1,ak+1, · · · ,an]
+ (iω)2 det [a0, · · · ,ak−2,gk−1,g1,ak+1, · · · ,an]

= det [a0, · · · ,ak−2,g1,gk+1,ak+1, · · · ,an]
+ (iω)2 det [a0, · · · ,ak−2,gk−1,g1,ak+1, · · · ,an] .

After using Lemma 5 twice the first of these determinants is clearly O(ω). But using the lemma on
the second determinant results in two columns being equal to gk−1, hence the determinant is zero.
The fourth and final case, much like the first case, is O(ω) due to Lemma 5. Hence we have shown
that L[v](j) − f (j) is of order O(ω−n) for all 0 ≤ j ≤ s+ 1, and the proof is complete. 2

To emphasize the distinction, we denote the Levin-type method with the standard polynomial
basis as QL[f ] and the Levin-type method with the basis of the preceding theorem, which we call
the asymptotic basis, as QB[f ]. Clearly, when the same node points and multiplicities are used
and ω is sufficiently large, QB[f ] is a substantive improvement over QL[f ] and QF [f ]. Of course,
it also requires f (k) for k up to n+ s− 1, where the Filon-type method only requires f (k) for k up
to s − 1. Thus in some sense it is more appropriate to compare QB[f ] with other methods of the
same order.

Consider the Fourier oscillator and let f(x) = log(x+ 1). We compare methods of order
O

(
ω−4

)
, hence fix s = 3. This includes QA3 [f ], QF [f ] (which is equivalent to QL[f ]) with nodes

{0, 1} and multiplicities {2, 2}, and QB[f ] using nodes
{
0, 1

2 , 1
}

and multiplicities all one. With
this set up we obtain Figure 6. The results are decent, with QB[f ] being slightly more accurate
than QF [f ] on average.

The problem with QAs [f ] and QF [f ] is that in general as s→∞ these methods diverge. Hence
another worthwhile comparison is to see how QB[f ] compares to these two methods for fixed ω and
increasing s. Thus fix ω = 50, chosen purposely relatively small since the larger ω, the longer it
takes for increasing s to cause the approximation to diverge. This choice results in Figure 7, where
we take the base-10 logarithms of the error. This figure clearly shows the benefit of using QB[f ]
for this particular case. Though at lower orders the error of QF [f ] and QB[f ] are very similar, at
higher orders they differ by orders of magnitude. For O

(
ω−9

)
, the error of QB[f ] is slightly better

than 10−16 while the error of QF [f ] is slightly better than 10−12, and the error of QA[f ] is not

11
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Figure 7: The base-10 logarithm of the error of QAs [f ] (top), QF [f ] with endpoints for nodes and
multiplicities s (middle), and QB[f ] with nodes {k/ (s− 1)}s−1

k=0 and multiplicities all one (bottom)
for I[f ] =

∫ 1
0 log(x+ 1) eiωxdx.
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Figure 8: The error scaled by ω6 of QB[f ] with nodes
{
0, 1

4 ,
1
2 ,

3
4 , 1

}
and multiplicities all one

(bottom), nodes
{
0, 1

2 , 1
}

and multiplicities {1, 3, 1} (middle), and nodes {0, 1} and multiplicities
both equal to two (top) for I[f ] =

∫ 1
0 log(x+ 1) eiωxdx.

even 10−12. At around 10−16 we reach IEEE machine precision, hence it would be meaningless to
extend this graph to higher orders.

We can also compare QB[f ] with itself under different choices of node points. Though we retain
the same f and g, we compare different methods of order O

(
ω−6

)
to increase the number of possible

node choices. We consider three choices of nodes and multiplicities: nodes
{
0, 1

4 ,
1
2 ,

3
4 , 1

}
and

multiplicities all one, nodes
{
0, 1

2 , 1
}

and multiplicities {1, 3, 1}, and nodes {0, 1} and multiplicities
both equal to two. This results in Figure 8. We take relatively mild values for ω as any value
significantly larger and the accuracy reaches IEEE machine precision. It is not entirely suprising
that the more concentrated the sampling the less accurate the approximation. Though they are
not displayed in the preceding figure, for comparison QA5 [f ] performed horribly, oscillating between
23 and 25, while QF [f ] with nodes {0, 1} and multiplicities five performed roughly in the middle
of the pack, oscillating between 0.2 and 0.8.
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Figure 9: The error scaled by ω6 of QA5 [f ] (top) and QB[f ] with nodes {1, 5, 10, 20,∞} and multi-
plicities all one (bottom) for I[f ] =

∫ 1
0

1
xeiωxdx compared to E1(iω).
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Figure 10: The error scaled by ω6 of ReQA5 [f ] (top) and ReQB[f ] with nodes {1, 5, 10, 20,∞} and
multiplicities all one (bottom) for I[f ] =

∫ 1
0

1
xeiωxdx compared to −Ci(ω).

Now consider the case of

E1(−iω) =
∫ ∞

1

eiωx

x
dx

where E1 is the exponential integral as defined in (Abramowitz and Stegun, 1964). This function is
important since we can derive the sine and cosine integrals from its real and imaginary parts. Note
that though we never explicitly handled the case of b = ∞, all the proofs up to this point are valid
for this situation as long as we can integrate by parts. Thus we can use the asymptotic method
with σk[f ](x) = f (k−1)(x) = (−1)k−1(k − 1)!x−k, meaning that σk[f ](∞) = 0 and σk[f ](1) =
(−1)k−1(k − 1)! for all k. Since σk[f ](∞) is always zero, we have the added benefit that it is only
necessary to evaluate f and its derivatives at one of the endpoints to obtain the desired order. Thus
we derive the following asymptotic expansion:

E1(−iω) ∼ eiω
∞∑
k=1

(−1)k−1 (k − 1)!

(−iω)k
.

It should come as no surprise that this is equivalent to the expansion in (Abramowitz and Stegun,
1964).
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Figure 11: The error scaled by ω4 of QA3 [f ] (left figure, bottom), QF [f ] with only endpoints and
multiplicities two (left figure, top), and QB[f ] with end points and two Chebyshev nodes, all with
multiplicity one (right figure) for I[f ] =

∫ 1
0

1
1+10x2 eiωxdx.

Clearly neither Filon-type method nor Levin-type method with polynomial basis can handle
this situation since polynomials diverge at ∞. On the other hand, we can use the asymptotic basis
with the Levin-type method to derive an approximation. Consider the case of arbitrarily chosen
nodes {1, 5, 10, 20,∞} with multiplicities all one. This has order of error O

(
ω−6

)
, thus we compare

it to the asymptotic method with s = 5 in Figure 9. Even with arbitrarily chosen nodes, QB[f ]
is substantially more accurate than simply using the asymptotic expansion; in this case it has less
than a tenth of the error on average. We can also compare the real parts of each approximation to
−Ci(ω), where Ci is the cosine integral as defined in (Abramowitz and Stegun, 1964). This results
in Figure 10.

We now consider again the function that suffered from Runge’s phenomenon. Since QB[f ]
is not polynomial interpolation, there is a good chance that Runge’s phenomenon will not affect
us in the same way. In fact, numerical tests show that QB[f ] has significantly less error than its
polynomial counterparts. Direct computation shows that detA is a polynomial in ω of degree n,
not of degree n + 1. Fortunately, the proof of Theorem 6 holds as is, except that QB[f ] now has
error of order O(ω−n−s). Again we compare methods of similar order in Figure 11, which shows
that QB[f ] is the best of the three methods tried.

Another situation somewhat similar to Runge’s phenomenon is when f increases much too fast
to be accurately approximated by polynomials. Let f(x) = e10x and g(x) = x2 + x. Note that this
appears to be a ludicrously difficult example — not only do we have high oscillations but f exceeds
22, 000 in the interval of integration! Amazingly, we will see that the methods described within
this paper are still very accurate, especially the Levin-type method with asymptotic basis. We
compare QB[f ] which has only endpoints for nodes and multiplicities all one to QA2 [f ] and QF [f ]
with only endpoints for nodes and multiplicities both two in Figure 12. We omit the proof that
the vectors {g0, · · · ,gn} associated with QB[f ] are linearly independent, as it is a simple exercise
in linear algebra.

In this example QF [f ] produces a tremendously bad approximation, due to the difficulty in
interpolating an exponential by a polynomial. As seen in Table 1, the actual error for ω = 200 is
about 0.042. On the other hand, QA2 [f ] performed significantly better than the Filon-type method,
though still not spectacularly, with an error of approximately 0.0083 for ω = 200. The star of this
show is clearly QB[f ], where the actual error for ω = 200 is about 0.000585; less than a tenth of
the error of QA2 [f ].
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Figure 12: The error scaled by ω3 of QF [f ] with endpoints and multiplicities both two (left fig-
ure, top), QL[f ] with endpoints and multiplicities both two (left figure, bottom), QA2 [f ] (right
figure, top), and QB[f ] with endpoints and multiplicities all zero (right figure, bottom) for
I[f ] =

∫ 1
0 e10xeiω(x2+x)dx.

s QAs [f ] QF [f ] QL[f ] QB[f ]
2 0.0083 0.042 0.015 0.00059
3 0.00011 0.0016 0.00043 2.8 · 10−6

5 1.7 · 10−8 1.3 · 10−6 3 · 10−7 9.9 · 10−12

Table 1: The absolute value of the errors for ω = 200 of the following methods of order
O

(
ω−s−1

)
: QAs [f ], QF [f ] and QL[f ] with endpoints and multiplicities both s, and QB[f ] with

nodes {k/ (s− 1)}s−1
k=0 and multiplicities all one for I[f ] =

∫ 1
0 e10xe200i(x2+x)dx.

Adding additional nodes to QB[f ] increases the accuracy further. For example, again with
ω = 200, adding a single node at the midpoint decreases the error to 2.79 ·10−6 while adding nodes
at 1

4 , the midpoint, and 3
4 further decreases the error to the astoundingly small 9.93 · 10−12. This

example demonstrates just how powerful these quadrature techniques are compared to Gaussian
quadrature: even with 100, 000 panels Gaussian quadrature had an error of 0.11, not even close to
the accuracy of the Filon-type method, to say nothing of QB[f ].
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