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Abstract
In this paper, we present a Levin-type method for approximating multivariate highly oscilla-

tory integrals, subject to a non-resonance condition. Unlike existing methods, we do not require
the knowledge of moments, which enables us to derive an approximation when the oscillator is
complicated, and when the domain is neither a simplex nor a polytope. The accuracy of this
method improves as the frequency of oscillations increases. A special case of this method has
the property that the asymptotic order increases with each additional sample point.

1 Introduction

Let Ω ⊂ Rd be a connected, open and bounded domain with piecewise smooth boundary. The
subject of this paper is a numerical approximation of the multivariate integral

Ig[f,Ω] =
∫

Ω
f(x) eiωg(x)dV,

where ω is real and large. We focus on the situation where f and g are in C∞[Ω] and bounded.
Furthermore, we assume that g has no critical points, i.e. ∇g 6= 0 within the closure of Ω.

Traditional means of approximating Ig[f,Ω] fail in the face of high oscillations. Repeated
univariate quadrature is completely impractical, as using Gaussian quadrature to approximate
such integrals requires an exorbitant amount of sample points even in a single dimension, and the
number of required sample points grows exponentially with each additional dimension. In addition,
for a fixed number of sample points, both repeated univariate quadrature and Monte Carlo (Press
et al., 1988) can easily be seen to have an error of order O(1) as ω →∞, whereas the integral itself
is typically of order O

(
ω−d

)
(Stein, 1993). This implies that, for large ω, approximating the integral

by zero is more accurate than using traditional quadrature techniques! The method of stationary
phase (Olver, 1974) is also unsuitable for our needs, as it requires sophisticated mathematical
analysis that depends on the choice of f and g. This is impractical for computational purposes.

In this paper we will derive a Levin-type method for approximating multivariate highly os-
cillatory integrals, subject to a non-resonance condition on the oscillator g and domain Ω. As in
the univariate case, the accuracy actually improves when ω is large—in fact, it has an order of
error O

(
ω−s−d

)
, where the integer s depends on the information we use about the function f .

We also develop a multivariate version of the asymptotic basis, a choice of basis for a Levin-type
method such that the order increases with each additional sample point and multiplicity. Finally,
we investigate what goes wrong when the non-resonance condition does not hold.
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2 Univariate asymptotic expansion

We begin with an overview of methods for approximating Ig[f,Ω] when Ω is a one-dimensional
domain; a problem which has received considerable attention in recent years (Iserles and Nørsett,
2004; Iserles and Nørsett, 2005a; Olver, 2005). The basic idea behind the recent research is to
derive an asymptotic expansion, then use the asymptotic expansion to prove the order of error for
methods which have the potential of being considerably more accurate than the partial sums of
the asymptotic expansion. The derivation of the following theorem is irrelevant to the purposes of
this paper, hence we omit the proof for the sake of succinctness and refer the reader to (Iserles and
Nørsett, 2005a).

Theorem 1 Let Ω = (a, b) and let f and g be smooth functions in the closure of Ω, such that
g′ 6= 0 in the closure of Ω. Define σk as

σ1[f ] =
f

g′
, σk+1[f ] =

σk[f ]′

g′
, k ≥ 1.

Then, for ω →∞,

Ig[f,Ω] ∼ −
∞∑

k=1

1
(−iω)k

{
σk[f ](b) eiωg(b) − σk[f ](a) eiωg(a)

}
. (2.1)

An immediate consequence is the following corollary, which will be used to find the order of
error of a Levin-type method. In the following corollary, we use the mth order derivative operator
Dm, as defined in Appendix A, in order that its definition is consistent with the multivariate version;
namely Corollary 2. Note that we allow f to depend on ω as a parameter.

Corollary 1 Assume Ω = (a, b). Suppose that ‖Dmf‖∞ = O(ω−n) for every non-negative integer
m. Furthermore, suppose that

0 = Dmf(a) = Dmf(b)

for every non-negative integer m ≤ s− 1. Then

Ig[f,Ω] ∼ O
(
ω−n−s−1

)
.

The proof of this corollary can be found in (Olver, 2005), though it follows almost immediately
from the asymptotic expansion. The purpose for allowing f and its derivatives to depend on ω will
become clear in Section 7. Until then it is safe to assume that n = 0, i.e. f and its derivatives are
merely bounded for increasing ω.

3 Univariate Levin-type expansion

One immediate consequence of having an asymptotic expansion is that its partial sums provide
a quick-and-dirty numerical approximation. Indeed, unlike traditional integration techniques, the
accuracy of an asymptotic expansion improves as the frequency ω increases. Unfortunately, the
problem with asymptotic expansions as numerical approximations is that there is a limit to how
accurate the approximation can be for any fixed ω. To combat this issue we construct a Levin-type
method, a generalization of a method developed in (Levin, 1997). The multivariate Levin-type
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method will continually ‘push’ the integral to the boundary until we arrive at univariate integrals,
hence the following construction is central to the multivariate version.

The general idea behind the method, as developed by Levin, is that if we have a function F
such that d

dx

[
F eiωg

]
= feiωg then computing Ig[f, (a, b)] is trivial. We can rewrite this requirement

as L[F ] = f , for the differential operator

L[F ] = F ′ + iωg′F.

Finding such an F explicitly is in general not possible, however we can approximate F by a function
v =

∑
ckψk, where {ψ0, . . . , ψν} is a set of basis functions, using collocation with the operator L[v].

In other words, we solve the system

L[v](xk) = f(xk) , k = 0, 1, . . . , ν,

for some set of nodes {x0, . . . , xν}, in order to determine the coefficients {c0, . . . , cν}. Since the
number of nodes is arbitrary, this allows us to increase the accuracy by simply adding additional
nodes.

In (Olver, 2005), the current author generalized this idea to obtain a Levin-type method, the
major improvement being that we equate both the function values and derivatives of L[v] and f
at the nodes {x0, . . . , xν}, up to given multiplicities {m0, . . . ,mν}. This allows us to obtain an
arbitrarily high order of error by taking suitably large multiplicities at the endpoints. We repeat
the proof of the order of error of a Levin-type method as found in (Olver, 2005), since the proof
for the multivariate case will be somewhat similar. The following lemma will be used for both the
univariate and multivariate proofs.

Lemma 2 Suppose that two sets of vectors in Rn+1, {p0, . . . ,pn} and {g0, . . . ,gn}, are indepen-
dent of ω, and that {g0, . . . ,gn} are linearly independent. Furthermore let

A = [p0 + iωg0, · · · ,pn + iωgn] .

Then, for sufficently large ω, A is non-singular, and the solution c = [c0, · · · , cn]> to the system
Ac = f , for any vector f independent of ω, satisfies ck = O

(
ω−1

)
for every integer 0 ≤ k ≤ n.

Proof We know that

detA = det [iωg0, · · · , iωgn] +O(ωn) = (iω)n+1 det [g0, · · · ,gn] +O(ωn) .

Since det [g0, · · · ,gn] 6= 0, this is a polynomial of degree n + 1, and sufficiently large ω causes
the determinant to be nonzero. Furthermore 1

det A = O
(
ω−n−1

)
. Due to Cramer’s rule, we know

that ck = det Dk
det A where Dk is equal to A with the (k + 1)th column replaced by f . It is clear that

detDk = O(ωn) as there are exactly n columns with ω terms. Thus the proof is complete. 2

By combining this lemma with Corollary 1 we will obtain the proof of the order of error for
a Levin-type method. We begin by defining the regularity condition. The regularity condition is
satisfied if the functions {g′ψ0, g

′ψ1, . . .} can interpolate f at the nodes {x0, . . . , xν} with multi-
plicities {m0, . . . ,mν}. Note that this condition depends on the choice of oscillator g, the nodes,
the multiplicities and the basis.

Theorem 3 Suppose g′ is non-zero in the closure of Ω ⊂ R and the regularity condition is satisfied.
Let v =

∑
ckψk, where c = [c0, · · · , cn]> is determined by solving the system

DmL[v](xk) = Dmf(xk) , m = 0, 1, . . . ,mk − 1, k = 0, 1, . . . , ν (3.2)
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for the operator L[v] = v′ +iωg′v, and where n+1 is the number of equations in this system. Then

Ig[f,Ω]−QL
g [f,Ω] ∼ O

(
ω−s−1

)
,

where s = min {m0,mν} and

QL
g [f,Ω] ≡ v(b) eiωg(b) − v(a) eiωg(a).

Proof Note that QL
g [f,Ω] = Ig[L[v] ,Ω]. Define the operator P[f ], written in partitioned form, as

P[f ] =

ρ0[f ]
...

ρν [f ]

 , for ρk[f ] =

 f(xk)
...

Dmν−1f(xk)

 , k = 0, 1, . . . , ν.

In other words, P[f ] maps a function f to a vector whose rows consist of f evaluated at the
nodes {x0, . . . , xν} with multiplicities {m0, . . . ,mν}. The system (3.2) can now be rewritten as
Ac = f where

A = [p0 + iωg0, · · · ,pn + iωgn] , pj = P
[
ψ′j

]
, gj = P

[
g′ψj

]
, f = P[f ] .

Due to the regularity condition, we know that {g0, . . . ,gn} are linearly independent. Thus Lemma 2
applies, hence we know that v and its derivatives are O

(
ω−1

)
. Thus L[v] and its derivatives are

O(1), meaning that

Ig[f,Ω]−QL
g [f,Ω] = Ig[f,Ω]− Ig[L[v] ,Ω] = Ig[f − L[v] ,Ω] = O

(
ω−s−1

)
,

by Corollary 1 with the function f − L[v]. 2

The regularity condition is actually quite weak: in fact (Olver, 2005) contains a proof that, if
{ψ0, . . . , ψn} is the standard polynomial basis or any other Chebyshev set (Powell, 1981), then the
vectors {g0, . . . ,gn} are guaranteed to be linearly independent. However, there is no equivalent
to a Chebyshev set in higher dimensions (Cheney and Light, 2000). It should be mentioned that
there exists another method of approximating these integrals, namely a Filon-type method (Iserles
and Nørsett, 2005a). It works by interpolating the function f by a polynomial v, and integrating
v directly; assuming that moments are explicitly computable. Though it is often more accurate
than a Levin-type method, the requirement of knowing moments makes it much less practical for
multivariate integrals.

For a simple example, consider the case of f(x) = cosx with oscillator g(x) = cosx− sinx in
Ω = (0, 1), collocating only at the endpoints with multiplicities both one. Figure 1 demonstrates
that QL

g [f,Ω] does, in fact, approximate Ig[f,Ω] with an order of error O
(
ω−2

)
. This compares to

the integral itself which goes to zero like O
(
ω−1

)
. Had we added internal nodes, the approximation

would be the same order but more accurate. Adding multiplicities to the endpoints would cause
the order to increase. Further examples and comparisons can be found in (Olver, 2005).

4 Multivariate asymptotic expansion

With a firm concept of how to handle the univariate case, we now begin delving into how to
approximate higher dimensional integrals. We closely mirror the univariate version: we first derive
an asymptotic expansion, which we then use to prove the order of error for a Levin-type method. We
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Figure 1: The error of QL
g [f, (0, 1)], scaled by ω2, with only endpoints and multiplicities all one, for

Ig[f, (0, 1)] =
∫ 1
0 cosx eiω(cos x−sin x)dx.

begin by investigating the case where the non-resonance condition is satisfied, which is somewhat
similar in spirit to the condition that g′ is nonzero within the interval of integration. The non-
resonance condition is satisfied if, for every x on the boundary of Ω, ∇g(x) is not orthogonal to the
boundary of Ω at x. In addition, ∇g 6= 0 in the closure of Ω, i.e. there are no critical points. Note
that the non-resonance condition does not hold true if g is linear and Ω has a completely smooth
boundary, such as a circle, since ∇g must be orthogonal to at least one point in ∂Ω.

Based on results from (Iserles and Nørsett, 2005b), we derive the following asymptotic expan-
sion, where |m| for m ∈ Nd is the sum of the entries, as defined in Appendix A. We also use the
notion of a vertex of Ω, for which the definition may not be immediately obvious. Specifically, we
define the vertices of Ω as:

• If Ω consists of a single point in Rd, then that point is a vertex of Ω.

• Otherwise, let {Z`} be an enumeration of the smooth components of the boundary of Ω,
where each Z` is of one dimension less than Ω, and has a piecewise smooth boundary itself.
Then v ∈ ∂Ω is a vertex of Ω if and only if v is a vertex of some Z`.

In other words, the vertices are the endpoints of all the smooth one-dimensional edges in the
boundary of Ω. In two-dimensions, these are the points where the boundary is not smooth.

Theorem 4 Suppose that Ω has a piecewise smooth boundary, and that the non-resonance condi-
tion is satisfied. Then, for ω →∞,

Ig[f,Ω] ∼
∞∑

k=0

1
(−iω)k+d

Θk[f ] ,

where Θk[f ] depends on Dmf for all |m| ≤ k, evaluated at the vertices of Ω.

Proof Fix an integer s ≥ 1. From (Iserles and Nørsett, 2005b) we know that, if a domain S is a
polytope and g has no critical points in S, then

Ig[f, S] = QA
g,s[f, S] +

1
(−iω)s

Ig[σs, S] ,
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where

QA
g,s[f, S] = −

s−1∑
k=0

1
(−iω)k+1

∫
∂S

n>∇g σk

‖∇g‖2
eiωgdS,

n is the outward facing unit normal and

σ0 = f, σk+1 = ∇>
[

σk

‖∇g‖2
∇g

]
, k ≥ 0.

Let {S0, S1, . . .} be a sequence of polytope domains such that limSj = Ω, where each Sj is a
tessellation of Ω. Because ∇g is continuous, there is an open set U containing the closure of Ω such
that ∇g 6= 0 in U . Assume that each Sj ⊂ U , which is true whenever a sufficiently fine grid is used.

Note that σk is bounded in U for all k, because there are no critical points. Hence, due to the
boundedness of each integrand and the dominating convergence theorem, it is clear that

Ig[f, Sj ] → Ig[f,Ω] ,
1

(−iω)s
Ig[σs, Sj ] →

1
(−iω)s

Ig[σs,Ω] ,∫
∂Sj

n>∇g σk

‖∇g‖2
eiωgdS →

∫
∂Ω

n>∇g σk

‖∇g‖2
eiωgdS.

It follows that Ig[f,Ω] = QA
g,s[f,Ω] + 1

(−iω)s Ig[σs,Ω] = QA
g,s[f,Ω] + O

(
ω−s−d

)
, using the fact that

Ig[σs,Ω] = O
(
ω−d

)
(Stein, 1993).

We now prove the theorem by expressing QA
g,s[f,Ω] in terms of its asymptotic expansion.

Assume the theorem holds true for lower dimensions, where the univariate case follows from The-
orem 1. Note that, for each `, there exists a domain Ω` ∈ Rd−1 and a smooth map T` : Ω` → Z`

such that Z` is parameterized by Ω` using the mapping T`, where every vertex of Ω` corresponds
to a vertex of Z`, and vice-versa. We can rewrite each surface integral in QA

g,s[f,Ω] as a sum of
standard integrals:∫

∂Ω
n>∇g σk

‖∇g‖2
eiωgdS =

∑
`

∫
Z`

n>∇g σk

‖∇g‖2
eiωgdS =

∑
`

Ig`
[f`,Ω`] , (4.3)

where f` is a smooth function multiplied by σk ◦T`, and g` = g ◦T`. It follows from the definition of
the non-resonance condition that the function g` satisfies the non-resonance condition in Ω`. Thus,
by assumption,

Ig`
[f`,Ω`] ∼

∞∑
i=0

1
(−iω)i+d−1

Θi[f`] ,

where Θi[f`] depends on Dmf` for |m| ≤ i applied at the vertices of Ω`. But Dmf` depends on
Dm[σk ◦ T`] for |m| ≤ i applied at the vertices of Ω`, which in turn depends on Dmf for |m| ≤ i+k,
now evaluated at the vertices of Z`, which are also vertices of Ω. The theorem follows from plugging
these asymptotic expansions into the definition of QA

g,s[f,Ω]. 2

It is not necessary to find Θk[f ] explicitly as we only use this asymptotic expansion for error
analysis, not as a means of approximation. The following corollary serves the same purpose as
Corollary 1: it will be used to prove the order of error for a multivariate Levin-type method.

Corollary 2 Let V be the set of all vertices of a domain Ω. Suppose that ‖Dmf‖∞ = O(ω−n) for
all m ∈ Nd. Suppose further that

0 = Dmf(v)
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for all v ∈ V and m ∈ Nd such that |m| ≤ s− 1. Then

Ig[f,Ω] ∼ O
(
ω−n−s−d

)
.

Proof
We prove this corollary by induction on the dimension d, with the univariate case following

from Corollary 1. We begin by showing that QA
g,s+d[f,Ω] = O

(
ω−n−s−d

)
. Since every σk depends

on f and its partial derivatives of order less than or equal to k, it follows that ‖σk‖∞ = O(ω−n).
Furthermore, 0 = Dmσk(v) for all v ∈ V and every |m| ≤ s− k − 1, where 0 ≤ k ≤ s− 1. Hence
(4.3) is of order O

(
ω−n−(s−k)−(d−1)

)
for all 0 ≤ k ≤ s − 1. For k ≥ s, we know that (4.3) is at

least of order O
(
ω−n−(d−1)

)
. Since each (4.3) is multiplied by (−iω)−k−1 in the construction of

QA
g,s+d[f,Ω], it follows that QA

g,s+d[f,Ω] = O
(
ω−n−s−d

)
. Finally,

∣∣Ig[f,Ω]−QA
g,s+d[f,Ω]

∣∣ =
∣∣∣∣ 1
(−iω)−s−d

Ig[σs+d,Ω]
∣∣∣∣ = O

(
ω−s−n−d

)
,

since ‖σs+d‖∞ = O(ω−n). Thus Ig[f,Ω] ∼ O
(
ω−s−n−d

)
. 2

As in the univariate case, until Section 7 we assume f and its derivatives in the preceding
corollary are O(1), i.e. n = 0. In (Iserles and Nørsett, 2005b), a generalization of Filon-type
methods for multivariate integrals was developed, where, as in the univariate case, the function f is
interpolated by a polynomial v, and moments are assumed to be available. We will not investigate
this method in depth, but mention it as a point of reference.

Remark In this section we used a weaker definition for the non-resonance condition than that
which was found in (Iserles and Nørsett, 2005b). Also, for the cited result in Theorem 4, we
only require that g has no critical points, whereas the original statement requires that the non-
resonance condition holds. This is due to the proofs cited from that paper holding true for the
weaker conditions, without any other alterations.

5 Multivariate Levin-type method

We now have the tools needed to construct a Levin-type method for integrating highly oscillatory
functions over multidimensional domains. We begin by demonstrating how this can be accomplished
over a two-dimensional simplex, followed by a generalization to higher dimensional domains, along
with a proof of asymptotic order. Consider the simplex S = S2, as drawn in Figure 2. In the
construction of a multivariate Levin-type method we use the multivariate version of the fundamental
theorem of calculus, namely the Stokes’ theorem, to determine the collocation operator L[v]. First
write the integral as a differential form:

Ig[f, S] =
∫∫

S
feiωg dxdy =

∫∫
S
feiωgdx ∧ dy.

Note that if we have the 1-form ρ = veiωg(dx + dy), where v =
∑n

k=0 ckψk for some set of basis
functions {ψ0, . . . , ψn}, then

dρ = (vx + iωgxv)eiωgdx ∧ dy + (vy + iωgyv)eiωgdy ∧ dx
= (vx + iωgxv − vy − iωgyv)eiωgdx ∧ dy. (5.4)
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0

e1
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Figure 2: The two-dimensional simplex S = S2, where e1 = [1, 0]> and e2 = [0, 1]>.

Thus, in a manner similar to the univariate case, we collocate f using the linear operator L[v] =
vx + iωgxv − vy − iωgyv at a given set of nodes {x0, . . . ,xν}. Using the Stokes’ theorem, we ‘push’
the integral to the boundary of the simplex:∫∫

S
feiωgdx ∧ dy ≈

∫∫
S
L[v] eiωgdx ∧ dy =

∫∫
S

dρ =
∮

∂S
ρ =

∮
∂S
veiωg(dx+ dy). (5.5)

We can now break up this line integral into three line integrals, integrating counter-clockwise.
Since the integrand, in vector notation, is orthogonal to the diagonal edge of S, the integral for
that particular boundary is zero. Therefore we need only integrate over the edges on the x and y
axes. Hence we can rewrite (5.5) as∫ 0

1
v(0, y) eiωg(0,y)dy +

∫ 1

0
v(x, 0) eiωg(x,0)dx = Ig(·,0)[v(·, 0) , (0, 1)]− Ig(0,·)[v(0, ·) , (0, 1)] .

As a result of the non-resonance condition, we know that the derivatives of g(·, 0) and g(0, ·)
are nonzero within the interval of integration; in other words, the integrands of the preceding two
univariate integrals do not have stationary points. Thus both of these integrals satisfy the conditions
for a univariate Levin-type method: the regularity condition is satisfied whenever polynomials are
used as basis functions in one-dimension. Hence we define

QL
g [f, S] = QL

g(·,0)[v(·, 0) , (0, 1)]−QL
g(0,·)[v(0, ·) , (0, 1)] .

We approach the general case in a similar manner. Suppose we are given nodes {x0, . . . ,xν} in
Ω ⊂ Rd, multiplicities {m0, . . . ,mν} and, for all dimensions less than or equal to d, basis functions{
ψd

0 , . . . , ψ
d
n

}
. Assume further that we are given a positive-oriented boundary of Ω defined as a

set of functions T` : Ω` → Rd, where Ω` ⊂ Rd−1 and the `th boundary component is the image of
T`. Furthermore, assume we have boundary parameterization for each Ω`, recursively down to the
one-dimensional edges. We define QL

g [f,Ω] recursively as follows:

• If Ω ⊂ R, then QL
g [f,Ω] is equivalent to a univariate Levin-type method, as presented earlier

in this paper.
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• If Ω ⊂ Rd, then we begin by choosing a vector t = [t1, · · · , td]> ∈ Rd. The purpose and
necessity of t will become clear further in the paper. Typically we let tk = ±1, as t determines
the orientation of the approximation, and we want each dimension to be of equal influence.
Define the operators

J =
d∑

k=1

(−1)ktkDek , L[v] = J [v] + iωJ [g] v,

where ek is the kth standard unit vector in Rd. Now, for c = [c0, · · · , cn]> and v =
∑
ckψ

d
k,

solve for c using the following collocation system:

DmL[v](xk) = Dmf(xk) , 0 ≤ |m| ≤ mk − 1, k = 0, 1, . . . , ν. (5.6)

We conclude by defining
QL

g [f,Ω] =
∑

QL
g`

[f`,Ω`] , (5.7)

where g`(x) = g(T`(x)) and f`(x) = v(T`(x)) t · Jd
T`

(x), for x ∈ Ω` and Jd
T`

(x) the vector
of Jacobian determinants associated with the surface differential (d − 1)-form, as defined in
Appendix A. For the proof of the order of error, we require that the set of nodes used for
each QL

g`
[f`,Ω`] contains all vertices of Ω`, with multiplicities equal to the multiplicity of the

vertex mapped to by T`. Typically we will simply use nodes
{
T−1

` (xj)
}

and multiplicities
{mj} for all j such that xj is in the range of T`—in other words every node that is on that
particular boundary.

Observe that, since each f` is linear with respect to v and, by the law of superposition, v
is linear with respect to f , we know that QL

g [f,Ω] is linear with respect to f . The multivariate
regularity condition requires that the following two conditions hold:

• The functions
{
J [g]ψd

0 ,J [g]ψd
1 , . . .

}
can interpolate f at the given nodes and multiplicities.

• The regularity condition is satisfied for each Levin-type method in the right-hand side of (5.7).

Note that this is where the vector t comes in, as it provides a degree of freedom to ensure that this
condition is satisfied. For example, if t = [1, 1]> and g(x, y) = x+ y, then J [g] = gx − gy = 0, and
the regularity condition can never be satisfied. This holds true even over a simplex reflected over
the y-axis, which in fact satisfies the non-resonance condition.

We now show that, if the regularity and non-resonance conditions are satisfied, QL
g [f,Ω] ap-

proximates Ig[f,Ω] with an asymptotic order that depends on the multiplicities at the vertices of
Ω.

Theorem 5 Suppose that both the non-resonance condition and the regularity condition are satis-
fied. Suppose further that {x0, . . . ,xν} contains all vertices of Ω, namely

{
xi0 , . . . ,xiη

}
. Then, for

sufficiently large ω, QL
g [f,Ω] is well defined and

Ig[f,Ω]−QL
g [f,Ω] ∼ O

(
ω−s−d

)
,

where s = min
{
mi0 , . . . ,miη

}
.

Proof We begin by assuming that this theorem holds true for all dimensions less than d, with
Theorem 3 providing the proof for the univariate case. We first show that

Ig[f,Ω]− Ig[L[v] ,Ω] = Ig[f − L[v] ,Ω] = O
(
ω−s−d

)
. (5.8)
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In analogy to the univariate proof, we define an operator P[f ] to be equal to f evaluated at the
nodes {x0, . . . ,xν} with multiplicities {m0, . . . ,mν}. We can write this explicitly in partitioned
form:

P[f ] =

ρ0[f ]
...

ρν [f ]

 , for ρk[f ] =

 Dpk,1f(xk)
...

Dpk,nk f(xk)

 , k = 0, 1, . . . , ν,

where pk,1, . . . ,pk,nk
∈ Nd, nk = 1

2mk(mk + 1), are the lexicographically ordered vectors such that
|pk,i| ≤ mk − 1. The system (5.6) can now be writen as Ac = f , for

A = [p0 + iωg0, · · · ,pn + iωgn] , pj = P
[
J

[
ψd

j

]]
, gj = P

[
J [g]ψd

j

]
, f = P[f ] ,

where n + 1 is now the number of equations in the system (5.6). By Lemma 2 and the regularity
condition, which again implies that {g0, . . . ,gn} are linearly independent, we know that ck =
O

(
ω−1

)
for all 0 ≤ k ≤ n, hence L[v] is bounded for increasing ω. Thus we can use Corollary 2,

since f−L[v] and its partial derivatives of order less than or equal to s−1 equal zero at the vertices.
This proves (5.8).

We now show that
QL

g [f,Ω]− Ig[L[v] ,Ω] = O
(
ω−s−d

)
.

We begin by defining the (d− 1)-form

ρ = veiωg
d∑

k=1

tk

d∧
i=1
i6=k

dxi. (5.9)

Similar to (5.4), differentiating ρ we obtain

dρ =
d∑

k=1

(−1)ktk (Dekv + iωvDekg) eiωg dx1 ∧ · · · ∧ dxd = L[v] eiωg dx1 ∧ · · · ∧ dxd.

It follows that
Ig[L[v] ,Ω] =

∫
Ω

dρ =
∫

∂Ω
ρ =

∑
`

∫
Z`

ρ.

We now invoke the definition of the integral of a differential form:∫
Z`

ρ =
∫

Ω`

v(T`(x)) eiωg(T (̀x))t · Jd
T`

(x) dx

=
n∑

j=0

cj

∫
Ω`

ψd
j (T`(x)) eiωg(T (̀x))t · Jd

T`
(x) dx

=
n∑

j=0

cjIg`
[f`,j ,Ω`] ,

where f`,j(x) = ψd
j (T`(x)) t ·Jd

T`
(x). By assumption, each integral Ig`

[f`,j ,Ω`] can be approximated
by QL

g`
[f`,j ,Ω`] with order of error O

(
ω−s−d+1

)
, as long as the non-resonance and regularity condi-

tions are satisfied. But both of these conditions are satisfied in Ω`, since both of these conditions

10



are satisfied in Ω. Thus we obtain

QL
g [f,Ω]− Ig[L[v] ,Ω] =

∑
`

(
QL

g`
[f`,Ω`]−

∫
T`

ρ

)

=
∑

`

n∑
j=0

cj
(
QL

g`
[f`,j ,Ω`]− Ig`

[f`,j ,Ω`]
)

(5.10)

=
∑

`

n∑
j=0

O
(
ω−1

)
O

(
ω−s−d+1

)
= O

(
ω−s−d

)
,

where we used the fact that
∑

j cjf`,j is equal to f`, and the linearity of QL. Putting both parts
together, we obtain

Ig[f,Ω]−QL
g [f,Ω] = (Ig[f,Ω]− Ig[L[v] ,Ω])−

(
QL

g [f,Ω]− Ig[L[v] ,Ω]
)

= O
(
ω−s−d

)
+O

(
ω−s−d

)
= O

(
ω−s−d

)
.

2

Remark The differential form (5.9) could have been defined as

ρ = eiωg (v1dx1 ∧ · · · ∧ dxd−1 + · · ·+ vddx2 ∧ · · · ∧ dxd) ,

where each vk is an independent function. This choice for ρ would result in a different definition for
L[v]. Though this provides more degrees of freedom, it comes at the cost of additional complexity,
hence we will not investigate it further.

Admittedly the regularity condition seems strict, however in practice it usually holds. The
following corollary states that, for simplicial domains and affine g, i.e. linear plus a constant,
a Levin-type method is equivalent to a Filon-type method. This is the main problem domain
where Filon-type methods works, so effectively Levin-type methods are an extension to Filon-type
methods.

Corollary 3 Define
QF

g [f,Ω] = Ig[u,Ω] ,

where u is the Hermite interpolation polynomial of f at the nodes {x0, . . . ,xν} with multiplicities
{m0, . . . ,mν}. If g is affine, then Ig[L[v] ,Ω] = QF

g [f,Ω] whenever
{
ψd

0 , . . . , ψ
d
n

}
is the standard

polynomial basis and t is chosen so that J [g] 6= 0. Furthermore, if Ω is the d-dimensional simplex
Sd then QL

g [f, Sd] is equivalent to QF
g [f, Sd] when a sufficient number of sample points are taken.

Proof Note that solving a Levin-type method system is equivalent to interpolating with the ba-
sis ψ̃j = L

[
ψd

j

]
. We begin by showing that these two bases are equivalent. We assume that{

ψ̃0, . . . , ψ̃j−1

}
has equivalent span to

{
ψd

0 , . . . , ψ
d
j−1

}
, which is true for the case L[1] = iωJ [g] = C,

where C 6= 0 by hypothesis. Note that ψd
j (x1, . . . , xd) = xp1

1 . . . xpd
d for some nonnegative integers

pk. Then

ψ̃j = L
[
ψd

j

]
= iωJ [g]ψd

j + J
[
ψd

j

]
= Cψd

j +
d∑

k=1

(−1)ktkDekψd
j

= Cψd
j +

d∑
k=1

(−1)ktkpkx
p1
1 . . . x

pk−1

k−1 x
pk−1
k x

pk+1

k+1 . . . x
pd
d .

11



But the sum is a polynomial of degree less than the degree of ψd
j , hence it lies in the span of

{ψ0, . . . , ψj−1}. Thus ψd
j lies in the span of

{
ψ̃0, . . . , ψ̃j

}
. It follows that interpolation by each of

these two bases is equivalent, or in other words Ig[L[v] ,Ω] = QF
g [f,Ω].

We prove the second part of the theorem by induction, where the case of Ω = S1 holds true by
the definition QL

g [f, S1] = Ig[L[v] , S1]. Now assume it is true for each dimension less than d. Since
g is affine and each boundary T` of the simplex is affine we know that each g` is affine. Furthermore
we know that the Jacobian determinants of T` are constants, hence each f` is a polynomial. Thus
QL

g`
[f`,Ω`] = QF

g`
[f`, Sd−1] = Ig`

[f`, Sd−1] as long as enough sample points are taken so that f` lies
in the span of the interpolation basis. Hence QL

g [f, Sd] = Ig[L[v] , Sd] = QF
g [f, Sd]. 2

An important consequence of this corollary is that, in the two-dimensional case, a Levin-type
method provides an approximation whenever the standard polynomial basis can interpolate f at
the given nodes and multiplicities, assuming that g is affine and the non-resonance condition is
satisfied in Ω.

6 Examples

Having developed the theory, we now demonstrate the effectiveness of the method in practice.
As the only known efficient methods for solving these integrals are Filon-type methods, which
are equivalent to Levin-type methods in many applicable cases, we present the results without
comparison. We begin with the relatively simple domain of a simplex. We use the notation
of (Rudin, 1964) with regards to simplices and boundaries. An oriented affine d-simplex T =
[p0, · · · ,pd] is defined by the function

T (x1, . . . , xd) = p0 +
d∑

k=1

xk(pk − p0),

where x1, . . . , xd are in Sd. The standard d-dimensional simplex can also be written as [0, e1, · · · , ed],
which is equivalent to the identity mapping I : Sd → Sd. The formula for the positive oriented
boundary of T is

∂T = [p1, · · · ,pd]− [p0,p1, · · · ,pd] + · · ·+ (−1)d [p0, · · · ,pd−1] ,

where the addition is only formal. In other words the `th boundary component T` is equal to (−1)`

times T with the the `th index removed, for 0 ≤ ` ≤ d. Thus we have all the information needed
to construct a Levin-type method.

We now compute the error of QL
g [f, Sd] numerically, using the standard d-dimensional poly-

nomials as a basis and t = 1 = [1, · · · , 1]>. We begin with f(x, y, z, t) = x2, g(x, y, z, t) =
x − 2y + 3z − 4t and QL

g [f, S4] collocating only at the vertices with multiplicities all one. As ex-
pected, we obtain an error of order O

(
ω−5

)
, as seen in Figure 3. Because this Levin-type method

is equivalent to a Filon-type method, it would have solved this integral exactly had we increased
the number of node points so that ψ4

k(x, y, z, t) = x2 was included as a basis vector.
Now consider the more complicated function f(x, y) = 1

x+1+ 2
y+1 with oscillator g(x, y) = 2x−y,

approximated by QL
g [f, S2], again only sampling at the vertices with multiplicities all one. As

expected we obtain an order of error of O
(
ω−3

)
. By adding an additional multiplicity to each

vertex, as well as the sample point
[

1
3 ,

1
3

]> with multiplicity one, we increase the order by one
to O

(
ω−4

)
. Both of these cases can be seen in Figure 4. Note that the different scale factor
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Figure 3: The error scaled by ω5 of QL
g [f, S4] collocating only at the vertices with multiplicities all

one, for Ig[f, S4] =
∫
S4
x2eiω(x−2y+3z−4t)dV .
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Figure 4: The error scaled by ω3 of QL
g [f, S2] collocating only at the vertices with multiplici-

ties all one (left), and the error scaled by ω4 with multiplicities all two (right), for Ig[f, S2] =∫
S2

(
1

x+1 + 2
y+1

)
eiω(2x−y)dV .

means that the right-hand graph is in fact much more accurate, as it has about 1
ω th the error.

Finally we demonstrate an integral over a three-dimensional simplex. Let f(x, y) = x2 − y + z3

and g(x, y) = 3x + 4y − z. Figure 5 shows the error of QL
g [f, S3], sampling only at the vertices,

multiplied by ω4.
Because Levin-type methods do not require moments, they allow us to integrate over more

complicated domains that satisfy the non-resonance condition, without resorting to tessellation.
For example, consider the quarter unit circle H, as depicted in Figure 6. We parameterize the
boundary as T1(t) = [cos(t) , sin(t)]> for Ω1 =

(
0, π

2

)
, T2(t) = [0, 1− t]> and T3(t) = [t, 0]> for

Ω2 = Ω3 = (0, 1). This results in the approximation

QL
g [f,H] = QL

g1

[
f1,

(
0,
π

2

)]
+QL

g2
[f2, (0, 1)] +QL

g3
[f3, (0, 1)] ,

where f1(t) = (cos t − sin t) v(cos t, sin t), g1(t) = g(cos t, sin t), f2(t) = −v(0, 1− t), g2(t) =
g(0, 1− t), f3(t) = v(t, 0) and g3(t) = g(t, 0). We used the fact that t·J2

T1
(t) = 1·T ′1(t) = cos t−sin t,

t · J2
T2

= −1 and t · J2
T3

= 1 for finding the formulas of f` and g`.
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Figure 5: The error scaled by ω4 of QL
g [f, S3] collocating only at the vertices with multiplicities all

one, for Ig[f, S3] =
∫
S3

(x2 − y + z3)eiω(3x+4y−z)dV .

0

e1

e2

H

Figure 6: Diagram of a unit quarter circle H.

Let f(x, y) = ex cosxy, g(x, y) = x2+x−y2−y, and choose vertices for nodes with multiplicities
all one. Note that g is nonlinear, in addition to the domain not being a simplex. Despite these
difficulties, QL

g [f,H] still attains an order of error O
(
ω−3

)
, as seen in the left hand side of Figure 7.

If we increase the multiplicities at the vertices to two, adding an additional node at
[

1
3 ,

1
3

]> with
multiplicity one to ensure that we have ten equations in our system as required by polynomial
interpolation, we obtain an error of order O

(
ω−4

)
. This can be seen in the right-hand side of

Figure 7.
This example is significant since, due to the unavailability of moments, Filon-type methods

fail to provide approximations in a quarter circle, let alone with nonlinear g. If g was linear, we
could have tessellated H to obtain a polytope, but that would have resulted in an unnecessarily
large number of calculations. However, with nonlinear g we do not even have this option, hence
Filon-type methods are completely unsuitable.
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Figure 7: The error scaled by ω3 of QL
g [f,H] collocating only at the vertices with multiplici-

ties all one (left), and the error scaled by ω4 with multiplicities all two (right), for Ig[f,H] =∫
H ex cosxy eiω(x2+x−y2−y)dV .

7 Asymptotic basis

In the univariate case, the asymptotic basis for a Levin-type method results in internal nodes, in
addition to endpoints, increasing the order of error (Olver, 2005). The concept of an asymptotic
basis generalizes to multidimensional integrals in a fairly straightforward manner. The idea is to
choose the basis so that, using the notation of the proof of Theorem 5, each gk+1 is a multiple of
pk for 1 ≤ k ≤ n− 1 and g1 is a multiple of f . This can be accomplished by choosing the basis

ψd
0 = 1, ψd

1 =
f

J [g]
, ψd

k+1 =
J

[
ψd

k

]
J [g]

, k ≥ 1,

where, as before, J =
∑d

k=1(−1)ktkDek . Surprisingly, this increases the asymptotic order to
O

(
ω−ñ−s−d

)
, where s is again the minimum vertex multiplicity and ñ+ 1 is equal to the minimum

of the number of equations in every collocation system solved for in the definition of QL, recursively
down to the univariate integrals. It follows that if Ω ⊂ R, then ñ = n. As an example, if we are
collocating on a two-dimensional simplex at only the three vertices with multiplicities all one, then
the two-dimensional collocation system has three equations, while each one-dimensional collocation
system has only two equations. Thus ñ+ 1 = min {3, 2, 2, 2} = 2.

The following lemma is used extensively in the proof of the asymptotic order:

Lemma 6 Let ψd
k be as defined. Then

det [gk,ak, · · · ,ak+j , B] = det [gk,gk+1, · · · ,gk+j+1, B] ,

where B represents all remaining columns that render the matrices square and ak = pk + iωgk, for
pk and gk as defined previously in this paper.

Proof We know that pk = gk−1. Thus we can multiply the first column by iω and subtract it
from the second to obtain

det [gk,pk + iωgk, · · · ,ak+j , B] = det [gk,gk+1,ak+1, · · · ,ak+j , B] .

The lemma follows by repeating this process on the remaining columns. 2

This holds for any column interchange on both sides of the determinant. We now prove the
theorem, in a manner which is very similar to the omitted univariate version.
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Theorem 7 Using the preceding definition of ψd
k and ñ, if the non-resonance condition and regu-

larity condition hold, then

Ig[f,Ω]−QL
g [f,Ω] ∼ O

(
ω−ñ−s−d

)
.

Proof We begin by showing that L[v](x)− f(x) = O(ω−n). Note that

L[v]− f =
n∑

k=0

ckL
[
ψd

k

]
− f =

n∑
k=0

ck

{
J

[
ψd

k

]
+ iωψd

kJ [g]
}
− f

= iωc0J [g] +
n∑

k=1

ck

{
J [g]ψd

k+1 + iωJ [g]ψd
k

}
− J [g]ψd

1

= J [g]
[
iωc0 + (iωc1 − 1)ψd

1 +
n∑

k=2

(ck−1 + iωck)ψd
k + cnψ

d
n+1

]
=
J [g]
detA

[
iω detD0 + (iω detD1 − detA)ψd

1

+
n∑

k=2

(detDk−1 + iω detDk)ψd
k + detDnψ

d
n+1

]
,

where again Dk is the matrix A with the (k+1)th column replaced by f . We know that (detA)−1 =
O

(
ω−n−1

)
, thus it remains to be shown that each term in the preceding equation is O(ω). This

boils down to showing that each of the following terms are O(ω): iω detD0, iω detD1 − detA,
detDk−1+iω detDk for 2 ≤ k ≤ n and finally detDn. The first case follows directly from Lemma 6.
The second case follows from Lemma 6 after rewriting the determinants as

iω detD1 − detA = iω detD1 − det [a0,p1 + iωg1,a2, · · · ,an]
= iω detD1 − iω det [a0,g1,a2, · · · ,an]− det [a0,p1,a2, · · · ,an]
= −iω det [g0,g2,a2, · · · ,an] ,

where we used the facts that ak = pk + iωgk, a0 = iωg0 and g1 = f . Similarly,

detDk−1 + iω detDk = det [a0, · · · ,ak−2,g1,pk + iωgk,ak+1, · · · ,an]
+iω det [a0, · · · ,ak−2,pk−1 + iωgk−1,g1,ak+1, · · · ,an]

= det [a0, · · · ,ak−2,g1,pk,ak+1, · · · ,an]
+iω det [a0, · · · ,ak−2,g1,gk,ak+1, · · · ,an]
+iω det [a0, · · · ,ak−2,gk,g1,ak+1, · · · ,an]
−ω2 det [a0, · · · ,ak−2,gk−1,g1,ak+1, · · · ,an]

= det [a0, · · · ,ak−2,g1,pk,ak+1, · · · ,an]
−ω2 det [a0, · · · ,ak−2,gk−1,g1,ak+1, · · · ,an] .

Using Lemma 6 the first of these determinants is O(ω), while the second determinant has two
columns equal to gk−1, hence is equal to zero. The last determinant detDn is also O(ω), due to
Lemma 6. Thus we have shown that L[v](x)− f(x) = O(ω−n).

Since L[v] − f is a linear combination of functions independent of ω, where the coefficents
depend on ω, it follows that Dm[L[v]− f ](x) = O(ω−n) as well. Hence, by Corollary 2, Ig[f,Ω]−
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Figure 8: The error scaled by ω4 of QB
g [f, S2] collocating only at the vertices with multiplicities all

one (left), and the error scaled by ω5 with vertices and boundary midpoints again with multiplicities
all one (right), for

∫
S2

(
1

x+1 + 2
y+1

)
eiω(2x−y)dV .

Ig[L[v] ,Ω] = O
(
ω−n−s−d

)
= O

(
ω−ñ−s−d

)
. For the univariate case the lemma has been proved,

since QL
g [L[v] ,Ω] = Ig[L[v] ,Ω]. By induction, QL

g`
[f`,j ,Ω`] − Ig`

[f`,j ,Ω`] = O
(
ω−ñ−s−(d−1)

)
in

(5.10). It follows that

Ig[f,Ω]−QL
g [f,Ω] = (Ig[f,Ω]− Ig[L[v] ,Ω])−

(
QL

g [f,Ω]− Ig[L[v] ,Ω]
)

= O
(
ω−ñ−s−d

)
.

2

We will use QB
g [f,Ω] to denote QL

g [f,Ω] with the asymptotic basis. There are important
cases when this definition for

{
ψd

k

}
does not lead to a basis. For example, if g is linear and

f(x, y) = f(y, x) then ψd
2 = 0. Of course, whether or not QB

g [f,Ω] is well defined is completely
determined by whether or not the regularity condition is satisfied, which can be easily determined
using linear algebra.

We now demonstrate numerically that the asymptotic basis does in fact result in a higher order
approximation. Recall the case where f(x, y) = 1

x+1 + 2
y+1 with oscillator g(x, y) = 2x − y over

the simplex S2. We now use QB
g [f, S2] in place of QL

g [f, S2], collocating only at the vertices. Since
this results in each univariate boundary collocation having two node points, we know that ñ = 1.
Hence we now scale the error by ω4, i.e. we have increased the order by one, as seen in Figure 8.
Since the initial two-dimensional system has three node points, adding the midpoint to the sample
points of each univariate integral should increase the order again by one to O

(
ω−5

)
. This can be

seen in the right-hand side of Figure 8.
There is nothing special about a simplex or linear g: the asymptotic basis works just as well

on other domains with nonlinear g, assuming that the regularity and non-resonance conditions
are satisfies. Recall the example with f(x, y) = ex cosxy and g(x, y) = x2 + x − y2 − y on the
quarter circle H. As in the simplex case, QB

g [f,H] collocating only at vertices with multiplicities
all one results in an error of O

(
ω−4

)
, as seen in the left-hand side of Figure 9. Note that increasing

multiplicities not only increases s, but also ñ. If we increase the multiplicities to two, then ñ = 3
and s = 2, and the order increases to O

(
ω−7

)
, as seen in the right-hand side of Figure 9. It

should be emphasized that, though the scale is large in the graph, the error is being divided by
ω7 ≥ 1007 = 1014. As a result, the errors for the right-hand graph are in fact less than the
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Figure 9: The error scaled by ω4 of QB
g [f,H] collocating only at the vertices with multiplicities all

one (left), and the error scaled by ω7 of QB
g [f,H] collocating only at the vertices with multiplicities

all two (left), for Ig[f,H] =
∫
H ex cosxy eiω(x2+x−y2−y)dV .

errors in the left-hand graph. Numerical evidence in (Olver, 2005) suggests that QB is typically
more accurate for the same order when additional nodes are added; as opposed to increasing the
multiplicities at the endpoints.

8 Points of resonance

Up until this point we have avoided discussing highly oscillatory integrals that do not satisfy the
non-resonance condition. But we know that a large class of integrals fail this condition: for example
if g is linear then any Ω with smooth boundary must have at least one point of resonance. In this
section we investigate such integrals, and see where Levin-type methods fail.

Suppose that ∇g is orthogonal to the boundary of Ω ⊂ Rd at a single point u. Let us analyse
what happens at this point when we push the integral to the boundary, as in a Levin-type method.
If T is the map that defines the boundary of Ω then the statement of orthogonality is equivalent to

∇g(T (ξ))T ′(ξ) = 0,

where ξ ∈ Rd−1, u = T (ξ) and T ′ is the derivative matrix of T , as defined in Appendix A. After
pushing the integral to the boundary we now have the oscillator g̃ = g ◦ T . But it follows that

∇g̃(ξ) = (g ◦ T )′(ξ) = ∇g(T (ξ))T ′(ξ) = 0.

In other words the resonance point has become a critical point. (Iserles and Nørsett, 2005b) states
that a Filon-type method must sample at a critical point in order to obtain a higher asymptotic
order than that of the integral, hence, by the same logic, a Levin-type method must also sample at
a critical point. This means that the regularity condition can never be satisified, since J [g̃](ξ) = 0,
hence a Levin-type method cannot be used. Moreover, in general each g̃ is a fairly complicated
functionand no moments are available, thus neither the asymptotic nor the Filon-type methods are
feasible.

Perhaps a concrete example is in order. Consider the unit half-circle U , with g(x, y) = y − x,
as seen in Figure 10. The boundary curve which exhibits the problem is defined for Ω1 = (0, π)
as T1(t) = [cos t, sin t]>. We find that ∇g is orthogonal to the boundary at the point T1

(
3π
4

)
=
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Figure 10: Depiction of a half circle boundary U , where the vector ∇g represents the direction of
the gradient of g(x, y) = y − x, highlighting where it is orthogonal to the boundary of U .

[
−
√

2
2 ,

√
2

2

]>
, since ∇g

(
T1

(
3π
4

))
T ′1

(
3π
4

)
= [−1, 1]

[
− sin 3π

4 , cos 3π
4

]> = 0. Combining Theorem 4

and (Iserles and Nørsett, 2005b), we know that in order to obtain an order of error of O
(
ω−s− 3

2

)
our collocation points must include [−1, 0]> and [1, 0]> with multiplicity s, as well as the point of

resonance
[
−
√

2
2 ,

√
2

2

]>
with multiplicity 2s − 1. We assume that the resulting system is in fact

solvable. When we push the integral to the boundary, we obtain two line integrals:∫
U
feiωg ≈

∫
U
L[v] eiωg =

∫
T1

veiωg(dx+ dy) +
∫

T2

veiωg(dx+ dy)

= Ig1 [f1, (0, π)] + Ig2 [f2, (−1, 1)]

where T2 corresponds to the boundary of U on the x-axis, f1(t) = (cos t − sin t) v(cos t, sin t),
g1(t) = g(cos t, sin t) = sin t− cos t, f2(t) = v(t, 0) and g2(t) = g(t, 0) = −t. We see that Ig[f, U ]−
Ig1 [f1, (0, π)]− Ig2 [f2, (−1, 1)] does indeed appear to have an order of error O

(
ω−5/2

)
in Figure 11.

It follows that, if we can approximate these univariate integrals with the appropriate error, then
we can derive an equivalent to Theorem 5 for when the non-resonance condition is not satisfied.

Note that Ig1 [f1, (−1, 1)] is a one-dimensional integral with oscillator g1(t) = sin t− cos t. But
g′1

(
1
2

)
= − cos 3π

4 +sin 3π
4 = 0, meaning that we have a stationary point. Unfortunately none of the

moments of g1 are elementary, including the zeroth moment. Thus neither the univariate Filon-type
method nor the asymptotic method from (Iserles and Nørsett, 2005a) are applicable. Furthermore,
the univariate Levin-type method cannot satisfy the regularity condition, as we are required to
sample at the stationary point. Thus we are left with the problem of what to do once the integral
has been pushed to the boundary. This issue represents a work in progress, the results of which
will be published elsewhere.
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Figure 11: The error, scaled by ω
5
2 , of Ig[L[v] , U ] approximating Ig[f, U ] =

∫
H cosx cos yeiω(y−x)dV ,

where L[v] is determined by collocation at the two vertices and the resonance point, all with
multiplicities one.
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Appendix A

We define the differential operator Dm as follows:

• D0 is the identity operator.

• Dm for non-negative integer m ∈ N is simply the mth derivative:

Dm =
dm

dxm
.

• Dm for m = [m1, · · · ,md] ∈ Nd is the partial derivative

Dm =
∂|m|

∂xm1
1 . . . ∂xmd

d

,

where |m| = ‖m‖1 =
∑d

k=1mk. Note that the absolute-value signs are not needed since each
mk is nonnegative.

The bottom two definitions are equivalent in the scalar case if we regard the scalar k as a vector
in N1. Furthermore, it is clear that Dm1Dm2 = Dm1+m2 .

The definition of the determinant matrix of a map T : Rd → Rn, with component functions
T1, . . . , Tn, is simply the n× d matrix

T ′ =

D
e1T1 · · · DedT1
...

. . .
...

De1Tn · · · DedTn

 .

Note that ∇g = g′ when g is a scalar-valued function. The chain rule states that (g ◦ T )′(x) =
g′(T (x))T ′(x).

The Jacobian determinant JT of a function T : Rd → Rd is the determinant of its derivative
matrix T ′. For the case T : Rd → Rn with n ≥ d we define the Jacobian determinant of T for
indices i1, . . . , id as J i1,...,id

T = JT̃ , where T̃ = [Ti1 , · · · , Tid ]
>. Finally, we define

Jd
T (x) =

[
J2,...,d

T (x) , · · · , J1,...,d−1
T (x)

]>
,

a vector of Jacobian determinants that are used in the definition of the integral of a (d− 1)-form.
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