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Abstract.

We consider two types of highly oscillatory bivariate integrals with a nondegenerate

critical point. In each case we produce an asymptotic expansion and two kinds of

quadrature algorithms: an asymptotic method and a Filon-type method. Our results

emphasize the crucial role played by the behaviour at the critical point and by the

geometry of the boundary of the underlying domain.

1 Introduction

Germund Dahlquist’s work has frequently emphasized the importance of nu-
merical quadrature, both as an end in itself and because of its centrality to a
wide range of other computational issues: cf. for example [1].

Recent years have witnessed major resurgence of interest in the theory and
computation of highly oscillatory integrals. This is justified by a wide range of
applications, e.g. to the numerical computation of highly oscillatory differential
equations and to computational electromagnetism. On the face of it, high oscilla-
tion renders computation more challenging and expensive. Perhaps surprisingly,
once the mathematical mechanism underpinning high oscillation is understood,
the computation of many highly oscillatory integrals becomes exceedingly pre-
cise and affordable. Indeed, high oscillation often renders computation much
easier!

As things stand, four broad families of methods are available and reasonably
well understood: asymptotic methods [5], Filon-type methods [5], Levin-type
methods [9] and methods based on the technique of stationary phase [3]. All
such methods address themselves to the computation of

I[f ] =

∫ b

a

f(x)eiωg(x)dx,(1.1)

where f and g are given, sufficiently smooth functions, while |ω| ≫ 1.
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The quadrature of (1.1) is particularly easy when the oscillator g has no
stationary points: g′(x) 6= 0 for x ∈ [a, b]. The key to quadrature methods in
that case is the asymptotic expansion

I[f ] ∼
∞
∑

n=0

1

(−iω)n+1

[

eiωg(a)

g′(a)
σn(a) −

eiωg(b)

g′(b)
σn(b)

]

, |ω| ≫ 1,(1.2)

where

σ0(x) = f(x), σn+1(x) =
d

dx

σn(x)

g′(x)
, n ∈ Z+.

Note that each σn(x) is a linear combination of f (k)(x), k = 0, . . . , n. Thus,
truncating (1.2), we obtain the asymptotic method

QA

s [f ] =
s−1
∑

n=0

1

(−iω)n+1

[

eiωg(a)

g′(a)
σn(a) −

eiωg(b)

g′(b)
σn(b)

]

(1.3)

which matches I[f ] up to ω−s−1 while requiring just 2s data: the values of f (k),
k = 0, . . . , s− 1 at the endpoints. We say that QA

s is of asymptotic order s.
Suppose next that we have a linearly independent set of functions φ1, φ2, . . . , φr

which form a Chebyshev set in [a, b]. In other words, given any distinct a = c1 <
c2 < . . . < cν = b and multiplicities m1,m2, . . . ,mν , such that

∑

mi = r, there
exists a unique linear combination

φ(x) =

r
∑

i=1

αiφi(x)

such that

φ(k)(cj) = f (k)(cj), k = 0, . . . ,mj − 1, j = 1, . . . , ν.

In all standard applications it is perfectly satisfactory to use a polynomial basis,
φk(x) = xk−1.

Assuming that the moments I[φi] can be explicitly calculated for all i =
1, . . . , r, the Filon-type method is

QF

s [f ] = I[φ] =

r
∑

i=1

αiI[φi],(1.4)

where s = min{n1, nν}. The asymptotic order of (1.4) is s, matching that of
(1.3). This follows at once from the observation that QF

s [f ]− I[f ] = I[φ−f ] and
the substitution of φ− f into the asymptotic expansion (1.2). As an interesting
aside, we note that the classical textbook of Dahlquist and Björck describes a
local version of a Filon method [2, p. 297].

Filon-type methods enjoy a number of advantages in comparison with (1.3).
Although their ‘minimalist’ version, namely ν = 2, c1 = a, c2 = b, m1 =
m2 = s, use exactly the same data as the asymptotic method, the error is
typically much smaller, corresponding to the error in (1.3) once it is applied to
the approximation error φ− f , rather than to f itself. The error can be further
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decreased by adding extra quadrature points in (a, b). Finally, using well-chosen
finite differences, we can attain the same asymptotic order without the need to
compute derivatives at all [4]. The disadvantage of Filon is that we must be able
to compute the moments.

We note in passing that two other methods afford the possibility of computing
I[f ] to arbitrarily high asymptotic order, using roughly the same information as
(1.3) or (1.4): Levin-type methods [9] and methods based on a numerical im-
plementation of the technique of stationary phase of Huybrechs and Vandewalle
[3]. Neither requires the computation of moments, but each exhibits its own
disadvantages. Levin-type methods cannot be extended to cater for stationary
points, while the Huybrechs–Vandewalle method imposes further conditions on
f in the complex plane. These two methods will play no further role in this
paper, yet they are very valuable and promising. The reader is referred to [7]
for a review.

The numerical treatment of (1.1) has been generalized in two distinct direc-
tions: firstly, allowing for stationary points and, secondly, venturing into a mul-
tivariate setting. An asymptotic expansion proved itself invariably crucial to
progress and, once known, it readily leads to both asymptotic and Filon-type
methods.

We commence assuming for simplicity that (1.1) possesses just a single non-
degenerate stationary point in ξ ∈ (a, b). In other words, g′(ξ) = 0, g′′(ξ) 6= 0
and g′(x) 6= 0 for x ∈ [a, b] \ {ξ}. (Once we understand this case, the general
case is fairly straightforward.) The asymptotic expansion (1.2) generalizes to

I[f ] ∼ µ0(ω)
∞
∑

n=0

1

(−iω)n
σn(ξ)

+

∞
∑

n=0

1

(−iω)n+1

{

eiωg(b)

g′(b)
[σn(b) − σn(ξ)] −

eiωg(a)

g′(a)
[σn(a) − σn(ξ)]

}

,(1.5)

where

µ0(ω) =

∫ b

a

eiωg(x)dx

is the zeroth moment of the oscillator, while

σ0(x) = f(x), σn+1(x) =
d

dx

σn(x) − σn(ξ)

g′(x)
, n ∈ Z+.

Note that σn(x) depends on f (k)(x), k = 0, . . . , n for x 6= ξ, but σn(ξ) is a
linear combination of f (k)(ξ), k = 0, . . . , 2n. Moreover, according to the van der

Corput theorem [10], it is true that µ0(ω) ∼ O(ω− 1

2 ). We obtain the asymptotic
method

QA

s [f ] = µ0(ω)

s−1
∑

n=0

1

(−iω)n
σn(ξ)

+
s−1
∑

n=0

1

(−iω)n+1

{

eiωg(b)

g′(b)
[σn(b) − σn(ξ)] −

eiωg(a)

g′(a)
[σn(a) − σn(ξ)]

}

,
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of asymptotic order s− 1
2 . Likewise, interpolating f and its first s−1 derivatives

at the endpoints and f (k), k = 0, . . . , 2s−2 at ξ, we obtain a Filon-type method
of the same asymptotic order. The error of the latter can be further reduced by
interpolation at additional points.

The generalization of (1.3) and (1.4) to a multivariate setting in [6] follows a
different path. Again, the key is an asymptotic expansion. The paper in question
presents, in effect, two methods of analysis but, taking on board subsequent
observations in [8], it is enough to follow the approach of a Stokes-type theorem.
To set the scene, we replace (1.1) with

I[f ] =

∫

Ω

f(x)eiωg(x)dV,(1.6)

where Ω ⊂ R
d is a bounded open domain with piecewise-smooth boundary, while

f, g : Ω → R are suitably smooth. The multivariate equivalent of a stationary
point is called a critical point: ξ ∈ cl Ω such that ∇g(ξ) = 0 [10]. We assume
for the time being that there are no critical points in the closure of Ω. In that
case, it is possible to prove that

I[f ] =
1

iω

∫

∂Ω

n(x)⊤∇g(x)
f(x)

‖∇g(x)‖2
eiωg(x)dS(1.7)

−
1

iω

∫

Ω

∇
⊤

[

f(x)

‖∇g(x)‖2
∇g(x)

]

eiωg(x)dV,

where the norm is Euclidean and n is the unit outward normal at the boundary.
The proof of (1.7) in [6] follows several steps. First we prove it when Ω is the
regular simplex with vertices at the origin and at the d unit vectors. This is
generalized to arbitrary simplices using an affine mapping and, subsequently, to
polytopes, tessellating them with a simplicial complex. Finally, as observed in
[8], the formula (1.7) extends to non-polytope domains using the dominating
convergence theorem.

Next, we iterate (1.7) to obtain the Stokes-type asymptotic expansion

I[f ] ∼ −

∞
∑

n=0

1

(−iω)n+1

∫

∂Ω

n(x)⊤∇g(x)
σm(x)

‖∇g(x)‖2
eiωg(x)dS,(1.8)

where

σ0(x) = f(x), σn+1(x) = ∇
⊤

[

σn(x)

‖∇g(x)‖2
∇g(x)

]

, n ∈ Z+.

The way forward is seemingly straightforward: consider the oriented boundary
of Ω as a domain in R

d−1 and continue with this procedure. This, unfortunately,
is careless and not always valid. The problem is that, although critical points
are absent in R

d, they may occur in lower dimensions. To avoid this, we need
to impose the nonresonance condition: the vector ∇g(x), x ∈ ∂Ω, is nowhere
orthogonal to the boundary. Note that if the boundary of Ω is smooth, the
nonresonance condition must necessarily fail. In this instance ‘corners’ are good!

Once the nonresonance condition holds, we may progressively pass to lower-
dimensional integrals, stopping once we reach zero-dimensional sets: specifically,
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the points where ∂Ω is nondifferentiable. This results in an asymptotic expansion
of the form

I[f ] ∼

∞
∑

n=0

1

(−iω)n+d
θn,(1.9)

where each θn is a linear functional which depends on ∂|m|f/∂xm, |m| =
0, . . . , n, at the points of C1 discontinuity of ∂Ω. We can now obtain an asymp-
totic quadrature truncating (1.9), while a Filon-type method follows by interpo-
lating f and its derivatives at the ‘vertices’, e.g. with finite-element functions.

The subject of this paper is to address the presence of critical points in a multi-
variate setting. Thus, we are interested in computing (1.6) whilst assuming that

there exists ξ ∈ Ω such that ∇g(ξ) = 0, det∇∇
⊤g(x) 6= 0 (the second condi-

tion, usually termed nondegeneracy [10], corresponds to g′′(ξ) 6= 0 in univariate
setting). We assume that ∇g(x) 6= 0 for x ∈ cl Ω \ {ξ}.

Of course, the subject in its totality is well beyond the scope of a single paper,
therefore we present here just an initial foray into this very broad topic. Our
difficulty is compounded by the absence of a comprehensive body of theory on
the asymptotic behaviour of I[f ] in this situation, along the lines of the method
of stationary phase and the van der Corput lemma in a single variable [10]. Full
asymptotic expansion, of the kind so central in the derivation of our quadrature
methods, is simply not available.

The most obvious line of attack is to generalize the Stokes-type formula (1.8)
to the current setting, employing similar technique as that we have already used
in [5] in the univariate case. Thus, assume that ξ ∈ Ω is a unique, nondegenerate
critical point. Writing f(x) = f(ξ) + [f(x) − f(ξ)], we have

I[f ] = f(ξ)I[1] + I[f̃ ], f̃(x) = f(x) − f(ξ).

In the univariate case, f̃ vanishes at the critical point, hence f̃/g′ has a removable
singularity there. In the multivariate case we require that the singularity of

h(x) =
f̃(x)

‖∇g(x)‖2
∇g(x)

at ξ is removable. Unfortunately, this need not the case, as can be easily seen
taking g(x) = 1

2‖x‖
2. Worse: suppose that we consider

I[f ] = f(ξ)I[1] +

d
∑

k=1

∂f(x)

∂xk
I[xk − ξk] + I[f̃ ],

where f̃(x) = f(x) − f(ξ) − ∇f(ξ)⊤(x − ξ). Even then the singularity of h

(with the new definition of f̃) at ξ is not removable. Generalizing (1.7) to cater
for critical points might be possible but at present it is not clear how to do so.

Instead, in the current paper we adopt a fairly minimalist plan of action and
address just two bivariate problems, the separable oscillator

I[f ] =

∫ 1

−1

∫ 1

−1

f(x, y)eiω[g1(x)+g2(y)]dydx,(1.10)
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where g′1(x0) = g′2(y0) = 0 for some x0, y0 ∈ (−1, 1), g′′1 (x0) + g′′2 (y0) 6= 0,
g1, g

′
2 6= 0 in [−1, 1]2 \ {(x0, y0)}, and

I[f ] =

∫

x2+y2<1

f(x, y)eiω(x2+y2)dydx.(1.11)

Note that for (1.11) every point on the boundary is a point of resonance. We
wish to explore the delicate connection between the nature of the oscillator, the
geometry of the boundary, the asymptotic expansion and numerical quadrature.

Multivariate highly oscillatory quadrature presents a wide range of challenges,
mostly unexplored. Note thus that the oscillators in (1.10) and (1.11) are fairly
similar (take g1(x) = x2, g2(y) = y2 in (1.10)!), yet underlying asymptotic
expansions and Filon-type methods require completely different information.
Moreover, neither integral provides a clue to the asymptotic behaviour of, say,

∫

Ω

f(x, y)eiω(x2+y2)dV

for general Ω ⊂ R
2 although note that if Ω is a square, 0 ∈ Ω, then we can

easily generalize our analysis using rotation and affine translation. We expect
to address the problem in greater generality in forthcoming papers.

2 The separable oscillator

We assume that both f and g1, g2 are smooth functions. As the first step in
our asymptotic analysis of (1.10), we define the differential operators

Dxφ(x, y) =
∂

∂x

φ(x, y) − φ(x0, y)

g′1(x)
, Dyφ(x, y) =

∂

∂y

φ(x, y) − φ(x, y0)

g′2(y)

Proposition 2.1. The operators Dx and Dy commute.
Proof. By straightforward calculation. Letting

φ̃(x, y) = φ(x, y) − φ(x, y0) − φ(x0, y) + φ(x0, y0)

we calculate

DxDyφ =
g′′1 (x)g′′2 (y)

g′1
2(x)g′2

2(y)
[φ(x, y) − φ(x, y0) − φ(x0, y) + φ(x0, y0)]

−
g′′1 (x)

g′1
2(x)g′2(y)

[φy(x, y) − φy(x0, y)] −
g′′2 (y)

g′1(x)g
′
2
2(y)

[φx(x, y)

− φx(x, y0)] +
1

g′1(x)g
′
2(y)

φxy(x, y)

=
1

g′1(x)g
′
2(y)

[

g′′1 (x)g′′2 (y)

g′1(x)g
′
2(y)

−
g′′1 (x)

g′1(x)

∂

∂y
−
g′′2 (y)

g′2(y)

∂

∂x
+

∂2

∂x∂y

]

φ̃(x, y).

Since this expression is symmetric in x and y, we immediately deduce that
DxDy = DyDx.
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We define
fm,n(x, y) = Dm

x Dn
y f(x, y), m, n ∈ Z+,

and note that, by virtue of Proposition 2.1, fm,n is independent of the order of
Dx and Dy. It is easy to prove by induction that each fm,n in the punctured
square [−1, 1]2 \ {(x0, y0)} is a linear combination of ∂i+jf(x, y)/∂xi/∂yj for
i = 0, . . . ,m and j = 0, . . . , n, while at (x0, y0) it is a linear combination of
∂i+jf(x0, y0)/∂x

i/∂yj for i = 0, . . . , 2m and j = 0, . . . , 2n.
Finally, let

µ0(ω) =

∫ 1

−1

eiωg1(x)dx, ν0(ω) =

∫ 1

−1

eiωg2(y)dy.

We have all the necessary machinery to expand I[f ] asymptotically, nesting
univariate expansions (1.5). The detailed expansion below is long, fairly tedious
and requires great attention to detail.

I[f ]

=

∫ 1

−1

[
∫ 1

−1

f(x, y)eiωg2(y)dy

]

eiωg1(x)dx

∼

∫ 1

−1

{

ν0(ω)
∞
∑

n=0

1

(−iω)n
f0,n(x, y0)

−
eiωg2(1)

g′2(1)

∞
∑

n=0

1

(−iω)n+1
[f0,n(x, 1) − f0,n(x, y0)]

+
eiωg2(−1)

g′2(−1)
[f0,n(x,−1) − f0,n(x, y0)]

}

eiωg1(x)dx

= ν0(ω)

∞
∑

n=0

1

(−iω)n

∫ 1

−1

f0,n(x, y0)e
iωg1(x)dx

−
eiωg2(1)

g′2(1)

∞
∑

n=0

1

(−iω)n+1

∫ 1

−1

[f0,n(x, 1) − f0,n(x, y0)]e
iωg1(x)dx

+
eiωg2(−1)

g′2(−1)

∞
∑

n=0

1

(−iω)n+1

∫ 1

−1

[f0,n(x,−1) − f0,n(x, y0)]e
iωg1(x)dx

∼ ν0(ω)
∞
∑

n=0

1

(−iω)n

{

µ0(ω)
∞
∑

m=0

1

(−iω)m
fm,n(x0, y0)

−
eiωg1(1)

g′1(1)

∞
∑

m=0

1

(−iω)m+1
[fm,n(1, y0) − fm,n(x0, y0)]

+
eiωg1(−1)

g′1(−1)

∞
∑

m=0

1

(−iω)m+1
[fm,n(−1, y0) − fm,n(x0, y0)]

}

−
eiωg2(1)

g′2(1)

∞
∑

n=0

1

(−iω)n+1

{

µ0(ω)
∞
∑

m=0

1

(−iω)m+1
[fm,n(x0, 1) − fm,n(x0, y0)]
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−
eiωg1(1)

g′1(1)

∞
∑

m=0

1

(−iω)m+1
[fm,n(1, 1) − fm,n(1, y0) − fm,n(x0, 1)

+ fm,n(x0, y0)]

+
eiωg1(−1)

g′1(−1)

∞
∑

m=0

1

(−iω)m+1
[fm,n(−1, 1) − fm,n(−1, y0) − fm,n(x0, 1)

+ fm,n(x0, y0)]

}

+
eiωg2(−1)

g′2(−1)

∞
∑

n=0

1

(−iω)n+1

{

µ0(ω)

∞
∑

m=0

1

(−iω)m+1
[fm,n(x0,−1)

− fm,n(x0, y0)]

−
eiωg1(1)

g′1(1)

∞
∑

m=0

1

(−iω)m+1
[fm,n(1,−1) − fm,n(1, y0) − fm,n(x0,−1)

+ fm,n(x0, y0)]

+
eiωg1(−1)

g′1(−1)

∞
∑

m=0

1

(−iω)m+1
[fm,n(−1,−1) − fm,n(−1, y0) − fm,n(x0,−1)

+ fm,n(x0, y0)]

}

= µ0(ω)ν0(ω)

∞
∑

m=0

1

(−iω)m

m
∑

n=0

fm−n,n(x0, y0)

− µ0(ω)
eiωg2(1)

g′2(1)

∞
∑

m=0

1

(−iω)m+1

m
∑

n=0

[fm−n,n(x0, 1) − fm−n,n(x0, y0)]

+ µ0(ω)
eiωg2(−1)

g′2(−1)

∞
∑

m=0

1

(−iω)m+1

m
∑

n=0

[fm−n,n(x0,−1) − fm−n,n(x0, y0)]

− ν0(ω)
eiωg1(1)

g′1(1)

∞
∑

m=0

1

(−iω)m+1

m
∑

n=0

[fm−n,m(1, y0) − fm−n,n(x0, y0)]

+ ν0(ω)
eiωg1(−1)

g′1(−1)

∞
∑

m=0

1

(−iω)m+1

m
∑

n=0

[fm−n,m(−1, y0) − fm−n,n(x0, y0)]

+
eiω[g1(1)+g2(1)]

g′1(1)g′2(1)

∞
∑

m=0

1

(−iω)m+2

m
∑

n=0

[fm−n,n(1, 1) − fm−n,n(x0, 1)

− fm−n,n(1, y0) + fm−n,n(x0, y0)]

−
eiω[g1(−1)+g2(1)]

g′1(−1)g′2(1)

∞
∑

m=0

1

(−iω)m+2

m
∑

n=0

[fm−n,n(−1, 1) − fm−n,n(x0, 1)

− fm−n,n(−1, y0) + fm−n,n(x0, y0)]
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−
eiω[g1(1)+g2(−1)]

g′1(1)g′2(−1)

∞
∑

m=0

1

(−iω)m+2

m
∑

n=0

[fm−n,n(1,−1) − fm−n,n(x0,−1)

− fm−n,n(1, y0) + fm−n,n(x0, y0)]

+
eiω[g1(−1)+g2(−1)]

g′1(−1)g′2(−1)

∞
∑

m=0

1

(−iω)m+2

m
∑

n=0

[fm−n,n(−1,−1) − fm−n,n(x0,−1)

− fm−n,n(−1, y0) + fm−n,n(x0, y0)].

The asymptotic expansion of I[f ] depends on nine points,

u u

uu

u

u

u uu

(x0, y0)

(x0, 1)

(x0,−1)

(−1, 1)

(−1, y0)

(−1,−1)

(1, 1)

(1, y0)

(1,−1)

This makes sense: the vertices impact on the expansion even when there are
no critical points, (x0, y0) is the critical point, while (x0,±1) and (±1, y0) are
resonance points of our oscillator.

In line with the van der Corput theorem [10], we have µ0(ω), ν0(ω) = O(ω− 1

2 ).
Therefore we deduce that

I[f ] = O(ω−1), |ω| ≫ 1.

We can truncate the asymptotic expansion to produce an asymptotic method.
Thus, for example

QA

1 [f ] = µ0(ω)ν0(ω)

{

f(x0, y0) +
1

−iω
[f1,0(x0, y0) + f0,1(x0, y0)]

}

−
1

−iω

{

µ0(ω)
eiωg2(1)

g′2(1)
[f(x0, 1) − f(x0, y0)]

− µ0(ω)
eiωg2(−1)

g′2(−1)
[f(x0,−1) − f(x0, y0)]

+ ν0(ω)
eiωg1(1)

g′1(1)
[f(1, y0) − f(x0, y0)]

− ν0(ω)
eiωg1(−1)

g′1(−1)
[f(−1, y0) − f(x0, y0)]

}
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+
1

(−iω)2

{

eiω[g1(1)+g2(1)]

g′1(1)g′2(1)
[f(1, 1) − f(x0, 1) − f(1, y0) + f(x0, y0)]

−
eiω[g1(−1)+g2(1)]

g′1(−1)g′2(1)
[f(−1, 1) − f(x0, 1) − f(−1, y0) + f(x0, y0)]

−
eiω[g1(1)+g2(−1)]

g′1(1)g′2(−1)
[f(1,−1) − f(x0,−1) − f(1, y0) + f(x0, y0)]

+
eiω[g1(−1)+g2(−1)]

g′1(−1)g′2(−1)
[f(−1, 1) − f(x0,−1) − f(−1, y0) + f(x0, y0)]

}

yields asymptotic order 3
2 : in other words, QA

1 [f ] ∼ I[f ] +O(ω− 5

2 ). All this, as
well as our subsequent discussion of a Filon-type method, can be immediately
generalized to higher asymptotic orders.

The asymptotic expansion QA

1 used function values at the eight points along
the boundary, as well as f, fx, fy, fxx, fxy and fyy at (x0, y0), altogether thirteen
data items. Once we wish to generalize a Filon-type method to this setting, we
need to construct a smooth interpolating function ψ, say, that satisfies all these
conditions, whereby

QF

1[f ] = I[ψ].

It is clear that QF

1[f ] = I[f ] +O(ω− 5

2 ).
A bivariate quadratic, with fifteen degrees of freedom, might seem a reasonable

choice of ψ, with two degrees of freedom to spare. Unfortunately, once we form
the relevant 13 × 15 matrix, it is of rank 13 for x0, y0 6= 0, but just rank 12
when one of {x0, y0} vanishes and rank 10 for x0 = y0 = 0. A more careful
examination of the interpolation conditions makes it clear, however, that we
need less conditions at the critical point. Since

f1,0(x0, y0) = − 1
2

g′′′1 (x0)

g′′1
2(x0)

fx(x0, y0) + 1
2

1

g′′1 (x0)
fxx(x0, y0),

f0,1(x0, y0) = − 1
2

g′′′2 (y0)

g′′2
2(y0)

fy(x0, y0) + 1
2

1

g′′2 (y0)
fyy(x0, y0),

we need to satisfy at (x0, y0) just three (rather than six) interpolation conditions,

ψ(x0, y0) − f(x0, y0) = 0,

g′′′1 (x0)

g′′1
2(x0)

[ψx(x0, y0) − fx(x0, y0)] +
1

g′′1 (x0)
[ψxx(x0, y0) − fxx(x0, y0)] = 0,

g′′′2 (y0)

g′′2
2(y0)

[ψy(x0, y0) − fy(x0, y0)] +
1

g′′2 (y0)
[ψyy(x0, y0) − fyy(x0, y0)] = 0.

Altogether, we have eleven conditions, which can be satisfied by a biquadratic.
In Fig. 2.1 we display the errors, scaled by ω

5

2 , in the quadrature of

∫ 1

−1

∫ 1

−1

(1 + x)ex−yeiω(x2+y2)dydx
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Figure 2.1: Scaled errors ω
5

2 |QA

1 [f ]− I[f ]| (on the left) and ω
5

2 |QF

1[f ]− I[f ]| for
g(x, y) = x2 + y2 and f(x, y) = (1 + x)ex−y.

by QA

1 and QF

1. Both methods behave as predicted by the theory. Note that
the error of the Filon-type method is roughly a tenth of that of the asymp-
totic method, although they use exactly the same information. This is typical
behaviour, cf. [4, 6].

3 Critical point in a disc

Converting (1.11) to polar coordinates, we have

I[f ] =

∫

x2+y2<1

f(x, y)eiω(x2+y2)dydx = 2π

∫ 1

0

rF (r)eiωr2dr,(3.1)

where

F (r) =
1

2π

∫ π

−π

f(r cos θ, r sin θ)dθ.

We expand the univariate integral in (3.1) asymptotically, similarly to (1.5). Let

µ0(ω) =

∫ 1

0

eiωr2dr =
π

1

2 erf((−iω)
1

2 )

2(−iω)
1

2

.

Then

1

2π
I[f ] =

1

2iω

∫ 1

0

F (r)
deiωr2

dr
=

1

2iω
[F (1)eiω − F (0)] −

1

2iω

∫ 1

0

F ′(r)eiωr2dr.

The integral on the right is now expanded asymptotically similarly to (1.5),

1

2π
I[f ] ∼

1

2iω
[F (1)eiω − F (0)] + µ0(ω)

∞
∑

n=0

1

(−2iω)n+1
F ′
n(0)
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−

∞
∑

n=0

1

(−2iω)n+2
{[Fn(1) − Fn(0)]eiω − F ′

n(0)},(3.2)

where

F0(r) = F ′(r), Fn+1(r) =
d

dr

Fn(r) − Fn(0)

r
, n ∈ Z+.

The asymptotic expansion (3.2) can be truncated, whereby we obtain an
asymptotic method. Likewise, interpolating the function F and its derivatives at
0 and 1 (and perhaps additional points) results in a Filon-type method, whereby
(3.2) is crucial to the proof of its asymptotic order. However, all this tacitly as-
sumes that the integral F can be evaluated explicitly. Unless this is true, we
need to reformulate (3.2) so that it is expressed in terms of the function f .

Proposition 3.1. Suppose that f is analytic and

f(x, y) =

∞
∑

i=0

∞
∑

j=0

φi,j
i!j!

xiyj , where φi,j =
∂i+jf(0, 0)

∂xi∂yj
, i, j ∈ Z+.

Then

F (r) =
∞
∑

j=0

r2j

4jj!2
∆jf(0, 0).(3.3)

Proof. Integrating term-by-term,

F (r) =

∞
∑

i=0

∞
∑

j=0

φi,j
i!j!

ri+jτi,j

where

τi,j =
1

2π

∫ π

−π

cosi θ sinj θdθ, i, j ∈ Z+.

Clearly, τi,j = 0 if either i or j is odd. The value of τ2i,2j might well be known
but for completeness herewith its derivation. Given n ≥ 0, let

Tn(x, y) =

2n
∑

m=0

(

2n

m

)

τ2n−m,mx
2n−mym =

1

2π

∫ π

−π

(x cos θ + y sin θ)2ndθ.

Assuming that x2 + y2 > 0, we let

ψ = sin−1 x
√

x2 + y2
.

Then

Tn(x, y) =
(x2 + y2)n

2π

∫ π

−π

(

x
√

x2 + y2
cos θ +

y
√

x2 + y2
cos θ

)2n

dθ
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=
(x2 + y2)n

2π

∫ π

−π

(sinψ cos θ + sin θ cosψ)2ndθ

=
(x2 + y2)n

2π

∫ π

−π

sin2n(θ + ψ)dθ =
(x2 + y2)n

2π

∫ π

−π

sin2n θdθ

=
1

4n

(

2n

n

)

(x2 + y2)n.

Therefore,

τ2i,2j =
1

4i+j
(2i)!(2j)!

i!j!(i+ j)!
, i, j ∈ Z+.

Substituting the values of τi,j in the expansion of F , we have

F (r) =

∞
∑

j=0

r2j

4jj!2

j
∑

i=0

(

j

i

)

φ2i,2j−2i =

∞
∑

j=0

r2j

4jj!2
∆jf(0, 0),

as postulated in (3.3).

Given the expansion

F (r) =

∞
∑

m=0

F (m)(0)

m!
rm,

it follows by an easy induction that

Fn(r) = 2n
∞
∑

m=0

(m+1
2 )n

(m+ 2n)!
F (m+2n+1)(0)rn, n ∈ Z+,

where (z)n is the Pochhammer symbol: (z)0 = 1 and (z)n = (z + n− 1)(z)n−1,
n ∈ N. Therefore, it follows from (3.3) that Fn(0) = 0,

F ′
n(0) =

1

2n+1(n+ 1)!
∆n+1f(0, 0), n ∈ Z+

and

Fn(1) = 2n
∞
∑

j=0

(j + 1)n
4n+j+1(n+ j + 1)!

∆n+j+1f(0, 0)

=
1

2n+1

∞
∑

j=0

1

4j+1j!(n+ j + 1)!
∆n+j+1f(0, 0).

Substituting the values of Fn and µ0 into the asymptotic expansion of I[f ], we
obtain after easy manipulation the series

I[f ] ∼ −4π

∞
∑

n=0

1

(−4iω)n+1



eiω
∞
∑

j=0

∆n+jf(0, 0)

4jj!(n+ j)!
−

∆nf(0, 0)

n!





+
π

1

2 erf((−iω)
1

2 )

(−iω)
1

2

∞
∑

n=1

1

(−4iω)n
∆nf(0, 0)

n!
.(3.4)
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The entire information necessary for the computation of (3.4) consists of the
values of ∆jf(0, 0) for j ∈ Z+, but the obvious disadvantage of this representa-
tion is that it requires the summation of infinite series. Now, even if the series

un[f ] =
1

2n

∞
∑

j=0

∆n+jf(0, 0)

4jj!(n+ j)!
, n ∈ Z+,

converges rapidly, hence can be truncated, this procedure is fairly expensive in
terms of derivative calculations at the origin and the outcome is an asymptotic
expansion where leading terms are reproduced only approximately.

Note however that u0[f ] = (2π)−1
∫ π

−π
f(cos θ, sin θ)dθ, an integral along the

perimeter of the disc. Were we able to represent un[f ] for n ∈ N as integrals on
the unit circle, we could have computed them all to great accuracy using values
of f therein, perhaps using the fast Fourier transform. Unfortunately, this is
impossible. For suppose that, given n ∈ N, there exists a kernel K such that

un[f ] =

∫ π

−π

K(θ)f(cos θ, sin θ)dθ

(note that K ≡ (2π)−1 for n = 0). Taking f̃(x, y) = x2 + y2, we readily obtain

∫ π

−π

K(θ)dθ = un[f̃ ] = 1.

It is trivial to prove, changing variables θ → −θ, that K(−π) = K(π). We can
thus extend K outside [−π, π] by periodicity. Given ψ ∈ [−π, π], we define

fψ(x, y) = f(x cosψ − y sinψ, x sinψ + y cosψ),

hence fψ(cos θ, sin θ) = f(cos(θ + ψ), sin(θ + ψ)). The Laplacian and all its
powers being radially invariant, it is thus clear that un[fψ] = un[f ]. We now
change variables affinely and use the periodicity of K,

un[f ] =
1

2π

∫ π

−π

un[fψ]dψ =
1

2π

∫ π

−π

K(θ)f(cos(θ + ψ), sin(θ + ψ))dθdψ

=
1

2π

∫ π

−π

∫ π

−π

K(θ − ψ)dψf(cos θ, sin θ)dθ

=
1

2π

[
∫ π

−π

K(ψ)dψ

] [
∫ π

−π

f(cos θ, sin θ)dθ

]

= u0[f ].

Therefore, unless un[f ] = u0[f ], we cannot represent un as an integral along the
boundary.

This disappointing result restricts the efficacy of asymptotic and Filon-type
methods in this setting. Perhaps the simplest approach, a “Filon-type method”
of sorts, is to truncate the Taylor expansion of f , evaluate exactly (e.g., using
the quantities τk,l) the function F and substitute it into (3.2). In that case,
although the leading terms in the expansion do not vanish, they are very small
in magnitude and we can expect small error.
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Figure 3.1: Scaled errors ωRe(Q1,4[f ]−I[f ]) (on the left) and ωRe(Q2,6[f ]−I[f ])|
for f(x, y) = (4 + x− y)−1.

As an example, consider f(x, y) = (4 + x− y)−1. Although the exact value of
I[f ] is unknown, we have used high-order asymptotic quadrature in our numer-
ical experiments. Using symbolic algebra, it is easy to expand

F (r) = 1
4 + 1

64r
2 + 3

2048r
4 + 5

32768r
6 + 35

2097152r
8 + 63

33554432r
10 +O(r12)

– the rate of decay is, indeed, rapid. We denote by F [q] the expansion of F
truncated for O(rq+1) and let

Qs,q[f ] =
π

iω
[F [q](1)eiω − F [q](0)] + 2πµ0(ω)

s−1
∑

n=0

1

(−2iω)n+1
F [q]
n

′
(0)

− 2π

s−1
∑

n=0

1

(−2iω)n+2
{[F [q]

n (1) − F [q]
n (0)]eiω − F [q]

n

′
(0)},

where F
[q]
n is derived from F [n] in the same manner as Fn from F . Fig. 3.1

displays the real parts of the error, scaled by ω. Note that there are two compo-
nents to the error, implicit in the presence of two indices in Qs,q. For moderate
ω is it a good strategy to take more terms in the asymptotic expansion, rather
than approximating F well. However, as evident from Fig. 3.2, once |ω| becomes
very large and the contribution of the O(ω−2) terms vanishingly small, there is
not much to choose between Q1,q and Q2,q and the error depends solely on the
quality of the approximation of F .

4 Conclusion

This preliminary investigation of the asymptotic behaviour and numerical
quadrature of multivariate highly oscillatory integrals with critical points high-
lights two issues. Firstly, it underscores the importance of asymptotic expansions
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Figure 3.2: Scaled errors ωRe(Q1,8[f ]−I[f ]) (on the left) and ωRe(Q2,8[f ]−I[f ])|
for f(x, y) = (4 + x− y)−1 for very large ω.

in the design of quadrature formulae. Secondly, it emphasizes the subtle inter-
play between the nature of the critical point and the geometry of the boundary.
Thus, given the oscillator g(x, y) = x2 + y2, we can approximate the integral
with great ease and precision in [−1, 1]2 but its quadrature in the unit disc is
far from satisfactory.

More complicated oscillators and domains Ω with complicated geometries are
bound to present further challenges. In particular, critical points need not be
isolated: consider, for example, g(x, y) = (x − y)2 in the triangle {(x, y) : 0 ≤
1, 0 ≤ x ≤ 1 − x}. More comprehensive analysis of the problem in hand is,
clearly, a matter for further research.
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