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1. Introduction

Nowadays the so-called Magnus expansion constitutes a widespread tool to construct

approximate solutions of non-autonomous systems of linear ordinary differential

equations. As is well known, the basic idea is to represent the solution of

Y ′ = A(t)Y, Y (0) = Y0, (1)

where A is a n × n matrix, in the form Y = exp(Ω(t))Y0 and express Ω as an infinite

series Ω(t) =
∑∞

k=1 Ωk(t), whose terms are linear combinations of integrals and nested

commutators involving the matrix A at different times [21]. In particular, the first terms

read explicitly

Ω1(t) =

∫ t

0

A(t1)dt1, Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[A1, A2],

where Ai ≡ A(ti) and [X, Y ] ≡ XY − Y X is the commutator of X and Y . Explicit

formulae for Ωk of all orders have been given in [18] by using graph theory, whereas in [20]

a recursive procedure for the generation of Ωk was proposed. Different approximations

to the solution of (1) are obtained when the series of Ω is truncated. This procedure has

the very attractive property of ensuring preservation of important qualitative properties

of the exact solution at any order of truncation.

Since the 1960s, the Magnus expansion has been successfully applied as an analytic

tool in numerous areas of Physics and Chemistry, from nuclear, atomic and molecular

Physics to NMR and Quantum Electrodynamics (see [1] for a list of references). Also a

convergence proof for the series defining Ω has been obtained [1].

In recent years, Iserles and Nørsett [18] used rooted trees to analyse the expansion

terms, leading to a recursive procedure to generate Ω and constructing practical

algorithms for the numerical integration of equation (1). The resulting schemes are

prototypical examples of geometric integrators : numerical methods for discretising

differential equations which preserve their known qualitative features, such as invariant

quantities and geometric structure [13]. By sharing such properties with the exact

solution, these methods provide numerical approximations which are more accurate and

more stable for important classes of differential equations, such as those evolving on Lie

groups. In addition, several integrators based on the Magnus expansion have proved to

be highly competitive with other, more conventional numerical schemes with respect to

accuracy and computational effort [2, 3].

In this respect, there are two important factors involved in the process of rendering

Magnus expansion as a class of numerical integrators. On the one hand, the structure of

the Magnus series is such that the number of matrix evaluations required to compute all

the multivariate integrals in the expansion to a given order is the same as the cost of the

single quadrature formula for Ω1 [18]. On the other hand, an optimization procedure

can be designed to reduce a great deal the number of commutators required by the

scheme [3].

It is perhaps for these reasons that, although these algorithms have been primarily

designed for linear problems, where the matrix function A depends on time only, several
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attempts have been made to generalise the formalism when A = A(t, Y ). In that case,

though, multivariate integrals depend also on the value of the (unknown) variable Y at

quadrature points. This leads to implicit methods and nonlinear algebraic equations

in every step of the integration [27] which in general cannot compete in efficiency

with other classes of geometric integrators such as splitting and composition methods.

An interesting alternative have been proposed by Blanes and Moan [4]: they use a

conveniently modified version of the Magnus expansion to construct a new class of

splitting methods for non-autonomous Hamiltonian dynamical systems.

In this paper we try to overcome some of the aforementioned difficulties and develop

new explicit Magnus expansions for the nonlinear equation

Y ′ = A(t, Y )Y, Y (0) = Y0 ∈ G, (2)

where G is a matrix Lie group, A : R+ × G −→ g and g denotes the corresponding

Lie algebra (the tangent space at the identity of G). Equation (2) appears in relevant

physical fields such as rigid mechanics and in the calculation of Lyapunov exponents

(G ≡ SO(n)), Hamiltonian dynamics (G ≡ Sp(n)) and Quantum Mechanics (G ≡
SU(n)). In fact, it can be shown that every differential equation evolving on a matrix

Lie group G can be written in the form (2). Moreover, the analysis of generic differential

equations defined in homogeneous spaces can be reduced to the Lie-group equation (2)

[26]. It is therefore of the greatest interest to design numerical geometric integration

schemes for the system which are computationally as efficient as possible.

One common technique to solve eq. (2) whilst preserving its Lie group structure is

to lift Y (t) from G to the underlying Lie algebra g (usually with the exponential map),

then formulate and solve there an associated differential equation and finally map the

solution back to G. In this way the discretization procedure works in a linear space

rather than in the Lie group. In particular, the idea of Munthe-Kaas is to approximate

the solution of the associated differential equation in the Lie algebra g by means of

a classical Runge–Kutta method, thus obtaining the so-called Runge–Kutta–Munthe-

Kaas (RKMK) class of schemes [24, 17].

Here new Lie group solvers up to order four for (2) are presented. The new schemes

are explicit by design and are expressed in terms of integrals which can be replaced by

different quadrature rules. It is also possible to change the step size and even the order

at each integration step, so that although their computational effort per step exceeds

some other algorithms, with an optimal implementation one can get a more efficient Lie

group solver for certain nonlinear problems.

The plan of the paper is as follows. In section 2 an explicit Magnus expansion

for equation (2) is presented and analysed, in general and for the particular yet highly

important case of isospectral flows. In section 3 we construct some numerical schemes

based on the new expansion and illustrate their features on several numerical examples,

comparing them with the class of RKMK methods. In section 4 we show how the

expansion can be implemented to integrate highly-oscillatory nonlinear ODEs, just by

choosing the right quadrature rules on a modified version of the algorithm. Finally,
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section 5 contains some conclusions.

2. Magnus expansion

2.1. General case

As usual, the starting point in our formalism is to represent the solution of (2) in the

form

Y (t) = eΩ(t)Y0. (3)

Then one obtains after trivial algebra the differential equation satisfied by Ω:

Ω′ = d exp−1
Ω (A(t, eΩY0)), Ω(0) = O. (4)

Here

d exp−1
Ω (C) =

∞∑

k=0

Bk

k!
ad k

ΩC,

{Bk}m∈Z+ are the Bernoulli numbers and adm is a shorthand for an iterated commutator,

ad 0
ΩA = A, ad m+1

Ω A = [Ω, ad m
Ω A], m ≥ 0.

In the linear case, i.e. when A depends on time only, the Magnus series for Ω can be

obtained by Picard’s iteration,

Ω[0](t) ≡ O

Ω[m+1](t) =

∫ t

0

d exp−1
Ω[m](s)

A(s)ds =

∫ t

0

∞∑

k=0

Bk

k!
ad k

Ω[m](s)A(s)ds, m ≥ 0.

The same formal procedure can also be applied to eq.(4), giving instead

Ω[m+1](t) =

∫ t

0

d exp−1
Ω[m](s)

A(s, eΩ[m](s)Y0)ds

=

∫ t

0

∞∑

k=0

Bk

k!
ad k

Ω[m](s)A(s, eΩ[m](s)Y0)ds, m ≥ 0.

The next step to get explicit approximations is to truncate appropriately the d exp−1

operator in the above expansion. Roughly speaking, when the whole series for d exp−1

is considered, the power series expansion of the iterate function Ω[k](t), k ≥ 1, only

reproduces the expansion of the solution Ω(t) up to certain order, say O(tm). In

consequence, the (infinite) power series of Ω[k](t) and Ω[k+1](t) differ in terms of order

O(tm+1). The idea is then to discard in Ω[k](t) all terms of order greater than O(tm).

This of course requires careful analysis of each term in the expansion. For instance,

Ω[0] = O implies that (Ω[1])′ = A(t, Y0) and therefore

Ω[1](t) =

∫ t

0

A(s, Y0)ds = Ω(t) +O(t2).

Since

A(s, eΩ[1](s)Y0) = A(0, Y0) +O(s)
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it follows at once that

−1

2

∫ t

0

[Ω[1](s), A(s, eΩ[1](s)Y0)] ds = O(t3).

When this second term in Ω[2](t) is included and Ω[3] is computed, it turns out that Ω[3]

reproduces correctly the expression of Ω[2] up to O(t2). Therefore we truncate d exp−1

at the k = 0 term and take

Ω[2](t) =

∫ t

0

A(s, eΩ[1](s)Y0)ds.

With greater generality, we let

Ω[1](t) =

∫ t

0

A(s, Y0)ds (5)

Ω[m](t) =
m−2∑

k=0

Bk

k!

∫ t

0

ad k
Ω[m−1](s)A(s, eΩ[m−1](s)Y0))ds, m ≥ 2

and take the approximation Ω(t) ≈ Ω[m](t). This results in an explicit approximate

solution that involves a linear combination of multiple integrals of nested commutators,

so that Ω[m](t) ∈ g for all m ≥ 1. In addition, it a trivial exercise to show that Ω[m](t)

reproduces exactly the sum of the first m terms in the Ω series of the usual Magnus

expansion for the linear equation Y ′ = A(t)Y . It makes sense, then, to regard the

scheme (5) as an explicit Magnus expansion for the nonlinear equation (2).

The actual order of approximation is provided by the following result (which as a

matter of fact generalises the cases m = 1 and m = 2 studied before):

Theorem 2.1 Let Ω(t) be the exact solution of the initial value problem (4) and Ω[m](t)

the iterate given by scheme (5). Then it is true that

Ω(t)− Ω[m](t) = O(tm+1).

In other words, Ω[m](t), once inserted in (3), provides an explicit approximation Y [m](t)

for the solution of (2) that is correct up to order O(tm+1).

Sketch of the proof: To simplify matters, let us consider the autonomous case, i.e.,

Y ′ = A(Y )Y . The extension to the general situation is straightforward.

In this case a long but simple calculation shows that the exact solution of (4) can

be written as the infinite series

Ω(t) =
∞∑

l=1

tl ωl

with ω1 = A(Y0), ω2 = 1
2
G1 and, for l ≥ 3,

l ωl = Gl−1 +
l−1∑
j=1

Bj

j!

∑

k1+···+kj=l−1
k1≥1,...,kj≥1

ad ωk1
· · · ad ωkj

A(Y0)
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+
l−2∑
j=1




j∑
s=0

Bs

s!

∑

k1+···+ks=j
k1≥1,...,ks≥1

ad ωk1
· · · ad ωks


 Gl−1−j (6)

+
l−2∑
j=1

Bj

j!

∑

k1+···+kj=l−2
k1≥1,...,kj≥1

ad ωk1
· · · ad ωkj

G1.

Here Gk is a function which depends on Y0, ω1, . . . , ωk,

Gk = Gk(Y0; ω1, ω2, . . . , ωk), k ≥ 1.

On the other hand, if we discard all terms of order exceeding O(tm) in Ω[m](t) given by

(5), then

Ω[m](t) =
m∑

l=1

tl ω̂l,

where ω̂1 = A(Y0) and ω̂l, 2 ≤ l ≤ m is given by the same expression (6) with the

substitutions

ωk 7−→ ω̂k, Gk 7−→ Ĝk,

but now Ĝk = Ĝk(Y0; ω̂1, ω̂2, . . . , ω̂m−1), k = 1, . . . , m.

Since ω̂1 = ω1, then Ĝ1 = G1 and, by induction,

ω̂l = ωl, Ĝl = Gl for l = 1, . . . , m− 1,

but Ĝm = Ĝm(Y0; ω̂1, ω̂2, . . . , ω̂m−1), whereas Gm = Gm(Y0; ω1, ω2, . . . , ωm), so that

Ĝm 6= Gm. In consequence

Ω′(t)− (Ω[m](t))′ = tm(Gm − Ĝm) +O(tm+1)

and thus Ω(t)− Ω[m](t) = O(tm+1). 2

2.2. Isospectral flows

The Magnus expansion introduced before can be easily adapted to construct a

exponential representation of the solution for the differential system

Y ′ = [A(Y ), Y ], Y (0) = Y0 ∈ Sym(n). (7)

Here Sym(n) stands for the set of n × n symmetric real matrices and the (sufficiently

smooth) function A maps Sym(n) into so(n), the Lie algebra of n×n real skew-symmetric

matrices. It is well known that the solution itself remains in Sym(n) for all t ≥ 0.

Furthermore, the eigenvalues of Y (t) are independent of time, i.e., Y (t) has the same

eigenvalues as Y0. This remarkable qualitative feature of the system (7) is the reason

why it is called an isospectral flow. Such flows have several and interesting applications

in physics and applied mathematics, from molecular dynamics to micromagnetics to

linear algebra [9].
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Since Y (t) and Y (0) share the same spectrum, there exists a matrix function

Q(t) ∈ SO(n) (the Lie group of all n×n real orthogonal matrices with unit determinant),

such that Y (t)Q(t) = Q(t)Y (0), or equivalently,

Y (t) = Q(t)Y0Q
T (t). (8)

Then, by inserting (8) into (7), it is clear that the time evolution of Q(t) is described

by

Q′ = A(t, QY0Q
T ) Q, Q(0) = I, (9)

i.e., an equation of type (2). There is another possibility, however: if we seek the

orthogonal matrix solution of (9) as Q(t) = exp(Ω(t)) with Ω skew-symmetric,

Y (t) = eΩ(t)Y0 e−Ω(t), t ≥ 0, Ω(t) ∈ so(n), (10)

then the corresponding equation for Ω reads

Ω′ = d exp−1
Ω (A(eΩY0e

−Ω)), Ω(0) = O. (11)

In a similar way as for eq. (4), we apply Picard’s iteration to (11) and truncate the

d exp−1 series at k = m− 2. Now we can also truncate consistently the operator

Ad ΩY0 ≡ eΩY0e
−Ω = ead ΩY0

and the outcome still lies in so(n). By doing so, we replace the computation of one

matrix exponential by several commutators.

In the end, the scheme reads

Ω[1](t) =

∫ t

0

A(Y0)ds

Θm−1(t) =
m−1∑

l=0

1

l!
ad l

Ω[m−1](t)Y0 (12)

Ω[m](t) =
m−2∑

k=0

Bk

k!

∫ t

0

ad k
Ω[m−1](s)A(Θm−1(s))ds, m ≥ 2

and, as before, one has Ω(t) = Ω[m](t) +O(tm+1). Thus

Θ1(t) = Y0 + [Ω[1](t), Y0]

Ω[2](t) =

∫ t

0

A(Θ1(s))ds

Θ2(t) = Y0 + [Ω[2](t), Y0] +
1

2
[Ω[2](t), [Ω[2](t), Y0]]

Ω[3](t) =

∫ t

0

A(Θ2(s))ds− 1

2

∫ t

0

[Ω[2](s), A(Θ2(s))]ds

and so on. Observe that this procedure preserves the isospectrality of the flow since the

approximation Ω[m](t) lies in so(n) for all m ≥ 1 and t ≥ 0. It is also equally possible

to develop a formalism based on rooted trees in this case, in a similar way as for the

standard Magnus expansion.
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An important subclass of systems is formed by the so-called quasilinear isospectral

flows. We say that the system (7) is quasilinear if A is a linear function in the entries

of Y , i.e., A(α1Y1 + α2Y2) = α1A(Y1) + α2A(Y2). Some relevant examples include the

double bracket flow, the periodic Toda lattice (to be introduced later on), the Toeplitz

annihilator defined by

Ak,l(Y ) =





Yk+1,l − Yk,l−1, 1 ≤ k < l ≤ n,

0, 1 ≤ k = l ≤ n,

Yk−1,l − Yk,l+1, 1 ≤ l < k ≤ n.

(13)

[11] and certain classes of Lie–Poisson flows [6, 7]. The isospectral flow (7) with a matrix

A given by (13) can be used to find a symmetric Toeplitz matrix with a prescribed set

of real numbers as its eigenvalues. The corresponding flow generally converges to an

asymptotic state, so that in this context it is very useful to have explicit approximations

[27].

When the iterative scheme (12) is applied to a quasilinear flow one gets the

expression

Ω[m](t) =
m∑

l=1

tl ωl,

where the coefficients ωl are constructed recursively (as in the proof of Theorem 2.1,

but now the functions Gk are determined explicitly):

ω1 = A(Y0)

2 ω2 = A(ad ω1Y0)

l ωl =
l−1∑
j=1

1

j!

∑

k1+···+kj=l−1
k1≥1,...,kj≥1

A(ad ωk1
· · · ad ωkj

Y0)

+
l−1∑
j=1

Bj

j!

∑

k1+···+kj=l−1
k1≥1,...,kj≥1

ad ωk1
· · · ad ωkj

A(Y0) (14)

+
l−1∑
j=2




j−1∑
s=1

Bs

s!

∑

k1+···+ks=j−1
k1≥1,...,ks≥1

ad ωk1
· · · ad ωks







l−j∑
p=1

1

p!

∑

k1+···+kp=l−j
k1≥1,...,kp≥1

A(ad ωk1
· · · ad ωkp

Y0)


 l ≥ 3

In this case it is even possible to obtain a domain of convergence of the procedure when

m →∞ by applying the same techniques as in [10]. Specifically, let us consider a norm

in so(n) and a number µ > 0 satisfying

‖[X,Y ‖ ≤ µ‖X‖ ‖Y ‖
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for all X, Y in so(n) and suppose that A is a matrix such that ‖A(Y )‖ ≤ K‖Y ‖ for

a certain constant K. (A discussion of an important case when µ < 2 can be found in

[5].) Then the series
∞∑

l=1

tl ‖ωl‖

converges for 0 ≤ t < tc, where tc =
ξ

µK‖Y0‖ and

ξ =

∫ 2π

0

e−x

2 + x
2
(1− cot x

2
)
dx ' 0.688776 . . .

Example: The double bracket flow. The double bracket equation

Y ′ = [[Y, N ], Y ], Y (0) = Y0 ∈ Sym(n) (15)

was introduced by Brocket [8] and Chu & Driessel [11] to solve certain standard problems

in applied mathematics, although similar equations also appear in the formulation

of physical theories such as micromagnetics [23]. Here N is a constant matrix in

Sym(n). As mentioned before, it constitutes an example of a quasilinear isospectral

flow with A(Y ) ≡ [Y,N ]. Then, clearly, ‖A(Y )‖ ≤ K‖Y ‖ with K = µ‖N‖. With

these substitutions, (14) reproduces exactly the expansion obtained in [15] with the

convergence domain established in [10]. 2

3. Numerical integrators based on the Magnus expansion

3.1. The new methods

Usually, the integrals appearing in the nonlinear Magnus expansion (5) (or (12)) cannot

be evaluated in practice for a given matrix A. Hence, unless they are replaced by

affordable quadratures, the overall scheme is of little value as a numerical algorithm.

Also the existence of several commutators and matrix exponential evaluations at

the intermediate stages requires a detailed treatment to reduce the computational

complexity and render practical integration schemes.

To illustrate the different issues involved in the construction of numerical methods

from (5) we consider here schemes of order 2 and 3, whereas a fourth-order method is

presented in the appendix.

Order 2. This case corresponds to m = 2 in (5), so that

Ω[1](t) =

∫ t

0

A(s, Y0)ds (16)

Ω[2](t) =

∫ t

0

A(s, eΩ[1](s)Y0))ds. (17)
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If A is such that the integral (16) can be exactly computed, all that is required to get

a second order integrator is to replace the integral (17) with a quadrature rule of order

2. For instance, if we discretise Ω[2] with the trapezoidal rule, then

Ω[2](h) =
h

2

(
A(0, Y0) + A(h, eΩ[1](h)Y0)

)
+O(h3). (18)

In fact, it is not necessary to evaluate exactly the integral (16), but only a first order

approximation. If, for instance, we use Euler’s method, Ω[1](h) = hA(0, Y0)+O(h2) and

this results in a new explicit second order scheme

v1 ≡ h

2

(
A(0, Y0) + A(h, ehA(0,Y0)Y0)

)
= Ω[2](h) +O(h3)

Y1 = ev1Y0, (19)

which is precisely the two-stage Runge–Kutta–Munthe-Kaas (RKMK) method with the

Butcher tableau

0

1 1
1
2

1
2

If, on the other hand, Ω[1] is discretised with Euler and Ω[2] with the midpoint rule,

v2 ≡ hA

(
h

2
, e

h
2
A(0,Y0)Y0

)
= Ω[2](h) +O(h3)

Y1 = ev2Y0, (20)

we retrieve exactly the RKMK Heun method [17, p. 355].

Not all explicit RKMK methods can be recovered in this way and, moreover,

there are some interesting differences. In particular, RKMK methods always require

to discretise Ω[1] with a first-order quadrature, something not necessary for schemes

based on the preceding nonlinear Magnus expansion.

Order 3. In addition to eqs. (16) and (17) we have to work with

Ω[3](t) =

∫ t

0

(
A2(s)− 1

2
[Ω[2](s), A2(s)]

)
ds, (21)

where A2(s) ≡ A(s, eΩ[2](s)Y0). If we use Simpson’s rule to approximate (21), then

Ω[3](h) =
h

6
(A(0, Y0) + 4A2(h/2) + A2(h))

− h

3
[Ω[2](h/2), A2(h/2)]− h

12
[Ω[2](h), A2(h)] +O(h4).

Now Ω[1] can be approximated with Euler and Ω[2](h) with the midpoint rule, eq.(20),

whereas

Ω[2](
h

2
) =

h

4

(
A(0, Y0) +

h

4
A(

h

2
, e

h
2
A(0,Y0)Y0)

)
+O(h3)
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to get a 3th-order scheme. The algorithm can be formulated à la RKMK as

u1 = 0

k1 = hA(0, Y0)

u2 =
1

2
k1

k2 = hA(h/2, eu2Y0)

u3 =
1

4
(k1 + k2) (22)

k3 = hA(h/2, eu3Y0)

u4 = k2

k4 = hA(h, eu4Y0)

v3 =
1

6
(k1 + 4k3 + k4)− 1

3
[u3, k3]− 1

12
[u4, k4]

Y1 = ev3Y0

This method closely resembles the RKMK scheme based on the Butcher tableau

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

(23)

As a matter of fact, the technique developed in [25] for RKMK methods can also be

applied here to reduce the number of commutators. The idea is to introduce transformed

variables

Qi =
i∑

j=1

Vijkj = O(hqi),

where the constants Vij are chosen in such a way that the resulting integers qi are as

large as possible. Then it is clear that

[Qi1 , [Qi2 , . . . , [Qim−1 , Qim ] · · ·]] = O(hqi1
+···+qim )

which allows to discard terms of order higher than the method itself. Thus, for the

integrator (22) we use instead

Q1 = k1 = O(h) Q2 = k2 − k1 = O(h2)

Q3 = k3 − k2 = O(h3) Q4 = k4 − 2k2 + k1 = O(h3)
(24)

and thus

u1 = 0 u2 =
1

2
Q1

u3 =
1

2
Q1 +

1

4
Q2 u4 = Q1 + Q2 (25)

v3 = Q1 + Q2 +
2

3
Q3 +

1

6
Q4 − 1

6
[Q1, Q2]
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Order Method A evaluations Commutators Exponentials

2 RKMK 2 0 2

Magnus 2 0 2

3 RKMK 3 1 3

Magnus 4 1 4

4 RKMK 4 2 4

Magnus 6 2 6

Table 1. Computational cost of different integrators for eq.(2).

The resulting algorithm involves four A evaluations, one commutator and three matrix

exponentials per time step. It is therefore computationally more expensive than the

corresponding RKMK scheme based on (23), as shown in Table 1.

Order 4. With m = 4 we can use Simpson’s rule to approximate Ω[4](h). The

computations already done to find Ω[3](h) can be reused here, but it is still necessary

to calculate Ω[3](h/2) up to order O(h3) and two new A evaluations. The resulting

algorithm is collected in the appendix and requires six A evaluations, two commutators

and six matrix exponentials per time step.

In Table 1 we display the computational cost of the numerical integrators based on

the nonlinear Magnus expansion (5) obtained before in terms of A evaluations, number

of commutators and matrix exponentials needed. For comparison we also include RKMK

schemes of the same order (the explicit third-order Magnus method developed by Zanna

[27] by relaxed collocation requires the same computational effort as the corresponding

RKMK scheme).

As it is evident from the table, the new methods require more computational effort

per time step than the corresponding RKMK schemes of the same order. This is due to

the fact that it is necessary to compute lower order approximations to Ω at the internal

stages of the method. But this allows in a natural way to use local extrapolation for

controlling the step size at each iteration. Moreover, even a variable order technique

could be incorporated into the algorithm [14, p. 233], thus improving a great deal its

overall efficiency. In addition, for particular types of problems some other especially

adapted quadrature rules may be employed and/or some of the integrals could also be

exactly evaluated. This is in contrast with the RKMK class of methods.

With respect to the isospectral flow Y ′ = [A(Y ), Y ], it is possible to design a new

family of numerical integrators from (12). Essentially, the main difference with, say,

algorithm (22), is that the action euiY0e
−ui is replaced by an appropriate truncation. As

a consequence, the methods require only the evaluation of a single matrix exponential

per step but the number of commutators involved is much larger. For instance, we have

constructed a fourth-order scheme requiring twelve commutators.
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3.2. Methods for quasilinear isospectral flows

When the isospectral flow is quasilinear, the explicit solution obtained in section 2.2

for any term in the Magnus expansion (eq. (14)) can be used to construct especially

adapted numerical integrators requiring much less computational effort per iteration

than the previous algorithms. Let us illustrate this point by considering, in particular,

methods up to order four.

From eq. (14) it is clear that

3ω3 = A

(
ad ω2Y0 +

1

2
ad 2

ω1
Y0

)
− 1

2
ad ω1ω2

4ω4 = A

(
ad ω3Y0 +

1

2
ad ω1ad ω2Y0 +

1

2
ad ω2ad ω1Y0 +

1

6
ad 3

ω1
Y0

)
(26)

− ad ω1ω3 − 1

6
ad 2

ω1
ω2.

These expressions can be further simplified by grouping terms in the nested commutators

to reduce its number to a minimum. As a result one has the following algorithm:

θ1 = Y0

ω1 = A(θ1)

d1 = [ω1, Y0]

θ2 = d1

ω2 =
1

2
A(θ2); → Ω[2](h) = ω1h + ω2h

2

d2 = [ω2, Y0]; d3 = [ω1, d1]; d4 = [ω1, ω2]

θ3 = d2 +
1

2
d3 (27)

ω3 =
1

3
A(θ3)− 1

6
d4 → Ω[3](h) = Ω[2](h) + ω3h

3

d5 = [ω3 − d4/2, Y0]; d6 = [ω1, d2 + d3/6]; d7 =
1

3
[ω1, A(θ3)]

θ4 = d5 + d6

ω4 =
1

4
(A(θ4)− d7)

Ω[4](h) =
4∑

i=1

ωih
i

and finally

Y (tk + h) = eΩ[m](h) Y (tk) e−Ω[m](h),

where Y0 has to be replaced by Y (tk) in the corresponding expression of Ω[m](h),

m = 2, 3, 4. These methods generalise those obtained in [10] for the double bracket flow

and require only one matrix exponential per time step. Also the number of evaluations of

the A matrix has been reduced as shown in Table 2, where we also collect the number of

commutators involved and compare this new family of methods with RKMK integrators

up to order five for the same class of problems. The fifth-order RKMK method is based
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Order Method A evaluations Commutators Exponentials

2 RKMK 2 0 2

Magnus-QL 2 1 1

3 RKMK 3 1 3

Magnus-QL 3 4 1

4 RKMK 4 2 4

Magnus-QL 4 7 1

5 RKMK 7 6 6

Magnus-QL 5 15 1

Table 2. Computational cost of RKMK methods and the new integrators based
on the Magnus expansion for quasilinear isospectral flows (Magnus-QL).

on the well known DOPRI5(4) Runge–Kutta scheme, which has a total of seven stages

(the seventh stage is used only for error estimation) [12].

Observe that, in general, an mth-order Magnus method only requires m evaluations

of the matrix A. From the table one expects that, unless the system has a special

structure allowing a fast computation of the exponential of the matrices involved, the

new methods will be more efficient than the RKMK class of algorithms, even with a

fixed step size implementation.

3.3. Numerical example: the periodic Toda lattice

As an illustration of the algorithms proposed in this section we consider a three-particle

periodic Toda lattice, i.e., three particles on a ring governed by the Hamiltonian function

H(q, p) =
1

2
(p2

1 + p2
2 + p2

3) + e−(q2−q1) + e−(q3−q2) + e−(q1−q3) − 3.

It is well known that the corresponding equations of motion can be written in the form

Y ′ = [A(Y ), Y ] with

Y =




β1 α1 α3

α1 β2 α2

α3 α2 β3


 , A(Y ) =




0 −α1 α3

α1 0 −α2

−α3 α2 0


 , (28)

where the new variables αj, βj are

αj =
1

2
e−(qj+1−qj)/2, βj =

1

2
pj j = 1, 2, 3

(q4 ≡ q1). As mentioned before this system is an example of a quasilinear isospectral

flow, and thus the special methods introduced in section 3.2 can be applied directly.

Our purpose here, rather than providing a complete characterization of the

numerical integrators based on the Magnus expansion, is to show how they behave

in practice with respect to efficiency and preservation of qualitative properties in

comparison with other integration schemes. To this end we only consider the general
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Figure 1. Error versus CPU time (in logarithmic scale) obtained with the
fourth order integrators based on Magnus (solid line with circles), RKMK4
(dashed line with +), RK4 (dotted line with ×) and the special method (27)
for quasilinear isospectral flows (dash-dotted line with ∗).

fourth-order scheme presented in the appendix (adapted to the isospectral case) and the

algorithm (27) especially tailored to integrate quasilinear isospectral flows, and compare

their performance with ‘the’ Runge–Kutta (RK4) method with the Butcher tableau

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

(29)

and the Runge–Kutta–Munthe-Kaas integrator (RKMK4) also based on the tableau

(29).

We carry out a numerical integration in the interval t ∈ [0, 3000] for several

(constant) values of the step size h with initial condition q0 = (0, 0, 0), p0 = (1, 1, 0).

To study the efficiency of the methods, the error is determined at the final time by

computing the Frobenius norm of the difference between the approximate and the exact

solution matrices. Then this error is represented as a function of the computational

effort measured in terms of the CPU time used by the algorithms. The computation

is done in Matlab and the command expm is employed to evaluate matrix exponentials

(although also the Rodrigues formula can be used to get an explicit expression for exp u,

u ∈ so(3) [22, p. 261]). The corresponding efficiency curves are plotted in Figure 1.

Observe that, in agreement with the theoretical estimates of Tables 1 and 2,

RKMK4 is more efficient than the algorithm (A.1) based on the general Magnus
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Figure 2. Difference between the approximate and exact eigenvalues obtained
with RK4 (dotted line with ×) and the special method (27) (dash-dotted line
with ∗). Both the step sizes and the error are represented in a logarithmic
scale.

expansion, whereas the especially adapted scheme (27) outperforms both of them. It is

also more efficient than RK4, even though the computational cost per iteration of the

latter is lower (it does not require to evaluate matrix exponentials).

We remark once again that the numerical integrators based on the Magnus

expansion can be implemented in a very natural way with variable step sizes, and thus

their efficiency could be further improved. Additionally, they preserve the isospectral

character of the flow (as does RKMK4), contrarily to RK4, as shown in Figure 2 in

a logarithmic scale. There we plot the difference between the eigenvalues of the exact

solution Y (t), λ1 = 1+
√

3
2

, λ2 = 0, λ3 = 1−√3
2

and the eigenvalues of the approximations

obtained by (27) and RK4 at t = 3000 when the integration is carried out with the step

sizes considered in Figure 1.

4. Application to highly-oscillatory nonlinear ODEs

Suppose now that we are given the ODE system

y′ = A(t,y)y, y(0) = y0 ∈M, (30)

where M ⊂ Rd is a homogeneous space acted upon by the Lie group G and A :

R+×M −→ g. In that case y(t) evolves in M, as well as the approximations obtained

with the explicit Magnus expansion (5).

Let us assume in addition that the solution of (30) oscillates rapidly. In the linear

case a conveniently chosen transformation previous to the application of the Magnus
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expansion allows to get very accurate results [16]. We generalize this approach to the

nonlinear setting.

Suppose that we have computed yn ≈ y(tn) and wish to advance to tn+1 = tn + h.

The idea is to consider a new variable z(x) such that

y(tn + x) = exA(tn,yn) z(x). (31)

Then

dz

dx
= B(x, z(x))z, z(0) = yn (32)

with

B(x, z(x)) = F−1(x) [A(tn + x, F (x)z(x))− A(tn,yn)] F (x) (33)

and F (x) = exp[xA(tn,yn)]. We note for future use that B(0, z(0)) = O.

Observe that the new variable z(x) may also be seen as a correction to the solution

provided by the first order term Ω[1] of the Magnus expansion (discretized with Euler’s

method). For this reason one expects that if the system (32) is solved with the nonlinear

Magnus expansion the error in the corresponding approximations will be significantly

smaller than with the standard algorithm, even when the same quadrature rules are

used [16]. But in the highly-oscillatory case other specially tailored quadratures exist

which provide excellent results [19].

To illustrate the main features of the nonlinear modified Magnus expansion applied

to the highly-oscillatory system (30), let us consider equations of the form

y′′ + a(t, y, y′)y = 0, y(0) = y0, y′(0) = y′0, (34)

where it is assumed that a(t, y, y′) À 1. Particular examples are the Emden–Fowler

(a = ty2), the Lane–Emden (a = (y/t)n−1) and the Thomas–Fermi (a = −(y/t)1/2)

equations [28].

When (34) is written in a matrix form, we obtain (30) with

A(t,y) =

(
0 1

−a(t,y) 0

)

and y = (y, y′)T . Denoting by θn ≡
√

a(t,yn), it is clear that

F (x) = exA(tn,yn) =

(
cos xθn θ−1

n sin xθn

−θn sin xθn cos xθn

)
,

whereas for the new matrix B one gets, after some algebra,

B(x, z(x)) =
1

4
(θ2(x)− θ2

n)
[
2M1 + M2e

2iθnx + M3e
−2iθnx

]
(35)

with θ2(x) ≡ a(tn + x, F (x)z(x)) and

M1 =

(
0 −θ−2

n

1 0

)
, M2 =

(
iθ−1

n θ−2
n

1 −iθ−1
n

)
, M3 =

(
−iθ−1

n θ−2
n

1 iθ−1
n

)
.
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This is the expression required for applying the nonlinear Magnus expansion (5). The

first term is given by

Ω[1](x) =

∫ x

0

B(τ,yn)dτ =
1

2

∫ x

0

(θ2
1(τ)− θ2

n)dτ M1

+
1

4

∫ x

0

(θ2
1(τ)− θ2

n)e2iθnτdτ M2 +
1

4

∫ x

0

(θ2
1(τ)− θ2

n)e−2iθnτdτ M3

≡ I0(x)M1 + I+(x)M2 + I−(x)M3,

where now θ2
1(τ) ≡ a(tn +τ, F (τ)yn). Since B(0,yn) = O, any quadrature rule that uses

only the values of θ2
1(τ)− θ2

n at the endpoints requires only the value at x (the value at

the origin is zero). For the non-oscillatory part I0(x) we can use the trapezoidal rule

I0(x) ≈ xϕ1(x), with ϕ1(x) ≡ 1

4
(θ2

1(x)− θ2
n).

For I±(x) it seems appropriate to apply Filon–Lobatto quadratures. With this class of

methods one has in general∫ x

0

f(τ)e±2iθnτdτ ≈ b±1 (θn)f(0) + b±2 (θn)f(x)

with

b±2 (θn) =
e±2iθnx

±2iθn

+
e±2iθnx − 1

4xθ2
n

.

Consequently, putting all the pieces together,

Ω[1](x) = ϕ1(x)
(
xM1 + b+

2 (θn)M2 + b−2 (θn)M3

)
(36)

or equivalently

Ω[1](x) = ϕ1(x)

(
cos 2θnx

θ2
n

− sin 2θnx
2θ3

nx
− x

θ2
n

+ sin 2θnx
θ3
n

− 1−cos 2θnx
2θ4

nx

x + sin 2θnx
θn

− 1−cos 2θnx
2θ2

nx
− cos 2θnx

θ2
n

+ sin 2θnx
2θ3

nx

)
.

For Ω[2](x) =
∫ x

0
B(τ, eΩ[1](τ)yn)dτ one gets the same expression (36), but now ϕ1(x) has

to be replaced by

ϕ2(x) ≡ 1

4
(θ2

2(x)− θ2
n), where θ2

2(x) = a
(
tn + x, F (x)eΩ[1](x)yn

)
.

Similar considerations apply to higher order terms, although the analysis is obviously

more involved. If the truncated Magnus solution of (32) is z(x) = exp(Ω[k](x))yn, the

approximation obtained in this way has the form

yn+1 = ehA(tn,yn) eΩ[k](h)yn, n ∈ Z.

5. Conclusions

The nonlinear Magnus expansion we have proposed in this paper can be considered

as a natural generalization of the usual expansion for linear problems. As well as

this, it provides explicit integrators in terms of integrals of nested commutators and

it is amenable to standard procedures to reduce the total number of commutators.
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Although only methods up to order four have been presented here, the same strategy

can in principle be applied to construct higher order schemes preserving the main

qualitative properties of the exact solution. The new integrators require in general

more computational effort per time step than other well known Lie-group methods but

on the other hand they can be easily implemented with variable step sizes. Also, for

particular types of problems it is possible to adapt appropriately the procedure and

build up very efficient methods even with a fixed step size implementation.

In summary, this nonlinear Magnus expansion constitutes a very flexible tool to

analyse nonlinear equations defined on Lie groups and/or homogeneous spaces acted

upon by Lie groups. It allows to use different quadrature rules and even in some cases

to work with exact integrals. At the same time, the procedure can be modified to

cope with highly oscillatory systems of nonlinear ODEs in conjunction with especially

adapted quadratures.
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Appendix A.

In this appendix we present a 4th-order algorithm for the numerical integration of the

general Lie equation Y ′ = A(t, Y ) based on the nonlinear Magnus expansion (5) for

tn+1 = tn + h:

u1 = 0

k1 = hA(tn, Yn); Q1 = k1

u2 =
1

2
Q1

k2 = hA(tn +
h

2
, eu2Y0); Q2 = k2 − k1

u3 =
1

2
Q1 +

1

4
Q2

k3 = hA(tn +
h

2
, eu3Y0); Q3 = k3 − k2

u4 = Q1 + Q2 (A.1)

k4 = hA(tn + h, eu4Y0); Q4 = k4 − 2k2 + k1

u5 =
1

2
Q1 +

1

4
Q2 +

1

3
Q3 − 1

24
Q4 − 1

48
[Q1, Q2]

k5 = hA(tn +
h

2
, eu5Y0); Q5 = k5 − k2
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u6 = Q1 + Q2 +
2

3
Q3 +

1

6
Q4 − 1

6
[Q1, Q2]

k6 = hA(tn + h, eu6Y0); Q6 = k6 − 2k2 + k1

v = Q1 + Q2 +
2

3
Q5 +

1

6
Q6 − 1

6
[Q1, Q2 −Q3 + Q5 +

1

2
Q6]

Yn+1 = evYn

Remarks:

(i) The computation of u5, k5 is independent of u6, k6 and it is required only to obtain

v (which differs from Ω[4](tn + h) only in O(h5) terms, that have no effect on the

order).

(ii) The above algorithm comprises also lower order methods: if we take v = k1 we

have a first-order scheme; if v = k2 then a second-order method results; finally, by

computing only up to u6 (but not u5, k5, Q5) we recover the third-order method

(22). It might be therefore implemented so that not only the step size but also the

order can be changed at each step, similarly to extrapolation methods [14, page

233].

(iii) This algorithm can also be directly applied to the isospectral flow Y ′ = [A(t, Y ), Y ]

with the replacement of euiYn by the action euiYne−ui in the computation of ki and

finally Yn+1 = evYne−v.
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